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Abstract 
We consider the problem of determining robot manip- 

ulation plans when sensing and control uncertainties are 
specified as conditional probability densities. Traditional 
approaches are usually based on worst-case error anal- 
ysis in a methodology known as preimage backchaining. 
We have developed a general framework for determining 
sensor-based robot plans by blending ideas from stocbas- 
tic optimal control and dynamic game theory with tra- 
ditional preimage backchaining concepts. We argue that 
the consideration of a precise loss (or performance) func- 
tional is crucial to determining and evaluating manipu- 
lation plans in a probabilistic setting. We consequently 
introduce a stochastic, performance preimage that gen- 
eralizes previous preimage notions. We also present some 
optimal strategies for planar manipulation tasks that were 
computed by a dynamic programming-based algorithm. 

1 Introduction 
Uncertainty is inevitably involved in the planning and 

execution of robot tasks. Sources of such uncertainty in- 
clude geometric model inaccuracies, limited or noisy sens- 
ing, and only partially predictable execution of robot com- 
mands. We address the latter two sources in this paper 
with a stochastic framework that is based on an explicit 
loss (or performance) functional. By a loss functional, we 
mean that we directly take into account explicit criteria 
such as the minimum path length, or the probability of 
success, when determining a robot plan. Many of the con- 
cepts introduced here are based on ideas used in stochastic 
optimal control theory [9] and dynamic game theory [l]. 

In robot motion planning, the general method of preim- 
age backchaining constitutes a large body of work which 
assumes that sensing and control errors lie within bounded 
sets (e.g., [6, 11, 141). Certain aspects of this method have 
been recently considered in a probabilistic context [3]. 

We briefly describe a manipulation planning model of- 
ten used in the preimage backchaining context (see Figure 
l) ,  and further details are given in Section 3. The robot 
can be considered as a point moving in some subset of the 
plane, g2, termed the configuration space. This could for 
instance correspond to a polygonal robot that is allowed 
to translate in a plane. There are subsets of the con- 
figuration space, called obstacles, which the robot is not 
allowed to enter. The robot does, however, have a force 
sensor that allows it detect collision, and move along an 
obstacle boundary if desired. The robot is equipped with 

Figure 1. Accomplishing a goal under uncertainty in sensing 
and control. 
another sensor that measures the position with a maxi- 
mum error radius of cp. The robot can issue a command 
to  move in a direction, specified as an angle between 0 
and 2 ~ ;  however, the actual direction that is selected is 
uncertain with an angular error that is bounded by €0 .  

A subset of the configuration space is defined as a goal 
region. The two primary concerns in determining a robot 
plan with preimage backchainin are: 1) getting the robot 
into the goal region (reachabilityy, and 2 )  having the robot 
know to halt in the goal region (recognizability). We say 
that the goal is achieved if the robot successfully halts 
in the goal region. Using geometric reasoning techniques, 
a plan is constructed that guarantees that the robot will 
achieve the goal (see Figure 1). This plan is generally 
constructed using recursive subgoals, as a form of AI 
backchaining. For each subgoal, a preimage is formed that 
allows the robot to achieve the subgoal for a fixed com- 
mand, starting from the subset of the configuration space 
attained from the previous subgoal. Classically, a preim- 
age is defined as the set of all configurations form which a 
robot is guaranteed to achieve the goal. Figure 2 shows an 
example of a preimage when the robot issues a command 
to move down. 

There are two basic questions we can ask about the 
performance of a particular robot plan or strategy: 

0 How likely is the goal to be achieved? 

0 If achieved, how efficient is the solution? 

In geometric robot motion planning work, typically 
only the first question is precisely addressed, although 
there is often some weak preference for more efficient 
plans. In traditional preimage backchaining work, people 
have been interested in generating strategies that answer 
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Figure 2. A simple preimage example. 

the first question by guaranteeing that the goal will be 
achieved. 

One motivation behind probabilistic backprojections 
[3], as well as our framework, is that worst-case analy- 
sis tends to eliminate the consideration of many reason- 
able robot strategies. The absolute requirement that the 
goal is achieved is too strong, particularly as the amount 
of uncertainty in control and sensing is increased. Fur- 
thermore, if bounded uncertainty models are replaced by 
smooth probability density functions such as a Gaussian, 
then it becomes impossible to guarantee’ that the goal will 
be achieved in a fixed amount of time, except in very re- 
stricted cases. We note, however, that for applications in 
which probability densities are not available, then worst- 
case analysis may be appropriate [5]. 

