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Abshacf-In this paper we address the problem of finding 
time optimal search paths in known environments. In  par- 
ticular, the task is to search a known envimnment for an 
object whore unknown loeation is characterized by a known 
pmbabilit). density function (pdf). With this formulation, the 
time required to find the object is a random variable induced 
by the choice of search path together mth the pdf for the 
object’s loeation. The optimization problem Is to find the path 
that yields the minimum expected value of the time required 
to find the object. 

We propose B two layxed approach. Our algorithm firsl 
determines an efficient ordering of visiting regions in a 
decomposition that is defined by critical curves that are 
related lo the aspect graph of the space to be searched. It 
then generates locally optimal trajectories within each of these 
regions to construct a complete continuous path. We have 
implemented this algorilhm and present results. 

I. INTROIIUCTION 

In this paper, we address the problem of finding an 
object in a polygonal environment as quickly as possible on 
average with a mobile robot that can sense the environment 
continuously. This is the optimization problem of minimiz- 
ing the expected value of time required to find the object, 
where time is a random variable defined by a search path 
together with the probability density function associated to 
the object’s location. The possible applications have a wide 
range, from finding a specific piece of art in a museum to 
search and rescue of injured people inside a building. 

In [IO], we presented a discrete, combinatoric version of 
this problem. In that work, we abstracted the problem to 
one of finding a path in a graph whose nodes represented 
sensing locations (guards). Associated to each node is the 
probability of sensing the object from the corresponding lo- 
cation, and associated to each arc is a cost that corresponds 
to the time required to move between the corresponding 
sensing locations. We showed that for this problem, a 
trajectory that minimizes the distance traveled may not 
minimize the expected value of the time to find the object. 

In [ 1 I], we extended our approach to the more general 
case of searching in a polygon. In this case, we used 
a visibility-based decomposition of the polygon to again 
convert the problem into a combinatoric one. The visibility 
regions were used to calculate the probability of seeing an 
object for the first time from panicular sensing locations, 
which were again chosen from a predefined set. Paths were 
constructed from arcs in a reduced visibility graph. We 
showed the problem to be NP-hard by reduction. 

The work that we present here is qualitatively different 
from our previous efforts. In our past work, all robot paths 
consisted of piecewise linear segments between preselected 
sensor locations. In this paper, we find optirnal continuous 
paths by using methods derived from the Calculus of Vari- 
ations, and there is no predefined set of sensing locations 
for the given task. Our approach exploits a decomposition 
of the space to be searched using critical curves that are 
related to the aspect graph of the space. We use the utility 
function described in 1111 to find an efficient order of 
visiting these regions, and the Calculus of Variations to 
find locally optimal trajectories within each one of them. 

11. PRORIXM DEFINITION 

As in [ I l l ,  we define the the random variable T to be 
the time required to find the object, i.e., the time until the 
object enters the robot’s field of view for the first time. We 
are interested in finding a continuous path S that minimizes 
the expected value of this random vaiable along that path, 
E[TIS]. This trajectory will, on average, find the object as 
quickly as possible. 

We model the robot as a single point with an infinite 
range, omni-directional sensor. We do not impose any con- 
straints on the movement of the robot other than constant 
speed. 

111. PKOPOSliD APPROACH FOR CONTINUOUS SENSiNC 

As mentioned before, in this paper we are dealing with 
continuous sensing in a continuous space. We assume that 
the robot is sensing the environment as it moves. This 
contrasts with sensing only at specific locations, as was 
described in [ll]. 

We say that a continuous trajectory covers 1121 a poly- 
gon P if each point p t P is visible from some point along 
the trajectory. If the trajectory is to minimize the distance 
traveled, then the problem is called the Shortest Watchman 
Tour problem [I]. This is not exactly our problem since, as 
we showed in [lo], a trajectory that minimizes the distance 
traveled may not minimize the expected value of the time 
to find an object along it. 

The Shortest Watchman Tour problem is also related to 
the Art Gallery problem IS] in that they both deal with 
visibility in polygons. However, the Art Gallery problem 
seeks to minimize the number of point guards needed 
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to cover a polygon and is not concerned at all with the 
distances between them. 

