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Abstract 
W e  present a motion planning/control system that 

deals with moving obstacles whose trajectories are not 
known a priori. A n  artificial potential field planner 
i s  tightly coupled with a robust inverse dynamic con- 
troller, allowing the robot t o  avoid obstacles in real- 
time while retaining the benefits of inverse dynamic 
control. Our implementation of the artificial potential 
field planner uses digital filtering techniques to shape 
the input signal t o  the inverse dynamic controller, so 
that system’s response to moving obstacles will depend, 
not only on the position of those obstacles, but also 
on their velocity relative to  the robot. We  prove sta- 
bility along solution trajectories of the system in the 
absence of obstacles, and discuss stability issues that 
arise when obstacles are present. 

1 Introduction 
Moving a robotic manipulator to a goal configura- 

tion while avoiding collisions with obstacles has been a 
key problem in robotics research over the last decade. 
The artificial potential field method of motion plan- 
ning has been used to solve this problem, both in the 
robotics community [5, 1, 6, 8, 91 and in the artificial 
intelligence community [3,4]. Typically, such planning 
systems do their work off-line, given as input the initial 
and goal configurations of the robot, and a complete 
description of the workspace (including descriptions of 
the obstacles in the workspace). 

A recurring problem with standard potential field 
planners is performance, especially in the presence 
of moving obstacles. Most planners do not have a 
method of dealing with obstacles for which there is 
little or no a priori information. In addition, the in- 
teraction between the planner and the dynamic control 
system is extremely limited. As such the planner is less 
able to utilize the favorable aspects of control, notably 
rapid response and good transient performance. 

It is interesting to  note that the method of artifi- 
cial potential fields was originally proposed for real- 
time obstacle avoidance, not off-line motion planning 
[6]. To implement the real-time approach, artificial 
repulsive forces induced by obstacles and artificial at- 
tractive forces induced by the goal position are incor- 
porated directly into the robot control system. As 
a result, the robot is able to avoid obstacles in the 

workspace, while retaining the high performance of a 
real-time control system. 

We propose a control system architecture to imple- 
ment both an artificial potential fields planner and a 
real-time controller in the same system. We model 
the attractive potential field as an attractive control 
loop, with the repulsive forces acting as a disturbance 

we 
upon that loop (this is illustrated in Fig. 
first analyze this system under the assumption t at the 
repulsive field is zero everywhere (which corresponds 
to the assumption that there are no obstacles in the 
work space). The analysis proves that our controller 
is asymptotically stable (i.e. that it converges to the 
goal configuration) when no obstacles are present. We 
then extend our discussion to the case of a non-zero 
repulsive field generated by obstacles, including mov- 
ing obstacles. It is well known that in the presence of 
obstacles there does not, in general, exist a potential 
function with a single minimum at the goal configura- 

sometimes referred to as a global navigation 
function tion t lo]). Therefore, in this case we clearly cannot 
prove convergence to the goal configuration. However, 
we argue that the resulting system is still bounded 
given that a set of weak assumptions hold. 

2 Motion Control Using Artificial Po- 
tential Fields 

Before we present the control structure, we briefly 
review the artificial potential field approach to real- 
time obstacle avoidance. This method was originally 
reported by Khatib [6], and a tutorial description can 
be found in [IO]. 

Using the artificial potential field method, we treat 
the robot manipulator (represented as a point in con- 
figuration space) as a particle under the influence of 
an artificial potential field U. The field U is the sum 
of an attractive field and a repulsive field 

Wq) = Vatt(C1) + UT&l)l (1) 
where q represents a point in the robot’s configuration 
space. The attractive field typically depends only on 
the goal configuration and current manipulator posi- 
tion, while the repulsive field typically depends on the 
distance from manipulator to obstacles in the work 
space. The manipulator motion is determined by the 
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artificial force exerted on the manipulator 

F(q) = -VU(Q). 

The planning component of the artificial potential 
field technique uses the generated field to form a path 
for the robot to follow. The planner starts with the 
robot’s initial position and determines the direction of 
the steepest gradient of the field. The next point in 
the trajectory is determined by moving a set distance 
along this gradient. It should be noted that this is 
usually accomplished off-line, so complete knowledge 
of the workspace is assumed. Any dynamic properties 
of the environment must be completely modeled before 
the robot motion begins. 

