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Abstract-We present an example of the use of multi- 
attribute utility analjsis in the design ora mbot system. iMulti- 
attribute utilily analysis is a twl used by Systems Engineers 
lo  aid in deciding amongst numeions alternatives. Its strength 
lies in the fact that very dillerent metrirs can be compared, 
and that it takes into account human preferences and risk 
attitudes. 

As B design tool, multi-attribute utility analysis is per- 
formed om line, during the System design phase, to choose 
among possible designs, components, gains, etc. W e  offer a 
demonstration of multi-attribute utility analysis in designing 
a H3hrid Switched-System Visual Servo System. We have 
previously introduced such a system, and here use multi- 
attribute utility analysis to to select a switching algorithm 
that hest suits lhe needs of a specfir user. 

I. INTRODUCTION 

The ultimate goal of much research is to provide a 
benefit to human society. Research in robotics can improve 
human safety and health and simultaneously improve the 
quality and reduce the price of consumer goods. When an 
automated system is to senre the needs of a human, that 
person’s specific performance needs must he met. Multi- 
Attribute Utility Analysis (MAUA) [I], [Z] is a method 
used by systcms engineers to directly gage a human’s 
preferences and attitude toward risk. It provides a way to 
equate distinct system attributes, including those that do 
not have a natural metric. In a design application, MAUA 
is performed off line during the design phase to select 
among competing designs, components, gains etc., using 
metrics such as failure rate, cost, speed, and even non- 
concrete measurements such as user satisfaction. Addi- 
tionally, MAUA can account for human preferences and 
attitudes toward risk. For example, different applications 
can have different acceptable failure rates, and different 
people using the same system may he willing to accept 
different failure rates as well. 

Visual servo control is the use of image data in the 
closed loop position control of a robot end-effector. There 
are two general approaches to visual senlo control: Image- 
Based Visual Senroing (IBVS), and, Position-Based Visual 
SerVoing (PBVS). In IBVS, an error signal is measured in 

the image, and is mapped directly to actuator commands. 
In PBVS systems, features are detected in an image, and 
used to generate a 3D model of the environment. The error 
is then computed in the Cartesian task space. There are 
extensive resources detailing these methods 131, [41, [SI, 
[6], [7]. It is well known that both methods have specific 
strengths and shortcomings [SI. Furthermore, these systems 
are complementary in the sense that IBVS performs well 
where PBVS performs poorly, and vice versa. 

We have proposed a switched system approach to visual 
servoing and experimentally verified its potential [9]. A 
random switching rule can be applied, where at each 
iteration or time unit the system randomly selects between 
using IBVS or PBVS. As time, and the number of switches, 
increases, we can expect pelformance to he influenced 
by both B V S  and PBVS. The resulting system performs 
reasonably in controlling both the image and the position, 
rather than extremely well in one and poorly in the other. 

Our switched system previously used a binary switching 
rule, at each iteration the choice to use IBVS or PBVS was 
made by a binary random process with equal probability 
of 0.5 of choosing either one. However, this may not he 
the hest switching rule for all configurations or all uses. 
Industrial robots can have reaches ranging from over two 
meters to less than a third of a meter, and even smaller in 
surgical or MEMS applications. Likewise, the use of wide 
and narrow view lenses imposes different needs in feature 
control. A system that is biased to select IBVS will provide 
better control of the image features; a PBVS biased system 
will better control the position. Additionally, failure of a 
visual control system can vary in severity. For instance, 
failure can result in a small increase in scrap rate or a fatal 
catastrophe depending on the application. 

For these reasons, users selecting a binary coefticient can 
have vely different performance goals and very different 
attitudes toward risk. To provide a means of selecting a 
binary coefficient, we look toward the field of decision 
theory and multi-attribute utility analysis. Multi-attribute 
utility analysis provides an ideal method of gaging a user’s 
performance needs, preferences, and attitude toward risk 
[I], and we can directly apply this information to select a 
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switching rule. 
In this paper we use MAUA to select a binary switching 

rule for a switched visual servo system. A decision maker's 
preferences and risk attitudes toward position control, 
feature control, and control time will be used to create 
a three-attribute utility function. We will then use this 
function to rate the utility of several switched system, 
each using a different probability in the binary-random 
switching rule. Section II will discuss image based and 
position based visual servoing, and introduce our switched 
system. MAUA is hest explained along with an example. 
Section III will discuss the background of MAUA and steps 
taken to prepare a multi-attribute utility analysis while we 
present a MAUA of the switched-system visual servoing 
system for a specific user. Finally, Section N will present 
the results of the example utility analysis. 