Any trajectory that covers a simple (without holes) 
polygon must visit each subset of the polygon that is 
hounded by the aspect graph lines associated to non-convex 
vertices of the polygon. An aspect graph for a polygon [41 
consists of a set of line segments generated by features of 
the polygon. We only use the line segments generated by 
non-convex vertices of the polygon. These line segments 
are simply extensions of the incident edges on non-convex 
vertices, as shown in Fig. I with grey lines. 

We call the area bounded by these aspect graph lines the 
comer guard regiuru. These regions have the characteristic 
that any point inside them can see “both sides” of their 
associated non-convex vertices. Therefore. a continuous 
trajectory that covers a simple polygon needs to have at 
least one point inside the region associated to “outlying” 
non-convex vertices (non-convex vertices in polygon ears), 
like A and C in the figure. Since these points need to 
he connected with a continuous path, a covering trajectory 
will cross all the other comer guard regions, like the one 
associated to vertex B. 

Pig. I .  ASPLTI graph 1im1 aswiafed IO rrflcx vcnices A,  B and C 

Since a continuous trajectory needs to visit all the comer 
guard regions, it is important to decide in which order they 
are visited. The problem can be abstracted to finding an 
specific order of visiting nodes in a graph that minimizes 
the expected value of time to find an object. In 1111 we 
showed that a version of this problem is NP-hard. 

For this reason, to generate continuous trajectories we 
propose an approach with two layers that solve specific 
parts of the problem. The high level, cumbinaturic layer 
attempts to find a “suitable” order of visiting comer guard 
regions without taking into account how exactly the robot 
is to move between them. The low level, corrrinuous layer 
takes an ordering from the upper level and tries to find how 
to best visit the given regions. 

This decoupling makes the problem simpler to address, 
but does so at the expense of global optimality. To preselve 
global optimality, an algorithm would need to consider how 
the robot is moving while generating the best ordering 
of visiting comer guard regions. Calculating the globally 
optimal robot motions is not an easy task because the 
trajectory can make “sudden” direction changes within 
a single region (as will he described in section V) and 
also because these motions must make a compromise 
between the distance traveled (time) and the amount of the 
environment (probability) that is visible at different points 
along the complete trajectory (to minimize the overall 
expected value). 

In the remainder of the paper, we describe our two- 
level approach. In section IV we describe how optimal 
continuous paths are generated for moving from one region 
to another. In section V we address the problem of choosing 
a good ordering for the regions. Finally, results are given 
in section VI. 

IV. PLANNING OPTIMAL CONTINUOUS 
PATHS WITHIN REGIONS 

Once an ordering of visiting comer guard regions is 
established by the combinatoric layer, it is still necessary 
to generate a continuous trajectory between them. 

Given that we want to generate a continuous path, it is 
necessary to compute the expected value of time E[TIS] 
along a trajectory S (as the robot moves). The form of the 
equation to compute E[TIS] changes in different regions of 
the polygon. For this reason, we have analyzed the simplest 
case - within one region - and concatenated these sections 
for a complete trajectory. Note that with this approach, 
there are no guarantees as to whether locally optimal sub- 
paths will lead to a globally optimal solution. 

A. Coritiriuous Sensing in rhe Base Case 
The simplest case for a continuous sensing robot is that 

shown in Fig. 2. In this case, the robot has to move around 
a non-convex vertex (comer) to explore the unseen area A’. 
For now, we assume that this is the only unseen polrion of 
the environment. 

I:i& 2. Sensing Ihc area behind a comer 

As the robot follows any given trajectory S, it will 
sense new portions of the environment. The rate at which 
new environment is seen determines the expected value of 
the time required to find the object along that route. In 
particular, consider the following definition of expectation 
for a non-negative random variable from [SI, 

E[TIS] = l m P ( T  > t.) dt. (1) 

Note that this alternate definition expresses an expectation 
of time, even though the variable t is not explicit on the 
right-hand side of the equation. 

The particular route S followed by the robot determines 
the probability of not having seen the object at any given 
time, P(T > t ) .  We require that this probability decreases 
monotonically, which is equivalent to considering only 
trajectories along which the size of the unseen region 
decreases monotonically. As shown in Fig. 2, the remaining 
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section of the environment to he explored A’ decreases 
monotonically if and only if the angle from the comer to 
the robot increases monotonically. For this reason, it is 
natural to express the trajectory in polar coordinates with 
the origin at the comer. 