Once this trajectory is determined it is fed to  a con- 
troller, usually as a series of setpoints. After receiving 
one of these inputs, the controller will move the robot 
from its initial position (or the last set point) t o  the 
goal with a transient performance that will depend 
upon the dynamics of the control loop. 

This technique has two drawbacks: 

1. The planner must compromise between the num- 
ber of set points (and inversely the distance be- 
tween set points) and the time it will take to 
compute the path. In other words, the smaller 
the distance between set points the more accu- 
rate the motion, but the longer the planner will 
take to generate the path. If the planner trades 
off accuracy for speed, then the robot might oscil- 
late around the goal position or behave erratically 
near obstacles. 

2. The control system is not equipped to recognize 
the presence of obstacles. If the planner has 
not sufficiently accounted for the control system’s 
transient motions, or obstacles appear unexpect- 
edly in the workspace after the motion begins, a 
collision could occur. 

By integrating the control and the planning archi- 
tectures, we minimize the effect of these problems, im- 
proving the performance of the manipulator while at 
the same time decreasing the likelihood of contact with 
unexpected obstacles in the workspace. 

3 Control System Architecture 
Two digital filters in the system shape the signals 

corresponding to input torques to produce accelera- 
tion values, In the standard potential fields algorithm, 
these filters would simply be constant gain, with no 
dynamics. These gains correspond to the attractive 
and repulsive gains in the standard potential field al- 
gorithm. The two digital filters in our system give 
the designer a great deal of flexibility in choosing the 
system potential functions. 

The vector sum of the attractive and repulsive ac- 
celerations appears as the input signal to the inverse 
dynamic controller. This controller (also known as a 
computed torque controller) translates the desired ac- 
celerations to the necessary voltage into the joint mo- 
tors that will result in these accelerations. 

Fdter Tramformation 

DynamiQ 

Input 

Figure 1: Controller Block Diagram 

Figure 2: Repetitive Task - 1 Cycle 

3.1 Attractive Potential 
As can be seen in figure 1, the attractive forces are 

developed in two stages. First the distance to the goal, 
expressed in joint space, is determined. Then a digital 
filter is used to transform this distance into a vector 
of joint accelerations. This filter is used to shape the 
transient response of the robot as it moves from its 
initial configuration to the goal. 
3.2 Repulsive Potential 

The repulsive torques (one formulation of which is 
described in the Appendix) are also transformed into 
joint accelerations using a digital filter. The repulsive 
forces are regarded as a disturbance entering the sys- 
tem just prior to the robot dynamics. Disturbances 
are, by nature, unpredictable. However, we have the 
added benefit, since the repulsive forces are purely 
imaginary, of shaping these forces as we see fit, subject 
to the requirement that they maintain the characteris- 
tic of growing arbitrarily large as the robot approaches 
an obstacle. 

We are interested not only in the magnitude of the 
repulsive torque signal but also how it is changing over 
time. Rapidly changing repulsive torques suggest that 
either the manipulator is approaching an obstacle (or 
another robot) very quickly or that the robot is itself 
being approached by some moving object. Another 
possibility of interest is that the robot is nearing a 
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The robot dynamic model for an n-link articulated 
robot is as follows: 

Time (steps) 

Figure 3: Periodic Repulsive Forces 

subset of the workspace where another manipulator is 
moving in a repetitive pattern (e.g. a ‘slave’ mecha- 
nism performing a standard pick-and-place task.) This 
example is shown in Fig. 2 where a Stanford arm is 
standing off from a planar manipulator that is moving 
continuously from a horizontal to a vertical position 
and back again. 

Fig. 3 shows the forces normal to the plane of mo- 
tion of the planar arm as seen by the end-effector of 
the Stanford arm. We can translate this force to joint 
torques using the manipulator Jacobian. 