When a probabilistic or stochastic formulation is con- 
sidered, both of the previous questions need to be carefully 
considered. Many stochastic models will lead to guaran- 
teed goal achievement for any possible set of bounded- 
velocity motion commands, even though the probability 
that the goal will be achieved in some reasonable finite 
time interval is very small. For example, continuous Brow- 
nian motion will eventually lead the robot to any nonzero- 
measure goal region, which indicates that Brownian mo- 
tion achieves probabilistic completeness [2]. This fact 
forms the basis of incorporating specific diffusion processes 
into robotic plans in [5]. The problem in our context, how- 
ever, is that the expected time to actually achieve the goal 
can be arbitrarily high, indicating that for some problems, 
at least, the probability that the goal will eventually be 
achieved is not useful in evaluating a strategy. Therefore 
the efficiency of the solution (e.g., the amount of time the 
robot is expected to take to achieve the goal) is of great 
importance in evaluatin a robot strategy under general 
models of uncertainty. fections 2, 4 and 5 show how ob- 
jectives can be precisely defined that answer both of the 
questions above and guide the selection of a robot strat- 
egy. 

Further benefits are provided by our stochastic frame- 
work. The relationship between sensor and action history 
and decision making has long been considered important 
for robot motion plannin under uncertainty [6, 11, 141. 
By using the concept of inkrmation state, as considered in 
stochastic systems, we provide a precise characterization 
of this relationship. A robot strategy will be defined in 
terms of this information state. Furthermore, the general 
structure of our framework provides insight into how cer- 
tain aspects of a traditional manipulation planning prob- 
lem mi ht be generalized. For instance, if a better sensing 
model fin which the error is described in terms of a prob- 

I‘‘Guarantee” in a stochastic setting should technically be re- 
placed by “achieve with probability one.” 

ability density) is determined for a given application, the 
appropriate probability density can be replaced, and much 
of the general approach remains the same. The loss func- 
tional can also easily be changed. Furthermore, this entire 
framework can be adapted to a more general multi-player, 
dynamic m e  theory, in which the interaction of poten- 
tially conbcting objectives can be analyzed [l, 12, 131. 

Section 2 formally defines the general components that 
describe our version of the robot manipulation planning 
problem, with stochastic uncertainty in control and sens- 
ing. Section 3 applies our general formulation to express 
the models and assumptions used in the preimage plan- 
ning approaches. By using this model we can compare the 
stochastic version of preimages with the traditional con- 
structions. Section 4 introduces the performance preim- 
age, which can be used for the evaluation of a given robot 
strategy. Section 5 presents a dynamic programming- 
based algorithm, which we have applied to the model from 
Section 3, that yields performance preimages and numer- 
ically optimal robot strategies. Several computed exam- 
ples are presented. Section 6 provides some conclusions 
and possible extensions. 

2 The General Framework 
In this section we define the general concepts and ter- 

minology that form the basis for our framework. We 
consider manipulation planning with uncertainty as a dy- 
namic game, played by a robot, A, and nature. The robot 
has a general plan to achieve some goal, while nature per- 
forms some actions that potentially interfere with A. At 
an abstract level, this general view of robotic manipula- 
tion tasks has been advocated in [15]. In this framework, 
we assume that nature chooses actions by sampling from 
a known probability density, ~ ( 8 ) ;  hence, nature can be 
represented as a random variable, 0. For this density and 
the remaining probability densities in the paper, we im- 
plicitly assume there is some underlying probability space, 
and random variables with densities are constructed using 
appropriate measurability conditions. 

The position of A in a workspace is represented by a 
point in an n-dimensional configuration space, C, in which 
n is the number of degrees of freedom of A. For manipu- 
lation planning a subset of C, denoted as Cual,d, is usually 
defined. This corresponds to points in C at which either: 
1) A does not touch an obstacle, or 2) the boundary of A 
is in contact with the boundary of some obstacle, but the 
interiors do not overlap. The second condition enables the 
possibility of guarded motion and compliance [16], which 
for instance allows the robot to execute a motion dong 
the tangent of an obstacle boundary. 

We associate a state space, X ,  with a given problem. 
we will usually take X = Cvolid, but in general xan al- 
low X to represent additional parameters, such as robot 
velocity. 

We consider a discretized representation of time as 
stages, with an index k E {1,2, .  . . , K}. Stage k refers 
to time (k - 1)At. The state of A at stage k is denoted 
by Xk. We generally take At sufficiently small to approxi- 
mate continuous paths. K is taken to be very large, and as 
will be seen in Section 5 ,  the robot is expected to achieve 
the goal well before K (i.e., the specification of K is not 
required in our algorithm We could also consider an infi- 
nite number of stages wit k only minor notation changes in 
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the remainder of this paper. The formalism could also be 
defined in sufficient generality without discretizin time, 
and consequently defining controlled diffusions [8[ how- 
ever, the definitions that would follow require the use of 
continuous stochastic processes and substantial measure 
theory. Furthermore, a real robot will be limited to some 
sampling rate for acquiring sensor information and exe- 
cuting motion commands. 

