
Proceedings of 2004 IEEElRSJ International Conlarence on
Intelligent Robots and Syatems
Sootember 20 - October 2,2004, Sendai, Japan

Planning Expected-time Optimal Paths for
Searching Known Environments
Alejandro Smniento Rafael Mumeta-Cid Seth Hutchinson

Beckman Institute for Advanced Science and Technology
University of Illinois at Urbana-Champaign

Urbana Illinois, USA
Email: {asarmien, murrieta, seth) @uiuc.edu

Abshacf-In this paper we address the problem of finding
time optimal search paths in known environments. In par-
ticular, the task is to search a known envimnment for an
object whore unknown loeation is characterized by a known
pmbabilit). density function (pdf). With this formulation, the
time required to find the object is a random variable induced
by the choice of search path together mth the pdf for the
object’s loeation. The optimization problem Is to find the path
that yields the minimum expected value of the time required
to find the object.

We propose B two layxed approach. Our algorithm firsl
determines an efficient ordering of visiting regions in a
decomposition that is defined by critical curves that are
related lo the aspect graph of the space to be searched. It
then generates locally optimal trajectories within each of these
regions to construct a complete continuous path. We have
implemented this algorilhm and present results.

I. INTROIIUCTION

In this paper, we address the problem of finding an
object in a polygonal environment as quickly as possible on
average with a mobile robot that can sense the environment
continuously. This is the optimization problem of minimiz-
ing the expected value of time required to find the object,
where time is a random variable defined by a search path
together with the probability density function associated to
the object’s location. The possible applications have a wide
range, from finding a specific piece of art in a museum to
search and rescue of injured people inside a building.

In [IO], we presented a discrete, combinatoric version of
this problem. In that work, we abstracted the problem to
one of finding a path in a graph whose nodes represented
sensing locations (guards). Associated to each node is the
probability of sensing the object from the corresponding lo-
cation, and associated to each arc is a cost that corresponds
to the time required to move between the corresponding
sensing locations. We showed that for this problem, a
trajectory that minimizes the distance traveled may not
minimize the expected value of the time to find the object.

In [1 I], we extended our approach to the more general
case of searching in a polygon. In this case, we used
a visibility-based decomposition of the polygon to again
convert the problem into a combinatoric one. The visibility
regions were used to calculate the probability of seeing an
object for the first time from panicular sensing locations,
which were again chosen from a predefined set. Paths were
constructed from arcs in a reduced visibility graph. We
showed the problem to be NP-hard by reduction.

The work that we present here is qualitatively different
from our previous efforts. In our past work, all robot paths
consisted of piecewise linear segments between preselected
sensor locations. In this paper, we find optirnal continuous
paths by using methods derived from the Calculus of Vari-
ations, and there is no predefined set of sensing locations
for the given task. Our approach exploits a decomposition
of the space to be searched using critical curves that are
related to the aspect graph of the space. We use the utility
function described in 1111 to find an efficient order of
visiting these regions, and the Calculus of Variations to
find locally optimal trajectories within each one of them.

11. PRORIXM DEFINITION

As in [I l l , we define the the random variable T to be
the time required to find the object, i.e., the time until the
object enters the robot’s field of view for the first time. We
are interested in finding a continuous path S that minimizes
the expected value of this random vaiable along that path,
E[TIS]. This trajectory will, on average, find the object as
quickly as possible.

We model the robot as a single point with an infinite
range, omni-directional sensor. We do not impose any con-
straints on the movement of the robot other than constant
speed.

111. PKOPOSliD APPROACH FOR CONTINUOUS SENSiNC

As mentioned before, in this paper we are dealing with
continuous sensing in a continuous space. We assume that
the robot is sensing the environment as it moves. This
contrasts with sensing only at specific locations, as was
described in [ll].

We say that a continuous trajectory covers 1121 a poly-
gon P if each point p t P is visible from some point along
the trajectory. If the trajectory is to minimize the distance
traveled, then the problem is called the Shortest Watchman
Tour problem [I]. This is not exactly our problem since, as
we showed in [lo], a trajectory that minimizes the distance
traveled may not minimize the expected value of the time
to find an object along it.

The Shortest Watchman Tour problem is also related to
the Art Gallery problem IS] in that they both deal with
visibility in polygons. However, the Art Gallery problem
seeks to minimize the number of point guards needed

872 0-7803-8463-6/0U$20.00 e2004 IEEE

mailto:uiuc.edu

to cover a polygon and is not concerned at all with the
distances between them.