B. Expected Value of Time Along any Trajectory 
In the simple environment shown in Fig. 3 the robot’s 

trajectory is expressed as a function in polar coordinates 
with the origin on the non-convex vertex. We assume that 
the robot will have a starting position such that its line of 
sight will only sweep the horizontal edge E,. As mentioned 
before, the expected value of the time to find an object 
depends on the area A’ not yet seen hy the robot. Since 
we assume infinite sensing range, at any time t the only 
important feature of the robot’s position is its angle e( t )  
relative to the origin. 

pil. 3. me ca;.c ror a UmtinUOUE sensing r o b t  

The following analysis is only valid for an axis-parallel 
edge El, hut it can be easily adapted to the general case. 
Let Qz(t)  and Q y  be horizontal and vertical distances 
from the origin to the point where the robot’s line of ai&t 
through the origin intersects El. The area of the unexplored 
region A’(t)  is 

( 2 )  Qy Qz(t) A’(t) = ~ 

2 ’  
As can be seen in Fig. 3, 

Q4 
Q Y  

tan  (a(t))  = - 

7r 
and 

a(t) = - - B(t). 
2 

Since tan (5 - B ( t ) )  = th, we have tan ( B ( t ) )  = 

A, and (2) can he written as 

Qy Q=(t) - QY’ A’(t) = - - 
2 2 tan(e(i)) 

Assuming that the probability density function of the 
object’s location over the environment is constant, the 
probability of not having seen the object at time t is 

Qv2 ( 3 )  A‘@) P(T > t )  = - = 
A 2A tan(B(t))’ 

where A is the area of the whole environment. 

Finally, from (1) and (3 ) ,  

Q dt 
2A tan(O(t))’ E[TlS] = p/ ~ (4) 

Equation (4) is useful for calculating the expected value 
of the time to find an object given a robot trajectory S 
expressed as a parametric function O(t). It is interesting to 
note that the expression does not directly depend on the 
radius r ( t )  (a consequence of infinite sensing range). In 
the next section, we will also use (4) to find the optimal 
trajectory S’ by minimizing the value of the integral. 

C. Minimization Using Ca/cu/us of Variations 
The Calculus of Variations I31 is a mathematical tool 

employed to find stationary values (usually a minimum or 
a maximum) of integrals of the form 

where x and y are the independent and dependent variables 
respectively. 

The integral in ( 5 )  has a stationaty value if and only if 
the Euler-Lagrange equation is satisfied, 

In our case, it is not useful to apply the prototypical 
Euler-Lagrange equation directly to expression (4) for 
two reasons, First, T and 0 are expressed as parametric 
equations, instead of one as a function of the other. 
This is not really a problem, because expressions very 
similar to (6) can be derived to accommodate the case of 
parametric functions [2]. The real problem is that (4) does 
not impose any constraints on the parametric equations 
describing the robot motion. The optimal trajectoly without 
any constraints would he one where B increases infinitely 
fast. 

To address both of these problems, we introduce the 
constraint that the robot moves with constant (unitary) 
speed. To do this, we express its velocity vector as a 
generalized motion [7] in a basis where one component U,  
is radial frorn the origin and the other Us is perpendicular, 
as shown in Fig. 4. Both U, and Us are unit vectors that 
define an orthogonal basis. In this basis, the robot’s velocity 
(in polar coordinates) can he described as 

v = i .U, + r 0 U@. 

Fig. 4. Gcnedizcd motion of a panicle moving along pa!h S 

The constraint that the robot speed is constant can be 

(7) 

expressed a5 

I I v I I =  i2 + r2 e* = I. 
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In practice, this means that the maximal speed the robot 
can achieve is constant regardless of the direction of 
motion. The velocity components need to “add up” to a 
constant value. This contrasts with other systems where 
each dimension can be controlled independently, like a 
plotter. 

Starting with equation (7). it is possible to express the 
differential of time as a function of a differential of 0. 
This will allow us to rewrite the parameuic equation as 
a function in which 8 and r are the independent and 
dependent variables respectively, 

I = -  (W + p  02 
(&)* (&)” 

U 

Pig. 5 .  Family or CUNCS dcpcndinp on initial conditions 

(dt)’ = (r” +r’) (de)’; 

d t  = (r” + T ’ ) ~  d0; (8) 

where r’ = g. Substituting (8) into (41, we obtain an 
expression for the expected value of time to find an object 
where the robot’s trajectory S is expressed as r being a 
function of 0, 

To find stationary values of (9), we use (6) with x = 8, 

y = T and F = (r” + r’) ’. After simplification, 
this yields the following second order non-linear differen- 
tial equation, 

This equation describes the route to move around a non- 
convex vertex (comer) to search the area on the other side 
optimally (according to the expected value of time). 