An uction (or command), which is denoted by U k ,  can 
be issued to A at each stage k .  We let U denote the ac- 
tion space for A, requiring that U k  E U .  We also consider 
nature as choosing actions. Nature was represented by a 
random variable, 0, with a known density, p(0) .  The spe- 
cific action of nature at stage k is denoted by & ,  sampled 
from the random variable O k .  w e  consider e k  to be a vec- 
tor quantity that is divided into two subvectors, 0; and 
Os (i.e., t?k = [e; e;]).  As will be seen shortly, 0; affects 
tke outcome of A’s actions, and 6; affects the sensor ob- 
servations of A. We will use the notation 6 to refer to the 
specification of e k  for all k .  

To describe the effect of a robot action with respect to 
state, we define a state transition equation as 

z k + l  = f ( Z k , . k , e ; ) .  0) 
Hence, given a robot action, nature’s action, and the cur- 
rent state, the next state is deterministically specified. 
During execution, however, A will not know the action 
of nature. Hence, we often consider X k + l  as a random 
variable with density function p ( Z k + l  I Z k ,  U k ) .  

At stage k, A makes an observation that is governed by 
the equation, 

which we term the observation equation. The values, Y k ,  
belong to a sensor space, denoted by Y .  Since informa- 
tion about is specified in the form of a density, we can 
also consider Y k  as a random variable, with corresponding 
density p ( Y k \ Z k ) .  As an example, h could represent a po- 
sition sensor that measures x k  with Gaussian noise. Then 
h ( Z k ,  6’;) = X k  + e l ,  and ~ (8 ; )  is a Gaussian density. This 
equation represents the output equation used in control 
theory, as well as a stochastic version of the projection of 
world states onto sensor values, used in previous robotics 
contexts (e.g., [4]). 

The following definitions precisely describe the sensing 
and action history that A has available. For a given stage 
k, let q k  denote some subset: 

Y k  = h ( z k  6;) 1 (2) 

q k  { U 1 , ~ 2 , . . . r U k - l r y l , Y 2 , . . , Y k ) .  (3) 
The value q k  is a set of past actions and observations that 
are known to A at stage k, and is termed the informa- 
tion state of A. For instance, we could consider a mem- 
oryless robot, in which T,?k = Y k .  As another example, we 
could have a sensorless robot as considered in [7], in which 
v k  = ( 2 1 1 , .  . . , ~ k - l } .  We could also consider the stage in- 
dex k as part of the information space for the purpose of 
developing robot strategies that involve timing; however, 
we will not explicitly consider k as part of q k  in this pa- 
per. The set of values that q k  can take on is denoted by 
N k 7  and is termed the information space. We define an 
information structure as the set of N k  for all 1 5 k 5 K .  

We now define the notion of a robot plan or strategy in 
our stochastic framework. At first it might seem appro- 
priate to define some action u k  for each stage; however, 

we want plans that are conditioned on sensor and action 
history. Therefore, we define a strategy ut stage k of A 
as a function g k  : Nk + U. For each information state, 
q k ,  a strategy yields an action U k  = g k ( q k ) .  The set of 
mappings ( 9 1 ,  g 2 , .  . . , g j y }  is denoted by g and termed a 
strategy of A. This concept is equivalent to a control law 
in stochastic control theory 191, and is similar to a condi- 
tional multi-step plan in manipulation planning [ 111. 

The notion of a termination condition has been quite 
useful for formulating robot plans that tell the robot when 
to halt, based on its current, partial information [6, 11, 
141. The same concept is needed in our context, hence 
we define a termination condition T C k  at each stage by a 
binary-valued mapping, 

(4) TCk : N k  + { t rue ,  f a l s e } .  
Hence at each stage, the robot decides whether or not 
to  stop, based on its current information state. We use 
TC to denote the complete specification for all k. The 
termination condition is implemented so that the game 
terminates at  some stage kTC < K ,  making the specific 
choice of K not important, except that it is sufficiently 
large. 

Some subset G of the state space X is defined as 
the goal region. We encode the objectives that are 
to be achieved by a nonnegative real-valued functional 
L(zI,  ..., Z K + ~  u 1 ,  ..., U K ,  e), called the loss functionaE of 
A. The ultimate goal of the planner is to determine a 
strategy g and termination condition TC that causes L 
to be minimized in an expected sense. We will use the 
notation y to denote the pair (9,227). This pairing is 
analo ous to the concept of a motion command as defined 
in [Ij. Further details on loss functionals are given in 
Section 4. 

There are a few possibilities for defining the starting 
place in the game. We can consider an initial density 
p(z1 ) .  We could also consider this conditioned on an 
initial observation, y 1 ,  to obtain p(z11 y 1 ) .  In traditional 
preimage planning, the initial state, 21, is constrained to 
lie in some bounded subset of X ,  which could be repre- 
sented by a density. The initial condition will generally 
be represented by the conditional density p ( z l I q 1 ) .  We 
can also, or course, consider cases in which X I  is initially 
given. 