In these situations, obstacles moving in the envi- 
ronment at different speeds relative to  the main robot 
will generate repulsive torques of varying frequency 
acting upon the joints of the robot. The repulsive fil- 
ter, however, enables the designer to design a potential 
function that will compensate differently for different 
frequency inputs, while still maintaining closed-loop 
stability. This allows the robot to react differently to 
environmental variables occurring at different speeds. 

For example, the Stanford arm shown in Fig. 2 may 
be able to reach a goal beyond the planar robot if the 
planar robot is moving at a sufficiently slow speed. A 
standard potential field planner will be unable to  dis- 
tinguish the relative speed of the planar manipulator. 
By introducing a repulsive filter with high-pass char- 
acteristics, the designer can cause the repulsive forces 
to generate increasingly larger torques as the speed of 
the planar manipulator increases. With the torques 
acting upon it, the Stanford arm will be unable to 
extend into the region of a quick moving planar ma- 
nipulator, but will be able to pass should the planar 
arm move more slowly. The DC characteristics of the 
repulsive filter will determine the robot’s reaction to 
static obstacles. 

4 Stability of Attractive Loop 
Our first goal is to show the conditions under which 

the attractive loop can be proven to be asymptotically 
stable given direct interaction with the robot dynam- 
ics. 

W d i  + h(q, 4) = 7 (3) 
where q is the vector of joint variables, M(q is a 
symmetric positive definite matrix that is usu all y de- 
pendent on the robot position, and h(q, q represents 
the combination of the Coriolis, centrifug a , and grav- 
itational forces. T is the vector of joint torques. These 
equations of motion were developed using Lagrangian 
energy relationships. 

Since the above equation is clearly nonlinear, we 
choose an inverse dynamics control law [12] to cancel 
the nonlinear terms 

7- = k ( q ) v  + &hi) (4) 
The ”hat” superscript refers to the fact that the 

model of the robot is not exact. We will need to show 
that, despite these inaccuracies, we can still stabilize 
the robot. Furthermore we wish to build confidence 
that for small differences between the actual dynamic 
parameters and the modeled dynamics, the transient 
characteristics of the attractive loop will still behave 
in a nearly nominal fashion. 

The system that results from the combination of 
the nonlinear plant and the inverse dynamic control 
law is 

4 = v + V(V,  q, i) 

q =c: E(q)v + M - l A h  

( 5 )  

(6) 

where q is given by 

with E = M - l M  -- I, A h  = 

model 

- h 
The linearized plant, therefore, has the state-space 

9 = &.+B(v+v) (7) 
Q = CY (8) 

where q is the vector of joint variables and is of di- 
mension n x 1, and 

A = [; $ 1  
= [ : I  

Y = [;I 
We want the robot to approach a set position and 

velocity. We define the error as the difference between 
the current states and the desired states. 

d 
e = y - y d =  [ t ]  - [ t d ]  (13) 
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From this, we can rewrite our system in terms of 
the errors 

15 = A e + B ( v  + q  - id) (14) 
We can further simplify the system by noting that, 

for motion planning purposes, we are not interested in 
a non-zero steady state acceleration (note that grav- 
ity has already been taken into account in the initial 
equations) so we can set ;id = 0. 

The attractive filter also has a state-space model, 
given by: 

z = A,z+B,u (15) 
a, = C ~ Z + D , U  (16) 

where U = qd - q is the difference between the desired 
and current position. It should be noted that the input 
to  the attractive filter is zero in steady state. One 
of the equilibrium positions for the filter states is the 
origin. We will investigate system stability around this 
equilibrium point. 

We define the input v to  the nonlinear inner-loop 
controller as 

v = a , + A v  (17) 
where AV (which will be derived below is an input to 
correct for errors in the dynamic mode. 1 

The filter/linearized robot equations become 

B = A e + B ( a , + A v + q )  
1 

= 
Ae + B(Caz + Da(qd - 4) + A V  + 77) 
Ae + BC,z - BD,Ce + BAv + Bq 

Z = A , z + B c , ( q d - q )  
= A , z - B , C e  

We can combine these subsystems into an aug- 
mented state space representation by defining a new 
state vector 

r i  

x = l  z" I 
L J  

which gives us the state-space model 

x = iix $- B(7 + AV) (19) 
where 

-B,C A ,  

= [:I 
We can design our attractive filter so that A is a sta- 

ble matrix. This is can be accomplished by noting that 
for each joint we have a double-integrator linked with 

Figure 4: Linear Block Diagram for a Single Joint 

an attractive filter. The block diagram for an individ- 
ual joint is shown in figure 4 where GE(s )  is the transfer 
function for the attractive filter. The attractive filter 
for each joint can be designed using techniques from 
linear system theory. As long as the individual loops 
for each joint are stable, A is stable Hurwitz). 