Any trajectory that covers a simple (without holes)
polygon must visit each subset of the polygon that is
hounded by the aspect graph lines associated to non-convex
vertices of the polygon. An aspect graph for a polygon [41
consists of a set of line segments generated by features of
the polygon. We only use the line segments generated by
non-convex vertices of the polygon. These line segments
are simply extensions of the incident edges on non-convex
vertices, as shown in Fig. I with grey lines.

We call the area bounded by these aspect graph lines the
comer guard regiuru. These regions have the characteristic
that any point inside them can see “both sides” of their
associated non-convex vertices. Therefore. a continuous
trajectory that covers a simple polygon needs to have at
least one point inside the region associated to “outlying”
non-convex vertices (non-convex vertices in polygon ears),
like A and C in the figure. Since these points need to
he connected with a continuous path, a covering trajectory
will cross all the other comer guard regions, like the one
associated to vertex B.

Pig. I . ASPLTI graph 1im1 aswiafed IO rrflcx vcnices A, B and C

Since a continuous trajectory needs to visit all the comer
guard regions, it is important to decide in which order they
are visited. The problem can be abstracted to finding an
specific order of visiting nodes in a graph that minimizes
the expected value of time to find an object. In 1111 we
showed that a version of this problem is NP-hard.

For this reason, to generate continuous trajectories we
propose an approach with two layers that solve specific
parts of the problem. The high level, cumbinaturic layer
attempts to find a “suitable” order of visiting comer guard
regions without taking into account how exactly the robot
is to move between them. The low level, corrrinuous layer
takes an ordering from the upper level and tries to find how
to best visit the given regions.

This decoupling makes the problem simpler to address,
but does so at the expense of global optimality. To preselve
global optimality, an algorithm would need to consider how
the robot is moving while generating the best ordering
of visiting comer guard regions. Calculating the globally
optimal robot motions is not an easy task because the
trajectory can make “sudden” direction changes within
a single region (as will he described in section V) and
also because these motions must make a compromise
between the distance traveled (time) and the amount of the
environment (probability) that is visible at different points
along the complete trajectory (to minimize the overall
expected value).

In the remainder of the paper, we describe our two-
level approach. In section IV we describe how optimal
continuous paths are generated for moving from one region
to another. In section V we address the problem of choosing
a good ordering for the regions. Finally, results are given
in section VI.

IV. PLANNING OPTIMAL CONTINUOUS
PATHS WITHIN REGIONS

Once an ordering of visiting comer guard regions is
established by the combinatoric layer, it is still necessary
to generate a continuous trajectory between them.

Given that we want to generate a continuous path, it is
necessary to compute the expected value of time E[TIS]
along a trajectory S (as the robot moves). The form of the
equation to compute E[TIS] changes in different regions of
the polygon. For this reason, we have analyzed the simplest
case - within one region - and concatenated these sections
for a complete trajectory. Note that with this approach,
there are no guarantees as to whether locally optimal sub-
paths will lead to a globally optimal solution.

A. Coritiriuous Sensing in rhe Base Case
The simplest case for a continuous sensing robot is that

shown in Fig. 2. In this case, the robot has to move around
a non-convex vertex (comer) to explore the unseen area A’.
For now, we assume that this is the only unseen polrion of
the environment.

I:i& 2. Sensing Ihc area behind a comer

As the robot follows any given trajectory S, it will
sense new portions of the environment. The rate at which
new environment is seen determines the expected value of
the time required to find the object along that route. In
particular, consider the following definition of expectation
for a non-negative random variable from [SI,

E[TIS] = l m P (T > t.) dt. (1)

Note that this alternate definition expresses an expectation
of time, even though the variable t is not explicit on the
right-hand side of the equation.

The particular route S followed by the robot determines
the probability of not having seen the object at any given
time, P(T > t) . We require that this probability decreases
monotonically, which is equivalent to considering only
trajectories along which the size of the unseen region
decreases monotonically. As shown in Fig. 2, the remaining

873

section of the environment to he explored A’ decreases
monotonically if and only if the angle from the comer to
the robot increases monotonically. For this reason, it is
natural to express the trajectory in polar coordinates with
the origin at the comer.