2.1 The information state as a conditional 
density 

Consider the case in which the robot has perfect mem- 
ory. Then each q k  corresponds to complete history of 
previous robot actions and observations. If U is 121- 
dimensional and Y is n2-dimensional, then in general the 
dimension of N k  will be [ k ( n l  + 122) + n21-dimensional. A 
space that grows significantly with each stage (and be- 
comes infinite-dimensional when K = 00) is very unap- 
pealing for designing strategies. The information state 
can, however, be considered as a conditional density on the 
state space, denoted as p ( z k 1 v k ) .  By using this approach, 
the information state density p ( Z k + l I v k + 1 )  can be deter- 
mined from p ( z k l q k ) ,  when U k  and Y k + l  are given. This 
observation allows the development of several well-known 
stochastic control results, such as the Kalman filter, when 
all densities in the information space take some paramet- 
ric form of fixed, low dimension [9]. Hence the density 
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can be thought of as an alternative representation of the 
robot’s information state. h r the r ,  this representation is 
intuitively satisfying since we can think of A’s uncertainty 
model as a density representing possible locations in the 
state space X .  Using bounded uncertainty models this 
representation would correspond to identifying a subset 
of X within which the configuration of A is known to lie, 
based on history. 

We briefly indicate how the information state density 
is obtained. Initially, we have ~ ( ~ 1 1 ~ 1 ) .  We can derive 
an expression for p(xk+11qk+l in terms of P(xklVk), u k ,  
and yk+l. Begin with p(xklqk]. First consider the effect 
on the state space of using the action, uk. From the den- 
sity from the state transition equation we obtain, through 
marginalization with respect to Xk, 

P(xk+lluk, qk) = P ( ~ k + l l ~ k , ~ k ) P ( ~ k l V k ) ~ ~ k .  ( 5 )  J 
Note that ~ k + 1  can be specified with q ~ ,  uk, and yk+l. By 
using Bayes’ rule on X k + l  and Y k + 1 ,  the following can be 
obtained [9]: 

which is a function of p(yk+l Jz~+I) (which is inferred from 
the observation equation) and p(xk+l  l ~ k ,  U k )  (which is in- 
ferred from ( 5 ) ) .  If A does not have perfect memory, then 
the condition { q k ,  uk} is replaced in (6) by the appropriate 
subset of history. 

3 Modeling a Manipulation Task 
In this section we describe a s ecific stochastic model, 

based on the model used in [3, 117, in terms of our frame- 
work presented in Section 2. This basic model, and a num- 
ber of variations, has been used extensively for analyzing 
manipulation tasks under uncertainty (e.g., [6, 11, 141). 
Robot strategies are generated under this model in Sec- 
tion 5 via dynamic programming. 

Other models could be defined in this stochastic frame- 
work. For instance, Goldberg has considered stochastic 
modeling on a finite state space, without sensors [7]. This 
led to the development of a backchaining algorithm for 
planning squeeze grasp operations of a parallel gripper on 
polygonal objects. 

Our definitions are based on previous preimage 
backchaining approaches. For the state space we have 
X = as defined in [ll]. The robot A is a polygon 
translating in the plane amidst polygonal obstacles. The 
configuration space Cvalid can be partitioned into two sets, 
C f T e e  and Ccontact. Cfree  is an open set in which A does not 
touch any obstacles, and Ccontact represents the boundary 
of Cf,.,,, in which the robot touches obstacles. The action 
set of A is a set of commanded velocity directions, which 
can be specified by an orientation, yielding U = [0,27r). 
The robot will attempt to move a fixed distance llvllAt 
(expressed in terms of a constant velocity-modulus) in the 
direction specified by u k .  The action space of nature is a 
set of angular displacements, e;, such that - E O  5 0; 5 E O ,  

for some maximum angle € 0 .  We assume that p ( 0 ; )  is a 
stage-independent uniform density, which is zero outside 
of [ - € , E ] .  

There are several cases to consider in defining the state 
transition equation, f. First consider the state transition 
equation when z k  E C f r e e ,  at a distance of at least llvllAt 
away from the obstacles. If A chooses action Uk from state 
xk, and nature chooses e t ,  then xk+l is given by 

If xk E Ccontact, with a distance of at least llvllAt from 
the edge endpoints, then a compliant motion is generated 
by using the generalized damper model (see e.g., PI) for 
certain choices of u k .  If u k  points into the obstac e edge 
with a sufficient angle to overcome friction, then the robot 
moves a fixed distance parallel to the edge. Otherwise, the 
robot either remains fixed, or moves away into Cf, . , ,  . The 
remaining cases describe when the robot moves from Cf,.,, 

another. These cases are straightforward to define, and 
the proper modeling of the motions in these cases becomes 
less important in terms of robot objectives as At becomes 
smaller. 