11. VISUAL SERVOINC 
A. Posifion Based Wmal Servoing 

The task in PBVS is to regulate the error between the 
current camera pose and the goal pose. Given a current 
camera position and orientation r and goal position r* 
(from here on, variables in the goal configuration will 
be denoted with *), the transformation relating them is 
described by a translation and rotation of the camera frame. 
The translation and rotation are quantified by "T, E R3 
and C'R, E S0(3), respectively. There are a number of 
ways to decompose the rotation matrix to three variables, 
in the following discussion we will use and R E uH, where 
H is a measure of rotation about the vector U. 

Given a collection of feature points in the image, there 
are numerous methods to estimate the position and orienta- 
tion of the camera [lo], [ll], [12]. These methods differ in 
speed, accuracy and the number of feature points required. 
Some methods require a CAD model of the 3D points 
as well. With r* known and r estimated from the feature 
points in the image, we d e h e  the pose error as 

e P -  - rf - r = [C*T,,uHIT. (1) 

with derivative 
e, = r 

Moving rhe robot back along the error vector generates 
a velocity vector of 

where A, is a scalar gain coefficient. The derivative of the 
error then is 

e, = -ApeP. (3) 

Clearly, all errors will tend to zero with time, and this 
system is Asymptotically Stable (AS). It is not Globally 
Asymptotically Stable a map from SO(3) to three variables 
can never be a global map. While the position error 
tends monotonically to zero, we have no control over the 
position of the image points. If there is any rotation present 
the feature points will move along curves as the camera 
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Fig. 1. Examplc Of Typical Moiions For Falure Painis And Camera In 
PBVS 

undergoes rotation and translation, this is seen in Figure 1. 
The first image shows the trajectories of four feature point 
as the camera moves from its initial pose to the goal pose. 
The points marked by '0 are the features seen when the 
camera is at the initial point and the points marked with 
'*' seen when the camera is at its goal position. A large 
circular path is traced out in the image and the features are 
close to leaving the image. However, the camera velocity 
vector in the next figure shows an exponential decrease 
along a single axis. 

The limited imaging surface of a camera makes it pos- 
sible for the feature paints to leave the image. In this case 
the system can no longer reconstruct the motion parameters 
and the task cannot be completed. We will define failure of 
a visual servo system to he any situation in which it does 
not successfully zero the error. 

B. Image Based Wssual Semoing 

In Image Based Visual Servoing, the task we are regu- 
lating exists in the image space. A collection of n feature 
points is extracted from the image. Each feature point has 
coordinates in the image plane, p, = [x, y,lT, where x and 
y are the horizontal and vertical distance from the center 
of the image. We can define the image error between a 
point's position p, in the current image and its position 
p3* in a goal image stored in memory as 

The image error for each point is when the camera is at the 
goal pose. Thus the task of correctly positioning the end 
effector becomes the same as moving the feature points to 
their goal positions. 

The motion of an image point, p, is related to the motion 
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of the cameraj, by 

p = J,r 

where Ji is known as the image Jacohian[4], 151. 

with (5 )  to get 
We can take the time derivative of (4) and combine it 

(6)  

If we have three or more feature points, we can stack the 
vectors and matrix of equation (6)  to build a full rank Image 
Jacobian, and solve for the robot motion as 

6 .  - 
z j  - ,r. 

f = XiJi+ei. (7) 

where Ji' is the general inverse of Ji. This gives the 
proportional control law 

e? = - X i J i J i + e i  

= -&ei (8) 

This system is Asymptotically Stable (AS). It is not 
Globally Asymptotically Stable since there exist camera 
positions or feature point configurations which cause the 
image Jacobian to become pwrly conditioned. In this 
situation the image Jacobian inverse may not exist. 

Another issue is mat of camera retreat. As described 
by Corke and Hutchinson 1131, the image trajectories will 
follow a straight line to their goal configuration, requiring a 
change of scale must take place to turn the normally curved 
trajectories into straight lines. ?his scaling is achieved 
by pulling the camera back along it's optical-axis. An 
illustration of this phenomenon is given is Figure 2. In 
contrast to lhe PBVS system, the feature points move along 
nearly straight paths Io their goal positions, but there is a 
large translation along the optical-axis. 