D. Numen’cal htegratiort 

We solved equation (10) numerically using an adaptive 
step-size Runge-Kutta method [61. Since this equation is 
of second order, any numeric approach that integrates it 
as an initial value problem requires two initial conditions: 
r(&) and +(e; ) .  We know the staring point r(8i) and the 
integration range ( S i ,  @I), hut we do not impose any other 
constraints on the trajectories other than unitary speed. 
Therefore, the possible solutions are a family of curves that 
depends on the value of the first derivative at the beginning 
of the integration range TI(&). These are shown in Fig. 5. 

Most of the possible solutions diverge long before they 
reach the end of the integration range. In fact, it is evident 
from (10) that the solution is not defined there (at 01 = 4). 
However, it is possible to get arbitrarily close, and to do so, 
the first derivative at the end of the integration range must 
he such that the trajectory approaches the target manifold 
(the venical line in Fig. 3) perpendicularly. This translates 
to stating that r‘(9f) = 0. In fact, the transversality 

condition for the Euler-Lagrange equation establishes that, 
in order to satisfy the equation and obtain a minimum, 
the solution function must he perpendicular to the target 
manifold at t = t f  191. 

This observation allows us to integrate equation (10) as 
a two point honndaq value problem, where we specify 
the position at the beginning of the integration range 
T ( & )  and the first derivative at the end ~ ‘ ( 8 , ) .  For this, 
we coupled the Runge-KuUa algorithm with a globally 
convergent Newton-Raphson method 161. 

Fig. 6 shows the trajectories generated for six different 
starting positions in solid black lines. To save space, the 
figure only shows the upper right portion of an environment 
similar to that in Fig. 3 (the units on the axes are arbitrary). 

Fig. 6. Oplimal trajenories ohtaiumcd through numnieal inlepaion 

v. CHOOSING A N  ORDERING OF REGIONS 

To cover a simple polygon, it is sufficient that a trajec- 
tory visits at least one point inside each comer guard region 
(as defined in section III) associated to reflex vertices of 
the polygon. The high level, comhinatoric layer attempts 
to find an ordering for the robot to visit these corner guard 
regions such that the expected value of the time to find an 
object in the environment is reduced. 

To find a suitable ordering, we defined a point guard 
inside each comer guard region and used the approach 
we presented in I l l ]  for sensing at specific locations. 
Potentially, any point in the closure of a comer guard 
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region can he used as a point guard; we decided to place 
them very close to the non-convex vertices. 

Once point guards have been defined, it is smightfor- 
ward to calculate the visibility regions and distances re- 
quired for the proposed utility function of [I 11. In the end, 
the algorithm yields an ordering for visiting comer guard 
regions (associated to non-convex vertices) that attempts to 
reduce the expected value of the time to find an object. 

Once an ordering has been established, the lower level, 
continuous layer uses the.sequence of non-convex vertices 
to perform locally optimal motions around each of them, 
thus generating a complete trajectory thaI covers the polyg- 
onal environment. 

We believe that this trajectory reduces the expected 
value of the time to find an object, but we know that any 
trajectory generated in this fashion will not be globally 
optimal in the general case. There are several reasons 
for this, the most obvious being that any partition of the 
problem into locally optimal portions does not guarantee 
global optimality (Bellman‘s principle of optimality does 
not apply). Another reason is that our generated trajectories 
will only change direction abruptly (non-smwthly) in 
aspect graph lines and points where the edge being seen 
through a reflex venex changes, for example, when the 
robot has finished seeing an ear of the polygon and must 
reverse direction. However, an optimal trajectory might 
need to change direction in other points of the environment 
as well, as described in the next section. 