B. Expected Value of Time Along any Trajectory
In the simple environment shown in Fig. 3 the robot’s

trajectory is expressed as a function in polar coordinates
with the origin on the non-convex vertex. We assume that
the robot will have a starting position such that its line of
sight will only sweep the horizontal edge E,. As mentioned
before, the expected value of the time to find an object
depends on the area A’ not yet seen hy the robot. Since
we assume infinite sensing range, at any time t the only
important feature of the robot’s position is its angle e(t)
relative to the origin.

pil. 3. me ca;.c ror a UmtinUOUE sensing r o b t

The following analysis is only valid for an axis-parallel
edge El, hut it can be easily adapted to the general case.
Let Qz(t) and Q y be horizontal and vertical distances
from the origin to the point where the robot’s line of ai&t
through the origin intersects El. The area of the unexplored
region A’(t) is

(2) Qy Qz(t) A’(t) = ~

2 ’
As can be seen in Fig. 3,

Q4
Q Y

tan (a(t)) = -

7r
and

a(t) = - - B(t).
2

Since tan (5 - B (t)) = th, we have tan (B (t)) =

A, and (2) can he written as

Qy Q=(t) - QY’ A’(t) = - -
2 2 tan(e(i))

Assuming that the probability density function of the
object’s location over the environment is constant, the
probability of not having seen the object at time t is

Qv2 (3) A‘@) P(T > t) = - =
A 2A tan(B(t))’

where A is the area of the whole environment.

Finally, from (1) and (3) ,

Q dt
2A tan(O(t))’ E[TlS] = p/ ~ (4)

Equation (4) is useful for calculating the expected value
of the time to find an object given a robot trajectory S
expressed as a parametric function O(t). It is interesting to
note that the expression does not directly depend on the
radius r (t) (a consequence of infinite sensing range). In
the next section, we will also use (4) to find the optimal
trajectory S’ by minimizing the value of the integral.

C. Minimization Using Ca/cu/us of Variations
The Calculus of Variations I31 is a mathematical tool

employed to find stationary values (usually a minimum or
a maximum) of integrals of the form

where x and y are the independent and dependent variables
respectively.

The integral in (5) has a stationaty value if and only if
the Euler-Lagrange equation is satisfied,

In our case, it is not useful to apply the prototypical
Euler-Lagrange equation directly to expression (4) for
two reasons, First, T and 0 are expressed as parametric
equations, instead of one as a function of the other.
This is not really a problem, because expressions very
similar to (6) can be derived to accommodate the case of
parametric functions [2]. The real problem is that (4) does
not impose any constraints on the parametric equations
describing the robot motion. The optimal trajectoly without
any constraints would he one where B increases infinitely
fast.

To address both of these problems, we introduce the
constraint that the robot moves with constant (unitary)
speed. To do this, we express its velocity vector as a
generalized motion [7] in a basis where one component U,
is radial frorn the origin and the other Us is perpendicular,
as shown in Fig. 4. Both U, and Us are unit vectors that
define an orthogonal basis. In this basis, the robot’s velocity
(in polar coordinates) can he described as

v = i .U, + r 0 U@.

Fig. 4. Gcnedizcd motion of a panicle moving along pa!h S

The constraint that the robot speed is constant can be

(7)

expressed a5

I I v I I = i2 + r2 e* = I.

874

In practice, this means that the maximal speed the robot
can achieve is constant regardless of the direction of
motion. The velocity components need to “add up” to a
constant value. This contrasts with other systems where
each dimension can be controlled independently, like a
plotter.

Starting with equation (7). it is possible to express the
differential of time as a function of a differential of 0.
This will allow us to rewrite the parameuic equation as
a function in which 8 and r are the independent and
dependent variables respectively,

I = - (W + p 02
(&)* (&)”

U

Pig. 5 . Family or CUNCS dcpcndinp on initial conditions

(dt)’ = (r” +r’) (de)’;

d t = (r” + T ’) ~ d0; (8)

where r’ = g. Substituting (8) into (41, we obtain an
expression for the expected value of time to find an object
where the robot’s trajectory S is expressed as r being a
function of 0,

To find stationary values of (9), we use (6) with x = 8,

y = T and F = (r” + r’) ’. After simplification,
this yields the following second order non-linear differen-
tial equation,

This equation describes the route to move around a non-
convex vertex (comer) to search the area on the other side
optimally (according to the expected value of time).

D. Numen’cal htegratiort

We solved equation (10) numerically using an adaptive
step-size Runge-Kutta method [61. Since this equation is
of second order, any numeric approach that integrates it
as an initial value problem requires two initial conditions:
r(&) and +(e;) . We know the staring point r(8i) and the
integration range (S i , @I), hut we do not impose any other
constraints on the trajectories other than unitary speed.
Therefore, the possible solutions are a family of curves that
depends on the value of the first derivative at the beginning
of the integration range TI(&). These are shown in Fig. 5.