Most robot systems have a reachable space on the order 
of meters. Thus camera retreat may cause the robot to 
extend to its joint limits during visual servoing, resulting in 
failure. Alternately, retreat can seriously affect the camera 
by causing the focus to he incorrect or increasing quanti- 
zauon noise, allecting performance of the system, 

C. Switclied System Vistcal Sewoirig 

In order IO mitigate the troubling aspects of the sys- 
tems, we have introduced switched system visual servo 
controllers [14], 191. These systems switch between using 
IBVS and PBVS at different points during the period of 
the task. Switching can be triggered depending on the state 
of the two errors e, and ei, at specific time intervals, 
or randomly. Here we explore random switching, using a 
binary random variable to pick a system at each iteration 
of the algorithm. Our previous research had used a binary 
random variable with a 50% chance of selecting IBVS or 
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PBVS. We demonstrated a marked decrease in failures due 
to extreme robot motions or lost feature points. 

An example of this hybrid system running is seen in 
figure 3. The feature point trajectory is now a slight curve, 
as opposed to the previous l q e  curve or straight path. The 
camera also experiences some camera retreat but far less 
than under IBVS. 

111. MULTIFATTRIBUTE UTILITY ANALYSIS 
As discussed in section E-C. we have previously used 

a switching visual servo system that had a 50% chance of 
selecting IBVS or PBVS at each iteration. This resulted in 
fewer system failures. However, while a switched system 
may be desirable to reduce the chance of failure, some tasks 
or configurations may he more lenient toward extremes in 
camera motion than image feature motion. One example 
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is a large robot with no danger of collision with nearby 
objects, but which has a narrow-view camera lens. The 
converse situation can exist where it is desirable to trade 
excess robot motion to bener constrain your features in the 
image. A binary function that favors one system over the 
other will grant these results. 

Multi-Attribute Utility Analysis (MAUA) can be applied 
to determine the best binary function. MAUA is a well 
established method for comparing options with multiple 
objectives. Funhermore, it allows the inclusion of not only 
preference, but attitudes toward risk [I], [2]. 

The person choosing the system referred to as the 
decision maker. Typically this is someone knowledgeable 
in the field and closely involved in the task at hand. A few 
examples of decision makers include a project manager in 
charge of implementing a control system, or a customer 
for whom a system is being designed or performance 
improved. MUAU is intrinsically an individual pursuit. A 
change of decision makers will require the analysis be ran 
again. 

The goal is to maximize the system's expected utility 
for the decision maker. Utility is a unitless measurement, 
which allows vastly different atuibutes to be compared 
and also incorporates the decision maker's preference and 
risk aversion. Each attribute is assigned a utility function 
which is monotonic with the attribute. The utility functions 
can then be weighted and combined to form a Multi- 
Attribute Utility Function (MAW). If statistical data is 
available concerning the attributes, we can then solve for 
the expected value of the MAUF for different weights and 
pick the one that maximizes the expected utility. This will 
be elaborated upon below. 

Given n attributes, XI, ..., x,,, the multi-attribute utility 
function , U ( x l . x 2 ,  ._., x,,), is defined by the equation 

where Ut are individual utility functions for each atmbute, 
k ,  are individual scaling or weighting constants, and K is 
a normalizing constants whicb is the non-zero solution to 

n 

1 + h' = f l [ K I ;  + 11. (10) 
i= l  

There are several basic steps to the development of 
a MUM, each of which will be presented here. First a 
decision maker must be chosen to make value judgments. 
Second is the choice of suitable attributes and confirmation 
that the decision maker can view them independently from 
each other. Thud is the development of the individual 
utility functions and scaling constants. Finally, given infor- 
mation about probable outcomes for the task the M U M  
can be used to evaluate the different options. 

For the purposes of this paper, the decision maker was 
an Electrical Engineering graduate student, who has been 
involved in vision based robot control for two years. First 
we sought attributes that measured non-ideal performance 
of a system. In the image plane, we define a line segment 

Pip. 4. lllustrstion of d2D 

for each feature from the initial feature point coordinate, p, 
to the goal coordinate p'. At each iteration we measure the 
distance from each feature point to the line segment, and 
note the largest distance. We will refer to this measurement 
as d2D, and is illustrated in Figure 4. We expect IBVS to 
move the features along trajectories very close to these 
line segments, so d2D should remain small for all but 
the most difficult tasks. PBVS, which offers no control 
over the image features is expected to have much larger 
measurements of d2D. 