Even though the nominal system t for q = 0) is sta- 
ble, we still have to  show that we can guarantee sta- 
bility for q # 0 or, in other words, a system where the 
model is not perfectly accurate. The control input AV 
can be chosen by the designer to accomplish this. 

First, it is necessary to make a few assumptions 
about the magnitudes of the uncertainties. 

I. I I M - ' ~ ?  - 1 1 1  = 1 1 ~ 1 1  5 e 5 1 for some E, for ~II 

2. JlAhll 5 +(e, t) for a known function 4, bounded 

It has been shown [12] that we can always find A? 
that will satisfy Assumption 1 given known upper and 
lower bounds on M. 

q E an. 

in t. 

The process for choosing AV is as follows: 

1. Find a function p ( x ,  t) such that 

From these restrictions and Assumptions 1-2, we 
can derive a value for p(x , t )  implicitly using 

where i@ is the upper bound on M - l .  
By setting the term on the right hand side of the 
final inequality to  be equal to p(x ,  t), we can solve 
for p(x,  t) as 
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Note that cy, is a function of x, specifically 

a, = [ -DeC Cc J X  (25) 

Find a positive definite matrix P such that 

ATP + P A  + Q = 0 (26) 

where P and Q are positive definite, symmetric 
matrices. Since A is a stable matrix this will al- 
ways be possible. 

The control AV is then 

(27) 
where AV does satisfy ( 2 2 )  

We are now in a position to make some assessments 
of the stability of the system. Let 

v ( e ,  z) = xT PX (28) 
V is a function of the state variables that satisfies 

the following two criteria: 

1. V has a unique minimum, which is achieved when 
the manipulator is at  the goal configuration. 

2 .  Along any trajectory of the system, the value of 
v never increases (i.e. V 5 0). F O ~  asymptotic 
stability, V < 0 everywhere but the origin. 

That the first criterion is satisfied follows from the 
fact that V is quadratic in the state variables and P 
is a positive definite matrix. Furthermore, the only 
minimum of V occurs when x = 0 which is when the 
robot is a t  the goal and the filter states are zero. 

For the second criterion, we take the time derivative 
of v 

V = XTPx+xTPX 
= xT(A*P + PX)X + 2xTPB(Av + V) 
= -xTQx + 2xTPB(Av  + V) (29) 

The term in Q is obviously less than zero away from 
the equilibrium point (since Q is positive definite). It 
suffices, therefore, to  show that the rest of the expres- 
sion is less then or equal to zero. To simplify notation, 
let w = BTPx.  If w = 0 then the last term of (29) is 
zero and the entire expression is negative definite. If 
w # 0 then 

W 

and the last term of ( 2 9 )  (neglecting the gain of 2) 
becomes 

T W -pw w 
+wTv (31) 

WT (-Pm+n) = llwll 
5 -PllWll + llwllllrlll (32) 
= llwll (-P + llnll) (33) 
- < o  (34) 

since I 1111 5 p .  

teria given above is not sufficient for proving global 
asymptotic stability using Lyapunov's second methofl 
[ll]. In particular, although we have shown that V 
is negative along solution trajectories of the system, 
we can not guarantee the existence of a solution since 
V is not continuous. This issue is raised in a simi- 
lar proof for the stability of inverse dynamics control 
under state feedback in [12], where it is pointed out 
that we can show the existence of a solution in a set- 
theoretic sense. 
4.1 Stability in the Presence of Obstacles 