This model of uncertainty actually deviates from the 
since nature acts at every 

el, if some u k  = uk+1, then 
no additional uncertainty will be introduced. The uncer- 
tain direction is selected at the beginning of a constant 
command, and another uncertain direction is not selected 
until the action changes. 

The robot A is equipped with a position sensor and a 
force sensor. Assume that the position sensor is calibrated 
in the configuration space, yieldin values in !R2. The force 
sensor provides values in 0,27r) U f0}, indicating either the 

We consider independent state observation equations: 
hP for the position sensor, and hf  for the force sensor 
(which together form a 3-dimensional vector-valued func- 
tion). We partition the sensing action of nature, 8; into 
subvectors 0;” and which act on the position sen- 
sor and force sensor respectively The observation for the 
position sensor is yf = hp(xk, e k q  = x k  + e y  in which 

to Ccontact Ccontact to C f r e e ,  or from one edge in G a l i d  to 

direction of force, or no I orce. 

for some prespecified radius e p ,  and is 2-dimensional. 
For the force sensor we obtain either: 1) A value in 

[0,27r), governed by y i  = h f ( x k , 0 i 3 f )  = a ( 2 k )  + 8 i Y f ,  in 
which 21, E Ccontact, and the true normal is given by a ( z k ) ,  
or 2) An empty value, 0, when the robot is in Cf,. , , .  When 
A is in Ccdntact we have 

for some positive prespecified constant 
We consider the random variables and to be 

independent over all stages. 
A number of different information spaces are possible. 

Several variations are discussed in [6] with respect to de- 
veloping a termination criterion. For ,our formulation, we 

< $7r. 
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could consider q k  as the complete set of sensing history 
and action history. The limiting factor in the definition 
of an information space is certainly not space available 
for memory, but rather the effective dimensionality of N k  
(whether represented by a density or directly by a history). 
In Section 5 we present dynamic programming solutions 
for the case in which q k  = g k ,  meaning that the strate- 
gies and termination conditions are developed based on 
current observation feedback. 

A loss functional is not a concept that is part of the tra- 
ditional preima e backchaining approach. However, the 
loss functional 6 4 )  and probabilistic preimage ~ ( 0 )  to be 
introduced in Section 4 will yield classical preimages. We 
will describe in the next section how a probabilistic back- 
projection [3] can also be obtained. 

Traditional termination conditions can be considered as 
binary-valued functions of the information space variables; 
however, we can alternatively’ consider the posterior den- 
sity P ( X k l r ) k )  in expressing TC. The stage index, k, could 
also be used to incorporate time into a termination condi- 
tion by defining q k  to include k .  In Section 5 ,  we describe 
how TC is optimally chosen, along with g, to form 7. 

4 Evaluating Robot Strategies 
In this section we introduce the concept of a perfor- 

mance preimage. A performance preimage describes a re- 
gion in either the state space or information space from 
which the expected loss in achieving the goal lies within 
a set of values. This concept generalizes the notion of 
classical preimages to arbitrary performance measures, 
although they are derived from discretized time in our 
framework. We conclude the section by discussing perfor- 
mance preimages for two specific loss functionals. 

To begin with, suppose that we wish to evaluate some 
y = ( g , T C )  with a given initial state, XI. The expected 
loss that we incur if y is implemented can be expressed 
using p(8 )  as 

The integral looks as each possible action se uence for 
nature, 8, weighted by the probability density py8).  When 
8 is given (along with 7 and XI), then the action sequence, 
(211,. . . , U K } ,  and state trajectory, {xi,. . . , X K + ~ }  can be 
completely determined, resulting in the evaluation of the 
loss functional. This is true because ( l ) ,  (2), and q k  can 
be determined for every state when the value of nature, 8, 
is given. 

Note that E(y,xl) can be considered as a real-valued 
function of x1 for a fixed y. Consider some subset of the 
reals, C C R. We define the performance preimage on X 
as a subset of X ,  denoted by rz(C), that is given by 

The set n,(C) X indicates places in the state space 
from which if A begins, the expected loss lies within C. 