Similarly, we define a three dimensional tine segment 
in the camera workspace from the initial camera position 
T to the goal positions, T'. At each iteration we measure 
the 3D distance from the camera's current position to the 
line segment; we will refer to this measurement as d3D. 
We expect PBVS to have small measurements for d3D. 
while it will be much larger for IBVS. We ignore camera 
orientation due to the difficulty in measuring distances and 
establishing a "straisht" line in S0(3), and the fact that 
erroneous translation are often troublesome for IBVS while 
it typically performs well for rotations. 

For two of the attributes. we used the marimurn d2D and 
d3D seen over the course of a visual servo task. These 
two attributes are referred to as X ~ D  and X J D ,  and we 
expect IBVS and PBVS to perform as discussed previously. 
Finally, we measure the failure rate for each system, and 
zfai,. This gives three attributes. 

To use MAUA it is  necessary to insure that the decision 
maker can view these attributes independently in the sense 
of mutual preferential independence and mutual utility 
independence [I]. Referendal independence exists if a 
decision maker's preference for attribute Y does not depend 
on attribute X. For example, a small value of Y might 
always be preferred to a large value, regardless of the value 
of X. Preferential independence exists for most decisions. 

Utility independence is more complex. It insures that a 
decision makers preferences for an attribute Y for unceriain 
outcomes do not depend on X. For example, suppose the 
decision maker prefers the scenario of a 50% chance of 
either Y 1 or Y2 and 100% chance of X1 to the scenario of 
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30%chanceofY1,70%Y2 and 100%XI.Thenformutual 
independence to hold he or she must also prefer 50% 
chance of either Y1 or Y2 and 50% chance of X2 to 30% 
chance of Y 1, 70% Y2 and 50% X2. These requirements 
must hold for any values of the attributes, and all atmbutes 
must be tested against each other. 

For these attributes, the decision maker determined they 
were mutually independent. The next step was to determine 
individual utility functions for each attribute, and to build 
the multi-attribute utility function. The decision maker 
decided that x ~ d  =I75 pixels was the maximum he would 
accept and d3D,,, = I S  meters was the largest acceptahle 
d3D,,,, since he felt that exceeding these values would 
likely lead to system failure. The largest failure rate the 
decision maker was willing to accept was 20%. This gives 
us the following utilities for the extremes of the domains, 

Udz(175) = 0, Uds(1.5) = 0, Uf,;l(20) = 01 
Udz(0) = 1, Ud3(0) = 1: UfajI(0) = 1. (11) 

Note that it is possible to have x2d and %3d larger than 
the decision maker’s chosen maximums, indeed during 
simulations the systems often exceeded these limits. Any 
value larger than these maximums is given a utility of 
zero. This is justifiable since there is no need to distinguish 
between failures. For example, assume a robot has a one 
meter reach. The system will fail if the robot reaches it’s 
joint limits, regardless of whether x3d is two meters or five 
meters, and any viable robot controller will safely stop the 
robot. Neither system fails ”worse” than the other. Still, a 
system that fails more often will have have a lower average 
utility due to lhe high probability of a zero utility 

The decision maker was queried using the certainty- 
equivalent and probability methods to determine the in- 
dividual utility functions [15]. This amounts to assigning 
a utility of 1 for the hest outcome, which is 0 for all three 
attributes here, and a utility of 0 for the worst acceptable 
outcome. Picking the measure of the attribute that the user 
feels bas a uriliry halfway between the best and worst gives 
the measure that has a utility of .5. This is repeated for 
several utility levels. The functions were then line fitted to 
polynomial functions. 

It is important to note that a utility of x E (0 , l )  often 
does not correspond to the attribute value at that same 
percentile between the highest and lowest values of the 
utility function range. For example, the point at exactly 
half way between the hest and worst attributes often does 
not have utility of 0.5. 