Most of the possible solutions diverge long before they
reach the end of the integration range. In fact, it is evident
from (10) that the solution is not defined there (at 01 = 4).
However, it is possible to get arbitrarily close, and to do so,
the first derivative at the end of the integration range must
he such that the trajectory approaches the target manifold
(the venical line in Fig. 3) perpendicularly. This translates
to stating that r‘(9f) = 0. In fact, the transversality

condition for the Euler-Lagrange equation establishes that,
in order to satisfy the equation and obtain a minimum,
the solution function must he perpendicular to the target
manifold at t = t f 191.

This observation allows us to integrate equation (10) as
a two point honndaq value problem, where we specify
the position at the beginning of the integration range
T (&) and the first derivative at the end ~ ‘ (8 ,) . For this,
we coupled the Runge-KuUa algorithm with a globally
convergent Newton-Raphson method 161.

Fig. 6 shows the trajectories generated for six different
starting positions in solid black lines. To save space, the
figure only shows the upper right portion of an environment
similar to that in Fig. 3 (the units on the axes are arbitrary).

Fig. 6. Oplimal trajenories ohtaiumcd through numnieal inlepaion

v. CHOOSING A N ORDERING OF REGIONS

To cover a simple polygon, it is sufficient that a trajec-
tory visits at least one point inside each comer guard region
(as defined in section III) associated to reflex vertices of
the polygon. The high level, comhinatoric layer attempts
to find an ordering for the robot to visit these corner guard
regions such that the expected value of the time to find an
object in the environment is reduced.

To find a suitable ordering, we defined a point guard
inside each comer guard region and used the approach
we presented in I l l] for sensing at specific locations.
Potentially, any point in the closure of a comer guard

075

region can he used as a point guard; we decided to place
them very close to the non-convex vertices.

Once point guards have been defined, it is smightfor-
ward to calculate the visibility regions and distances re-
quired for the proposed utility function of [I 11. In the end,
the algorithm yields an ordering for visiting comer guard
regions (associated to non-convex vertices) that attempts to
reduce the expected value of the time to find an object.

Once an ordering has been established, the lower level,
continuous layer uses the.sequence of non-convex vertices
to perform locally optimal motions around each of them,
thus generating a complete trajectory thaI covers the polyg-
onal environment.

We believe that this trajectory reduces the expected
value of the time to find an object, but we know that any
trajectory generated in this fashion will not be globally
optimal in the general case. There are several reasons
for this, the most obvious being that any partition of the
problem into locally optimal portions does not guarantee
global optimality (Bellman‘s principle of optimality does
not apply). Another reason is that our generated trajectories
will only change direction abruptly (non-smwthly) in
aspect graph lines and points where the edge being seen
through a reflex venex changes, for example, when the
robot has finished seeing an ear of the polygon and must
reverse direction. However, an optimal trajectory might
need to change direction in other points of the environment
as well, as described in the next section.

A. Direcriun Changes within a Region

An optimal trajectory may change direction at points
that are not part of our set of critical curves, that is, it
may change direction abruptly in the interior of a region.
Consider the polygon in Fig. 7(a). If the robot starts at
P, it is clear that any trajectory that covers the polygon
must reach the vertical lines at non-convex vertices A and
B belonging to the aspect graph. If such a trajectory is
to be optimal, then it is not necessary to cross said lines
because the complete side region would already he visible
and nothing is to be gained by going further.

Also, since both non-convex vertices are “above” the
starting position and the robot is already at the lower limit
of the polygon, the optimal trajectory will not move verti-
cally. The robot cannot go ”downward” because it would
leave the polygon, and it is not useful to move “upward
because no new regions would ever he visible moving this
way. Any new point seen in a diagonal trajectory could be
seen sooner by traveling a shoner distance on the horizontal
component of said trajectory. Also, the two closest aspect
graph lines that must be visited are vertical, therefore,
moving venically does not decrease the distance to either
of them.

Since moving vertically does not help either of the two
variables involved in the expected value search, distance
(time) and visible area (probability), we can conclude that
the optimal trajectory will not have a vertical component.

Having established that the optimal trajectory for this
panicular problem will only move horizontally, let us

consider the case of horizontal trajectories starting at P
that cover the whole polygon.