In general, the robot A will begin in some uncertain ini- 
tial state. Therefore, we also consider performance preim- 
ages on the robot’s initial information space, N I .  The 
classes represent places in the initial information space 
where if A begins, the expected performance will lie within 

some C C 8. This result specializes to (11) in the case 
of a given initial state, 71 = y1 = X I .  As a minor exten- 
sion, one could also consider performance preimages on 
any information space N k .  
Using the information state density p ( z l I q 1 )  on X we 

can obtain by marginalization: 

which depends on (10 . 
age on N I  as a subset of N I ,  denoted by r ( C ) ,  that is 
given by 

For a subset C C 91 , we define the performance preim- 

We now describe some particular choices for C. Sup- 
pose that C = [O,c for some c > 0 (recall that L is non- 

(or alternatively X) from which the expected performance 
will be better than or equal to c. If C = c}, for some 
point c > 0, then we obtain places in N I  [or X) where 
equal expected performance will be obtained. We can con- 
sider partitioning NI (or X )  into isoperformance classes 
by defining an equivalence class r ({c})  for each c E [0, CO). 
To shorten notation, we denote an isoperformance class, 

#e now discuss performance preimages in terms of two 
particular loss functionals. The first one considers the 
probability of achieving the goal as the objective, while the 
other incorporates action cost. In general, loss functionals 
can be considered that incorporate both state and action 
cost, as is commonly done in stochastic optimal control 

negative). The per ! ormance preimage yields places in N1 

4 c 1, by +). 

Suppose that the following loss is specified: 
~91. 

. (14) 
0 ifxTC E G  

L(si, ... X K + ~ ,  ui,  ..., U K ,  0) = 1 otherwise 

Equation (14) implies that we are only interested in 
achieving the goal, without any notion of efficiency in 
the actual robot trajectory. The loss L(7,ql) now rep- 
resents the probability that the oal will not be achieved 
using y. We consider some r(b, c]) for c E [0,1] as a 
probabilistic preimage on N I .  The probabilistic preimage 
thus indicates places in N1 from which the goal will be 
achieved with probability of at least 1 - c. We could also 
define the probabilistic preimage on X .  We can also con- 
sider n(c) as an isoprobability cIass. Furthermore, if we 
effectively remove the termination criterion by assigning 

place the condition “if XTC € G” in (14) by “if Z k  € G for 
some k” then r([O, c ] )  yields a probabilistic backprojection, 
quite similar to that appearing in [3 The isoprobability 
class ~ ( 0 )  corresponds to the classic s preimage notion, in 
which the goal is guaranteed to be achieved. 

This next loss functional directly considers cost associ- 
ated with executing actions: L(x1, ... X K + I ,  u1, ..., U K ,  8 )  = 

T C k ( V k )  = false for all 1 5 k _< K and q k  E Nk, and re- 

1 ( u k )  if XTC E G 
(15) 

otherwise 
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Above, Z ( u k )  denotes the cost associated with taking ac- 
tion U&, and k ( z T c )  represents the stage at which TC 
caused A to halt. We use C f  to express how important it 
is to achieve the goal. As C f  approaches infinity, the min- 
imization of (15) becomes equivalent to minimizing (14), 
and trajectory length is essentially not considered.2 As 
C f  becomes less than a typical aggregate action cost that 
achieves the goal, then strategies will be preferred that do 
not even expect to achieve the goal. 

5 Determining Optimal Strategies 
In this section we present computed examples of strate- 

gies with termination conditions, 7 = (g ,TC) ,  that opti- 
mize an expected loss using either (14) or (15). We also 
show several examples of performance preimages. The ex- 
periments were performed using the model presented in 
Section 3. The basis of our algorithm is dynamic pro- 
gramming, which is a general optimization concept that 
has been useful in a variety of contexts, both for producing 
analytic solutions and for numerical computation proce- 
dures. 

We now describe the specific choices made for our cur- 
rent implementation. The information structure of d is 
chosen as q k  = y k ,  implying that the information space 
and sensor space are identical, Nk = Y .  Hence, the 
robot is memoryless and the robot strategy and termi- 
nation condition at each stage are limited to functions of 
the current sensor observation. This choice maintains a 
low-dimensional information space. Far the following ex- 
pressions, the information space will be referred to as Y ;  
however, the same general theory can be applied to arbi- 
trary information spaces, Nk. 

For each point in the information space, Y k ,  we consider 
the density, p(zklyk), as the subset of X in which the 
robot may lie, since (8) specifies a uniform density inside 
a ~ i r c l e . ~  Let DISK(y;,t,) define an open disk in X 
with radius e p  and center y:. If y i  = 0, implying that 
the robot is not in contact with an obstacle, then p ( z k  Iyk) 
can be described as a uniform density on DISK(y:, e p )  n 
Cffee. If y i  provides a force direction, then p(zk Iyk) can be 
described as a uniform density on DISK(y;,  t p )  nC,,,,,,,. 

The space of possible subsets of X that correspond 
to points in the information space is very restricted. 
We either have some open 2-dimensional subset of 
DISK(yP, e,) (bounded by edge constraints), or subsets 
of edges from obstacle boundaries. We currently assume 
that tf is sufficiently small so that non-parallel edges 
that overlap with DISK(yP, e p )  can be uniquely identi- 
fied. In the implementation, we consider consider a 2- 
dimensional array for each possible sensed position value, 
y p .  If DISK(yP, c p )  does not intersect an obstacle bound- 
ary, then there is one entry. Otherwise, there is one ele- 
ment for each edge orientation that could be inferred (for 
typical problems there is usually one or two). 