The utilities chosen reveal characteristics of the decision 
maker. A decision maker who does assign utility x to the 
value at x(xhest-worst) for all x is said to be risk neurral 
and will have a linear utility function. A tendency to assign 
a utility of x to a value below the risk neutral line indicates 
the decision maker is risk adverse and will accept a known 
certain, mediocre performance over an uncertain, possibly 
very g w d  or possibly very had performaice. The opposite 
is known as risk seeking, in which the decision maker 
will accept the risk of bad performance for the chance 

Pig. 5. Utility functions for 2D and 31) 

of getting good performance, and prefer this chance to 
a known moderate outcome. It is not unusual to show 
different behaviors over different portions of the utility 
function range. 

The resulting Utility functions are as follows: 

U ~ D ( Z * ~ )  = 3.7 x 10‘ * x:d - 8.6 x lo6 * Z& - 

0.0053 * z + 1 
U ~ D ( Z S ~ )  = 0.14 * xZd - 0.87 * + 1 

U f e i i ( z f e t j )  = 2.8 x 10-5.00 * - .0012 i Z;ajl + 
,017 i x:.iI - .13 * 

Plots of the points and fitted functions for the nonlinear 
functions are seen in Figure 5.  They are monotonic func- 
tions, which is necessary for use in a MUAF. 

The decision maker is quizzed as follou,s to determine 
the value of the scaling constants ki 1151. The decision 
maker assigns a utility Uchose,, to the combined function 
(9)when two of the attributes are at their worst and one 
attribute is  at its best value. The ki can then he solved for 
the attribute at its best. Using the values found in 11, kzd 
this is as follows: 

+ 1 

1 + I~U(XZd:D3d,Zfail) = [KkzdUzd(ZZd) + 11 X 

[Kk3dhd(z3d) + 11 X 

[Kkf.ilUfail(zfoil) + 1) 
1 + KUchonen = [KhdUZd(o) + 11 x 

[Kk3dU3d(l.S) + 11 X 

[KkfozlUfoiI(ZO) + 11 
Uchosen = k2d 

This was repeated for all k; ,which were determined to be 
kdZD = 0.35, k d 3 ~  = 0.375, kf.;~ = 0.15. As stated, I< 
is the non-zero solution to (IO) and was determined to be 
K = -0.8187. This gives us enough information to use the 
MUAF U(ZZd, x3d. zf.ir) as in (9). Plots of the M A W  
for U vs xzd and X3d for several values of zfoir are seen 
in Figure 6. 

359 



Fig. 7. Hislog" of lhc sampled canfrguralion space 

In order to gain information on the probable performance 
of the visual servo systems, we then ran simulations for 
IBVS, PBVS, and several switched systems with differing 
binary functions. Specifically we tested systems that se- 
lected IBVS 25% 50% and 75% of the time. We sampled 
the six-dimensional configuration space (translation and 
rotation about three axes), representing 30,000 unique 
initial camera poses. This is a very large sampling, but 
SE(3) is a large space and we wanted to insure sufficient 
sampling density. 

The size of the configuration space was a 4mx4mxZm 
box with the simulated image features at the center of the 
bottom face. The orientations ranged from -271 to 2a for 
rotation about the camera optical axis (z-axis), and -li to li 
for rotations about the x- and y-axes. These two axes were 
more limited since a rotation with magnitude greater than 
x will result in the feature points lying behind the camera. 
Histograms of the sampled translations and rotations are 
seen in figure 7. The sampling is not uniform due to the 
sampling method used, a rapidly-exploring random tree 
(RRT) [16], [17]. An RRT offers many advantages, such 
as completeness, but such a discussion is beyond the scope 
of this paper. 

After running the IBVS, PBVS and hybrid systems for 
the entire 30,000 camera positions, we plotted cumulative 
distribution functions for x a d .  x g d .  Running these sim- 
ulations took approximately 16 hours of computer time. 

Fig. 8. Cumulative Distribulion Functions for Mcasured Aluibaes 

Simulations were distributed over four Pentium 4 Pc's to 
reduce the running time. The cumulative density functions 
for the systems vs the distance metrics are shown in Figure 
8. As expected, the probable X2d is much smaller for IBVS 
than PBVS. Likewise the probable x 3 d  is much smaller for 
PBVS than IBVS. The hybrid systems lie in between along 
regular gradations. 

The failure rate is a discrete value, so there are no density 
functions. PBVS has a failure rate of 3.52%. while IBVS 
had a failure rate of 6.12%. The switched system choosing 
IBVS 75% of the time had a failure rate of ,856, while the 
50% IBVS and 25% IBVS switched systems had a failure 
rate of zero . 