A trajectory that covers the polygon and only moves
horizontally needs to reverse direction ar least once. If it
only changes direction once, then there are only 2 cases,
it must go from P to B then to A (PBA) or go from P to
A then to B (PAB).

It is also possible that a trajectory changes direction
twice, for example, it may go from P towards (but not
reaching) B, reverse once to go to A then reverse again
to reach B. In this case, there is a range of possible
trajectories depending on how far they go the first time
they move towards B.

The graph in Fig. 8(a) tallies the expected value of
the time to find an object in the environment depicted
in Fig. 7(a) when following a horizontal trajectory that
makes only two direction reversals. The horizontal axis in
Fig. 8(a) represents the point at which the first direction
change is made. The negative domain means that the robot
s tms moving towards A instead of B.

I

(a)

(b)

Fig. 8. E n p c l d valuc or i~me YE. direction change point

The discontinuity at the origin is the result of the
initial direction of motion. Since the trajectories must make
exactly two direction changes, if the robot initially moves
right towards R, it will reverse direction and reach .4 first.
On the other hand, if it starts moving left for a while, it
will change direction and reach B first.

Notice that if the first direction change happens very
close to the origio or very close to A or B, the expected
value is practically the same as either of the two trajectories
with only one change (shown in the graph as the horizontal
lines). It is also interesting to note that the hest case (lowest
expected value) for these trajectories does not happen at the

876

Fig. 7. Two similar polygonal mYironmCnB

boundary - equivalent to the P B A and PAB trajectories.
The optimal trajectory, therefore, must have at least two
direction changes (it may have more).

Now consider the polygon in Fig. 7(h). It is very
similar to (a), except for one vertex that was raised so
that the relative area of the left side of the polygon is
larger. Analogous to the previous case, Fig. 8(b) shows
the expected value of the time to find an object following
trajectories with two direction changes in this new polygon.
It can be seen that trajectory P A B is now better than
trajectory PBA hut neither of them is the best one in this
group. Also, it is evident that the hest point to make the
direction change (global minimum) has shifted tn the left.

The &raphs in Fig. 8 show that, for routes that make
twro direction changes, the hest trajectory (the one u,ith
the lowest expected value of time) moves towards hut not
reaches B, then reverses direction to go to A and then
finally B. The hest point at which the first direction change
is made does not correspond to any point in the aspect
graph of the polygon. Furlhermore, this point shifted to the
left when the area of the left portion of the environment
was increased.

These examples do not show what the optimal trajectory
is, however, they do show that it must have at least
two direction changes and that the points at which these
changes are made do not necessarily correspond to aspect
graph lines or points where the edge being seen through a
reflex vertex changes. In conclusion, an optimal trajectory
may change direction abruptly inside our defined regions,
not just at the boundary on our defined critical curves.

VI. SIMULATION RESULTS

This section presents an example of how our proposed
two layered approach can be used to generate a continuons
trajectory that covers a simple polygon with the goal of
reducing the expected value of the time to find an object
along that trajectory.

Fig. 9 shows a simple polygon and a staring position
P (near the bottom). We placed a guard G, close to every
non-convex vertex and used the algorithm proposed in [I 11

to find an efficient ordering for visiting the guard locations.
This algorithm returns a complete ordering (all guards are
included once).

However, the guard set can he redundant and since sens-
ing is done continuously the polygon may be completely
covered before all guards are "visited". In consequence,
some guards late in the ordering may not need to be visited.
This is the case of guards Gq and G5 in the figure.

Once an ordering has been established, the trajectory
is generated piecewise according to which guard is to
he visited. The robot does not actually travel touwds
the guard, but rather it goes around its associated non-
convex vertex in a locally optimal trajectory, as described
in section IV. A locally optimal portion of the complete
path is generated for every edge seen through the current
non-convex vertex. For example, in Fig. 10 as the robot
moves from the starling position P, in the shaded region,
the section of the environment that will he visible through
guard G1 is bounded by edge E l , that is, as the robot
moves, its line of sight through the comer will "sweep"
edge El until it reaches edge Ez. At this point, the shape
of the current suh-path changes as it is now edge E2 that
will he swept. When the trajectory reaches one of the
aspect graph lines associated to the non-convex vertex of
the current guard, the process starts over with the next
guard in the ordering.

Fig. 11 shows all the trajectory pieces (A through F)
generated for the polygon and the guard they correspond

877

Fig. IO. Edgcr visible lhmugh guard 61

to. There may he occasions, such as portion E, where the
locally optimal path would leave the polygon. In this case,
the trajectory is saturated and made to follow the polygon
boundary. Note that the endpoints of each trajectory portion
correspond to critical events, which occur at aspect graph
lines or when there is a transition between the edges that
are currently been seen through the comer (guard).