When obstacles are present in the workspace, the 
repulsive potential will, in general, be non-zero. The 
repulsive acceleration a, acts as a disturbance input 
into the robot dynamics. If the dynamics of the repul- 
sive filter are stable, a, will converge to a constant, 
possibly zero value, so long as the robot does not come 
in contact with any obstacle, We can limit obsta- 
cle contact by using the repulsive force formulation 
shown in Appendix A. This adopts the standard no- 
tation of allowing repulsive force gains upon a control 
point to grow unboundedly as the point approaches 
an obstacle. In a continuous time formulation of the 
closed loop system, the repulsive forces will eventu- 
ally overcome the attractive force and cause the robot 
to accelerate away from the obstacle. Most control 
systems, however, are implemented in discrete time. 
Accordingly the chances of contact with an obstacle 
will also be a function of the sampling time. If the 
obstacles are moving, the chances of contact will de- 
pend upon how fast the obstacles move relative to the 
sampling rate. Note that anytime a standard plan- 
ner is combined with a digital controller, the sampling 
time serves as a maximum rate of adaptability for the 
system. Accordingly, no a priori planner will be able 
to react to moving obstacles faster then the planner 
shown here (assuming the controller on the standard 
planner system has an equal or lower sampling rate) 
although the method by which it reacts might be more 
sophisticated. 

If the steady-state value of a, is small, but still 
non-zero, the robot position will converge to a point 
in the workspace distinct from the goal (a local min- 
imum.) Various techniques have been formulated to 
combat this problem (e.g. random walks [2]). Since 
most of these rely upon using another planning tech- 
nique to remove the robot from the minimum and then 
reengaging the potential field planner, there is nothing 
to prevent these techniques from being combined with 
the architecture shown here. 

The planner presented here could potentially serve 
as a "safety-margin" for a higher level planner (uti- 
lizint, cell decomposition, highway methods, or some 

Un 1 ortunately, showing that V satisfies the two cri- 
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other technique.) Instead of following a simple step in- 
put, this system can track the trajectory supplied by 
the higher planner, while still retaining the same ob- 
stacle avoidance and transient capabilities as before. 
This adds robustness for the complete system in the 
face of unexpected changes in the workspace that oc- 
cur after the a priori trajectory is determined. 

5 Conclusions 
We have proposed a control system architecture 

that integrates potential field planning with real-time 
control. The resulting system is modeled as an attrac- 
tive loop, with the repulsive forces acting as distur- 
bance upon that loop. We have analyzed this system 
for the case of no obstacles present and have shown the 
control loop to be asymptotically stable given a p r o p  
erly designed attractive filter in the forward-path. We 
have also discussed the behavior of the control loop in 
the presence of static and moving obstacles and argued 
that the continuous control loop will remain stabile al- 
though the goal may not necessarily be reached unless 
the problem of local minima has been accounted for. 
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Appendix A: Formulation of Repul- 
sive Torque cy, 

6 

Repulsive forces on an articulated manipulator 
should apply to  control points all along the length of 
the manipulator in order to prevent any part of the 
manipulator from coming in contact with the obsta- 
cles. Given a collection of control points along the 
entire length of the manipulator, we can create the 
repulsive torque vector as follows: 

0 Ffis the repulsive force on control point p on link 
i expressed in terms of frame 0 (the world coor- 
dinate frame). 
One common formulation [lo] defines the force on 
the pth control point 

where Xi" is the coordinates of the Pth control 
point on link i and X o ~ f  represents the coordi- 
nates of the obstacle point nearest to Xi'. Both 
coordinates are expressed in the world frame. The 
norm used here is the standard 1 1 1 1 2  norm (the Eu- 
clidean distance metric). 

0 Let Jip be the 6 x i Jacobian matrix such that 

(36) ~i = Jip T p  Fi 

where ~i is the vector of joint torques for joints 
0, ..., i-1. 
- 
7 [ J i p  0 ] is the 6 x 11 augmented Jacobian 

0 T , , ~ ,  the vector of total repulsive torques on all 

matruc where n is the total number of links. 

joints of the robot, is 

where p; is the total number of repulsive control 
points on link i, and tranmforms forces expressed 
in the world coordinate frame to forces expressed 
in the frame of link i. 
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