To ease the consideration of TC in the dynamic pro- 
gramming scheme, we will introduce an additional defini- 
tion. We allow the robot to have a new action, 8, that 

2The isoperformance classes will remain the same, but have dif- 

3This can be shown by Bayes’ rule, with appropriate uniform 
ferent indices. 

prior densities on the sensor and state spaces. 

allows it to do nothing (i.e., perform no action and re- 
ceive no observation). We have f(zk,0,8;) = zk. Fur- 
thermore, the robot does not perform sensing at the next 
state when this action is taken, yielding an identical in- 
formation state. If the action is taken at stage k ,  then 
we require that uk+l . . . UK all become 8. The action 0 
simulates the effect of the termination condition by caus- 
ing the robot to remain motionless until stage K + 1 is 
reached. Using 0, we define an augmented action space by 
U’ = U U {0}, and denote an action at stage k by U;. 

We will be interested in considering loss that is accumu- 
lated at each stage; hence, it is assumed that the loss func- 
tional can be expressed as L ( z 1 ,  ... Z K + ~ , U ~ ,  ..., U K , ~ )  = 

K 

lk(u;) + ZK+l(zK+l),  (16) 
k = l  

which includes the loss functionals from Section 4. We 
state that lk(zk,Q) = 0, implying that there is no addi- 
tional loss for choosing 8. We could let l k  depend also 
on the state, z k ,  but this extension will not be consid- 
ered further. The dependency on X T C  in any of the loss 
functionals in Section 4 can replaced by z ~ + 1 ,  when the 
augmented action space is considered. 

The next several equations describe loss and actions in 
terms of the robot’s information space. This leads to the 
dynamic programming equation, (20), which is a recursive 
formulation of optimality that is expressed on the infor- 
mation space. Recall the expected loss functionals (10) 
and (12) from Section 4. We will use a similar concept 
here; however, we consider the expected loss from that 
will be incurred from stage k until stage K + 1. For a 
given k and one of the loss functionals from Section 4, 
this is represented using (16) as 

1 { %li(u:) +IK+l(ZK+1)  p(d)dd .  L k  (Yk.. K , zk ) = 

(17) 
1 

Note that U‘ depends on 0 for a given y. Using the infor- 
mation state density p(xklyk) on X we have 

Let L;(yk) denote L k ( ~ i . , ~ , y k )  in which Y ; . , ~  is a choice 
for Y ~ . . K  that minimizes (18). 

We want to consider the effect of taking an action 
U’ from a point in the information space, y k ,  in terms 
of a density on Y .  This will be similar to the density, 
p(zk+l Izk,uk) that was inferred from the state transition 
equation in Section 2. The expression is 
P(Yk+l IYk, 4, = 

1 /P(Yk+llzk+l)P(zk+l I Q ,  U;)P(zklYk)dzkdzk+l. 

(19) 
The density p(zk+l Izk, U ; )  is inferred from the state tran- 
sition equation. The density p ( z k  Iyk) is the conditional 
density representation of the robot’s information state. 
We compute the integral by generating random samples 
from p(zk+llzk,~i) and p(zklyk), and averaging. This 
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method will work for a variety of densities, and for the 
special case of uniform densities, some geometric com- 
putations could alternatively be performed to compute 

Using the previous notation, the dynamic program- 
ming principle states that Li(yk) can be obtained from 

P(Yk+llYkrUL)- 

(yk+l) by the following recurrence: 

E ; ( Y k )  = min { l(uL) + J L;(Yk+l)h’k+l lyk,UL)dyk . 
uk 1 

(20) 
For the loss functional (14) we take l(uL) = 0. For the 
loss functional (15), we take Z(u’,) = llvllAt if U ;  E U. If 
U’ = 0, then the action cost is zero. 

At stage K + 1, we can use the last term of (16) and 
compute 

Ek+,(YK+l) = lK+1 (XK+l)P(XK+l IYK+l)dXK+l. 

(21) 
J 

The loss functional E> can be determined from E;+, 
through (20). If the U;( that minimizes (20) at YK belongs 
to U, then we define gk(yK) = U;( and T c f , ( y ~ )  = f &e. 
If the optimal action uk is 0, then we define T c f , ( y ~ )  = 
t rue .  - We then apply (20) again, using L k ( y ~ )  to obtain 
Lk-l, g2-l ,  and TCk-,. This iteration continues un- 
til stage k = 1. Finally, we take g* = {gi , .  . . ,g&} and 
TC* = {TC,’, . . . ,TCk},  which comprise y*. 

The final-stage loss, E>+l ( y ~ + 1 )  is computed from 
(21). If we are using (14), then the final-stage loss is 
the probability that xK+1 E G (which can be computed 
geometrically by considering the percentage of goal that 
is included in the subset of X in which the robot lies). If 
we are using (15), then the final-stage loss is product of 
Cf and the probability that z ~ + 1  E G. 