Fig. I I . Locally Optimal lrajectoria far thc guards that generated ihcm

Fig. 12 shows the final trajectory for that polygon.
It is important to remark that this mjectory attempts
to minimize the expected value of the time to find an
object, not the distance traveled. The zig-zag motion is
not necessarily bad because a good trajectory must find
a compromise between advancing to the next guard and
sensing a larger portion of the environment as soon as
possible.

~ i g . 12. ne li rial I ~ ~ S C L O ~ a poiygon

For this particular example, the expected value of the
time along the shown trajectory is 115.3. This contrasts
with the expected value along the straight line segments
shown in Fig. 9 (GI * Gz + G3). which tums out to he
136.9.

VII. DISCUSSION AND CONCLUSIONS
We addressed the problem of continuous sensing for

expected value search in simple polygons. This problem
involves the generation of a motion strategy that minimizes
the expected value of the time to find an object.

We presented a two layered algorithm that determines
an efficient ordering of visiting regions and then generates
locally optimal suh-paths to construct a complete trajectory.

The final trajectory is not globally optimal for two rea-
sons. First, die discrete version of the problem is NP-hard
and we proposed a tractable algorithm. Second, we chose
to decouple the task of finding an ordering and moving
between regions (hounded by aspect graph limes and points
where the edge being seen through a reflex vertex changes).
However, these lines are not the only places where an
optimal trajectory may change direction, as mentioned in
section V-A showing our proposed decoupling may not be
the hest one.

Obviously, the optimal paths will depend on the general
shape of the polygon. For example, in polygons where most
of the area i s visible towards the end of the trajectory
a motion strategy that moves the robot in the visibility
graph will yield good results. This happens because it is
reducing the distance to travel up to the point where it is
more likely to find the object. In contrast, if the majority
of the visible area lies near the starting point a cornplerely
greedy algorithm that follows the visibility gradient will
perform better. In our case, the high level, combinatoric
layer attempts to find global optimality by forcing a specific
ordering for the low level, continuous layer. Without this
ordering, the end result would be a purely greedy algorithm
that does not consider the amount of area visible in the
future. For this reason, we think our algorithm presents a
good trade-off.

REI’ERENCES
[I] Chin, W.P. and S. Ntalos. ‘Uptimum N‘atchmun Roules:‘Inlomw-

!ion PmceSsing L a w $, Vol. 28. pp. 39-44. 1988.
121 Fox, C.. An Inlmdunion IO the C o l c h $ of Voriarions, Dover

Publications, Inc. 1987.
131 Gclfand I.M. and S.V. Fomin, Colcuius ofV~riufioiis, Rentice Hall.

1963.
141 Gigus. z. and H. M a l k ‘Computing the Aspecl Graph for Line

Drawings of l’olyhedral Objma”in P m . IEEE CmJ on Computer
Vsion ami Panem Recogtiition 1998.

1.51 O‘Rourkc, J . , Arl G o I l e ~ Theorem mid Algorithms, Oxford Uni-
versity Press, 1987.

161 h s s . W.H. el 01. Numeric01 Recipes in C : The An of ScimnXc
Corlroirtiri~. Cambridge Universitv Press. 1993.

171 Res&, < and U. Lialliday. Pl&s, lohn W i l q and Sons, Inc.
,077 ll,,.

181 KOSS. S.M., Inrmducfion 10 Pmbobilie omi Sroririics for Engirieerr
and Scienrisu. W~lcy. 1987.

191 Sage. A.P. and C.C. While, Opiimirm System Conrmi. Rcnticc]<all,
1911.

1101 Smicn io , A., K. Murricla and S.A. Hutchinson. ‘A Sualcpy for
Swchinp an Object with a Mobile Robot:‘ in P m . I m Cmd on
Adwnced Roborics 2W3

Siraiegy for Rapidly Finding an Object in a I’olygonal WorW in
Pme IEEEXSJ Bit. Cmf on iweiligerli Robots orld Sy~rrms 2003.

1121 Shermcr, T.C., ‘Rccenl R ~ s u l l ~ in An Gdleries.”Pmc. ofrhe IEEE.
Vol. 80, issue 9. Septmha 1992

1111 s m i r s o , A.. K. ~ u r r i ~ t a and SA. ~utchinson, ‘nn Efficim

878