A. Direcriun Changes within a Region 

An optimal trajectory may change direction at points 
that are not part of our set of critical curves, that is, it 
may change direction abruptly in the interior of a region. 
Consider the polygon in Fig. 7(a). If the robot starts at 
P, it is clear that any trajectory that covers the polygon 
must reach the vertical lines at non-convex vertices A and 
B belonging to the aspect graph. If such a trajectory is 
to be optimal, then it is not necessary to cross said lines 
because the complete side region would already he visible 
and nothing is to be gained by going further. 

Also, since both non-convex vertices are “above” the 
starting position and the robot is already at the lower limit 
of the polygon, the optimal trajectory will not move verti- 
cally. The robot cannot go ”downward” because it would 
leave the polygon, and it is not useful to move “upward 
because no new regions would ever he visible moving this 
way. Any new point seen in a diagonal trajectory could be 
seen sooner by traveling a shoner distance on the horizontal 
component of said trajectory. Also, the two closest aspect 
graph lines that must be visited are vertical, therefore, 
moving venically does not decrease the distance to either 
of them. 

Since moving vertically does not help either of the two 
variables involved in the expected value search, distance 
(time) and visible area (probability), we can conclude that 
the optimal trajectory will not have a vertical component. 

Having established that the optimal trajectory for this 
panicular problem will only move horizontally, let us 

consider the case of horizontal trajectories starting at P 
that cover the whole polygon. 

A trajectory that covers the polygon and only moves 
horizontally needs to reverse direction ar least once. If it 
only changes direction once, then there are only 2 cases, 
it must go from P to B then to A (PBA) or go from P to 
A then to B (PAB). 

It is also possible that a trajectory changes direction 
twice, for example, it may go from P towards (but not 
reaching) B, reverse once to go to A then reverse again 
to reach B. In this case, there is a range of possible 
trajectories depending on how far they go the first time 
they move towards B. 

The graph in Fig. 8(a) tallies the expected value of 
the time to find an object in the environment depicted 
in Fig. 7(a) when following a horizontal trajectory that 
makes only two direction reversals. The horizontal axis in 
Fig. 8(a) represents the point at which the first direction 
change is made. The negative domain means that the robot 
s tms moving towards A instead of B. 

I 

(a) 

(b) 

Fig. 8. E n p c l d  valuc or i~me YE. direction change point 

The discontinuity at the origin is the result of the 
initial direction of motion. Since the trajectories must make 
exactly two direction changes, if the robot initially moves 
right towards R, it will reverse direction and reach .4 first. 
On the other hand, if it starts moving left for a while, it 
will change direction and reach B first. 

Notice that if the first direction change happens very 
close to the origio or very close to A or B, the expected 
value is practically the same as either of the two trajectories 
with only one change (shown in the graph as the horizontal 
lines). It is also interesting to note that the hest case (lowest 
expected value) for these trajectories does not happen at the 
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Fig. 7.  Two similar polygonal mYironmCnB 

boundary - equivalent to the P B A  and PAB trajectories. 
The optimal trajectory, therefore, must have at least two 
direction changes (it may have more). 

Now consider the polygon in Fig. 7(h). It is very 
similar to (a), except for one vertex that was raised so 
that the relative area of the left side of the polygon is 
larger. Analogous to the previous case, Fig. 8(b) shows 
the expected value of the time to find an object following 
trajectories with two direction changes in this new polygon. 
It can be seen that trajectory P A B  is now better than 
trajectory PBA hut neither of them is the best one in this 
group. Also, it is evident that the hest point to make the 
direction change (global minimum) has shifted tn the left. 

The &raphs in Fig. 8 show that, for routes that make 
twro direction changes, the hest trajectory (the one u,ith 
the lowest expected value of time) moves towards hut not 
reaches B,  then reverses direction to go to A and then 
finally B.  The hest point at which the first direction change 
is made does not correspond to any point in the aspect 
graph of the polygon. Furlhermore, this point shifted to the 
left when the area of the left portion of the environment 
was increased. 

These examples do not show what the optimal trajectory 
is, however, they do show that it must have at least 
two direction changes and that the points at which these 
changes are made do not necessarily correspond to aspect 
graph lines or points where the edge being seen through a 
reflex vertex changes. In conclusion, an optimal trajectory 
may change direction abruptly inside our defined regions, 
not just at the boundary on our defined critical curves. 