If the dynamic programming recursion is iterated for 
K stages, then all trajectories of length K stages or fewer 
will be examined. Eventually, !he loss values stabilize, and 
we terminate when IE;(y) - L;+,(y)l becomes small for 
all y .  After the algorithm terminates the resulting stage 
is designated as k = 1, and an explicit prior choice of K 
is not necessary. 

The level sets of the resulting loss Li(y1) yield the 
isoperformance classes on NI for y. The isoperformance 
classes on X can then be obtained by considering level 
sets of 

E*(Zl) = Jt;(YdP(Yllzl)dYl. (22) 

Instead of using (20) to determine the optimal y, we 
can alternatively use the equation to recursively_ evaluate 
a given y. Instead of selecting U ;  to minimize L;, we fix 
U ;  for each Y k .  

We present several experimental examples in Figures 
3 and 4. The box around each problem has dimensions 
100 x 100 in the configuration space. We have chosen the 
velocity modulus, IlwllAt to be 2. For the action error we 
take €0 = 15 degrees. The position sensor error radius, 
c p  is 6. For the determination of optimal strategies, the 
action set was quantized into four values, similar to what 
was done in [ll] for multi-step plans. For each problem, 

C. d. 
Figure 3. Isoperformance classes represented by contours. 

the obstacles are outlined with thin line segments, and 
the goal is indicated with a thick line. Isoperformance 
classes are indicated by a set of contou_rs that correspond 
to incremental spacing of level sets of L;(zl ) .  

Figures 3.a,b indicate isoperformance classes on X for a 
strategy that always executes uk = (i.e., move down). 
These experiments use (14), representing the probability 
of failing to terminate in the goal. The lines that are 
closer to the goal represent lower probabilities. The result 
in 3.a is similar to that obtained in [3]. For the example in 
Figure 3.b we observe how performance improves because 
of compliance, which causes separation to occur in the 
contours. 

The remaining isoperformance contours, in Figures 
3.c,d and Figures 4.b,d, correspond to the implementa- 
tion of the optimal strategy y*. These lines tend to em- 
anate radially outward from the goal, as expected loss 
increases. The results were obtained by using th_e loss 
functional (15). If (14) is alternatively used, the L;(zl) 
becomes approximately 0 (computed as low6) for all z l .  
Under the implementation of y* the behavior of the robot 
can be considered as a random process. In Figures 4.a 
and 4.c we show 20 simulated robot trajectories starting 
from z1 = (95,50) that correspond to the optimal strate- 
gies depicted by the contours in Figures 4.b and 4.d, re- 
spectively. Each one corresponds to a sample path of the 
random process, and the goal is achieved each time. 

6 Conclusions and Extensions 
In this paper we described a stochastic framework for 

manipulation planning in the presence of probabilistic 
uncertainty in sensing and control. By blending ideas 
from stochastic optimal control and dynamic game the- 
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a. 

C. 

b. 

Figure 4. 
paths and isoperformance classes. 

Dynamic programming strategies with sample 

ory with traditional preimage planning, we have been able 
to develop general stochastic notions of classical preimage 
concepts. Furthermore, under a memoryless information 
structure we have been able to compute optimal strategies 
and isoperformance classes for a popular robot model via 
dynamic programming. 

A considerable amount of work remains to be done 
within this formalism. One interesting avenue to explore 
is to consider the analog of preimage backchaining and 
subgoals by using performance preimages. We can define 
GI as a subgoal for a larger problem, and define a g and 
TC that achieves GI in a satisfactory way. The result- 
ing posterior density ~ ( Z T C )  would be used as the initial 
information state for the achievement of a second goal, 
Gz. We can consider abstract actions of the form {Gi,.r} 
that attempt to achieve some original goal. Backchaining 
from G under explicit performance measures and a given 
abstract action set appears to be equivalent to dynamic 
programming. The reason for considering abstract actions 
and subgoals is the hope that a simple set of abstract ac- 
tions exists that can be composed to provide quick and 
efficient solutions for a wide class of problems (as was 
the case with the backprojection approach to preimage 
backchaining [SI). 

The model for which optimal strategies were obtained 
in Section 5 can be extended in a number of ways without 
altering the general approach to the computation. For in- 
stance, instead of using compliance, we could use the force 
sensor as a collision detector that forces the system to halt 
without necessarily achieving the goal. We can then de- 
termine strategies that minimize obatacle contact in an 
expected sense. Also, different sensor and action nature 
densities can be substituted: densities could be used that 

more accurately reflect the error distributions in a partic- 
ular application. If we are able to efficiently increase the 
dimension of the information space by one or two degrees, 
then the state space could be augmented with orientation 
or velocity, or sensing history might be included. 
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