We can use this information, along with the M A W  
to evaluate the VS systems and choose the system with 
the highest utility. 'his information is most easily pre- 
sented in the form of a decision tree, which is presented 
in  Appendix A. There are five chance nodes, one for 
each visual servo system. In order to accurately gage the 
performance of each system, while keeping the amount 
of data manageable, the chance nodes have five branches 
corresponding to five ranges of decreasing performance. 
Each branch has a weighting of 0.2 corresponding to a 20% 
chance of choosing that branch. In effect the first branch 
supposes there is a 20% chance tbe system will operate 
somewhere in its best 20% of performance. The value of 
the attribute that corresponds to 0.2 in the CDF's are then 
used in the MAUF, so the utility value that results is best 
thought of as a lower bound. The second branch states 
there is a 20% chance of performance to the 20%-40% 
of performance, and gives the lower bound of utility in 
this range. The subsequent branches continue this analysis 
trend. A detailed examat ion  of the decision tree will be 
presented in the next section. 

IV. RESULTS 

A decision tree was created to present the results of 
the multi-attribute utility analysis, and is presented in Ap- 
pendix A. For the utility function and weighting functions 
derived here, IBVS comes out on top with a utility of 0.577. 
The switched system biased toward IBVS is second with 
utility of 0.525, followed by the PBVS biased switched 
system and neutral switched system with utilities of 0.459 
and 0.253, respectively. PBVS comes in last with utility of 
0.43, this points to the fact that IBVS dominates the other 
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obtain a large number of potential controllers with a wide 
specmm of performance. The choice of a switching rule 
should allow the system to perform according to a system 
designer's preferences, and MAUA is a natural method to 
choose the rule. 

IBVS is known to oerform best in terms of feature mint 
.._ .,.# ,.- .... ..- /- ,-.. 

systems, a fact that will be reinforced during a subsequent 
sensitivity analysis. 

This domination can be seen by inspecting the utility 
results shown in the decision tree and the CDF's in Figure 
8. Both IBVS and PBVS perform similarly well for their 
respective best amibute . However, the 3D performance of 
IBVS is bener than the 2D performance of PBVS. This 
is seen in the CDF's. For z3d,  IBVS has a steep slope 
that becomes shallow after about 0.6, while for x*d PBVS 
is shallow over the entire range. The result is that PBVS 
has a greater probability of having large values for its off- 
attribute. Looking at the utility results in the decision tree, 
PBVS only has a non-zero U z ~  for its first branch. IBVS 
has non-zero U,, for three branches. All of the hyhrid 
systems have shapes similar to these, gradually shifting 

We can deduce that utilities are more dependent on how 
bad each system is capable of performing than on how well 
each system is capable of performing. Additionally, since 
a relatively low weighting was given to the failure rate, 
IBVS's poorer performance for this attribute did not cost 
it too heavily. 

To examine the sensitivity of the analysis to changes in 
the weighting constants. we vary a single constant from 0 
to 1 while keeping the others the same as chosen by the 
decision maker. We can view the resulting total utilities as a 
function of the shifting attribute, as seen in Figure 9. When 
varying kd2DI IBVS would he chosen for k d g ~  > 0.21, but 
when varying k d ~ ~ ,  PBVS becomes the best choice only 
when kd3D > 0.58. Additionally, IBVS's poorer failure 
rate only becomes and issue when kjaiI > 0.4, at which 
point the switched systems become more attractive. 

from mvs 10 PBVS. 

V. CONCLUSION 

We have performed a multi-attribute utility analysis in an 
effort to choose a vision based control system for a robot 
manipulator. Two general systems exist, image based and 
position based. Each one offers strengths and weaknesses, 
but recent analysis showed that a hybrid system that 
switched between them showed promise. By biasing the 
switching toward image based or position based we can 

motion in the image, and PBVS is known perform best 
in terms of distance optimal robot motion. Indeed, both 
of these systems are rated above any hybrid method when 
the feature point motion or robot motion are the preferred 
performance metric to improve. The hybrid systems have 
lower failure rates than IBVS or PBVS, and if the failure 
rate is the attribute most heavily weighted, they are chosen. 
However, IBVS dominates the other systems in the sense 
that it is preferred over the largest range of the three 
atuibutes. 
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