VI. SIMULATION RESULTS 

This section presents an example of how our proposed 
two layered approach can be used to generate a continuons 
trajectory that covers a simple polygon with the goal of 
reducing the expected value of the time to find an object 
along that trajectory. 

Fig. 9 shows a simple polygon and a staring position 
P (near the bottom). We placed a guard G, close to every 
non-convex vertex and used the algorithm proposed in [I 11 

to find an efficient ordering for visiting the guard locations. 
This algorithm returns a complete ordering (all guards are 
included once). 

However, the guard set can he redundant and since sens- 
ing is done continuously the polygon may be completely 
covered before all guards are "visited". In consequence, 
some guards late in the ordering may not need to be visited. 
This is the case of guards Gq and G5 in the figure. 

Once an ordering has been established, the trajectory 
is generated piecewise according to which guard is to 
he visited. The robot does not actually travel touwds 
the guard, but rather it goes around its associated non- 
convex vertex in a locally optimal trajectory, as described 
in section IV. A locally optimal portion of the complete 
path is generated for every edge seen through the current 
non-convex vertex. For example, in Fig. 10 as the robot 
moves from the starling position P,  in the shaded region, 
the section of the environment that will he visible through 
guard G1 is bounded by edge E l ,  that is, as the robot 
moves, its line of sight through the comer will "sweep" 
edge El until it reaches edge Ez.  At this point, the shape 
of the current suh-path changes as it is now edge E2 that 
will he swept. When the trajectory reaches one of the 
aspect graph lines associated to the non-convex vertex of 
the current guard, the process starts over with the next 
guard in the ordering. 

Fig. 11 shows all the trajectory pieces ( A  through F )  
generated for the polygon and the guard they correspond 
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Fig. IO. Edgcr visible lhmugh guard 61 

to. There may he occasions, such as portion E, where the 
locally optimal path would leave the polygon. In this case, 
the trajectory is saturated and made to follow the polygon 
boundary. Note that the endpoints of each trajectory portion 
correspond to critical events, which occur at aspect graph 
lines or when there is a transition between the edges that 
are currently been seen through the comer (guard). 

Fig. I I .  Locally Optimal lrajectoria far thc guards that generated ihcm 

Fig. 12 shows the final trajectory for that polygon. 
It is important to remark that this mjectory attempts 
to minimize the expected value of the time to find an 
object, not the distance traveled. The zig-zag motion is 
not necessarily bad because a good trajectory must find 
a compromise between advancing to the next guard and 
sensing a larger portion of the environment as soon as 
possible. 

~ i g .  12. ne li rial I ~ ~ S C L O ~  a poiygon 

For this particular example, the expected value of the 
time along the shown trajectory is 115.3. This contrasts 
with the expected value along the straight line segments 
shown in Fig. 9 (GI * Gz + G3). which tums out to he 
136.9. 

VII. DISCUSSION AND CONCLUSIONS 
We addressed the problem of continuous sensing for 

expected value search in simple polygons. This problem 
involves the generation of a motion strategy that minimizes 
the expected value of the time to find an object. 

We presented a two layered algorithm that determines 
an efficient ordering of visiting regions and then generates 
locally optimal suh-paths to construct a complete trajectory. 

The final trajectory is not globally optimal for two rea- 
sons. First, die discrete version of the problem is NP-hard 
and we proposed a tractable algorithm. Second, we chose 
to decouple the task of finding an ordering and moving 
between regions (hounded by aspect graph limes and points 
where the edge being seen through a reflex vertex changes). 
However, these lines are not the only places where an 
optimal trajectory may change direction, as mentioned in 
section V-A showing our proposed decoupling may not be 
the hest one. 

Obviously, the optimal paths will depend on the general 
shape of the polygon. For example, in polygons where most 
of the area i s  visible towards the end of the trajectory 
a motion strategy that moves the robot in the visibility 
graph will yield good results. This happens because it is 
reducing the distance to travel up to the point where it is 
more likely to find the object. In contrast, if the majority 
of the visible area lies near the starting point a cornplerely 
greedy algorithm that follows the visibility gradient will 
perform better. In our case, the high level, combinatoric 
layer attempts to find global optimality by forcing a specific 
ordering for the low level, continuous layer. Without this 
ordering, the end result would be a purely greedy algorithm 
that does not consider the amount of area visible in the 
future. For this reason, we think our algorithm presents a 
good trade-off. 
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