
Proceedings of the 2003 IEEHRSJ 
Inn. Conference on Intelligent Robots and Systems 
Las Vegas. Nevada. October 2003 

Dynamic Feature Point Detection for Visual Servoing Using 
Multiresolution Critical-Point Filters 

Brad Chambers 
Dept. of Electrical & Computer Engineering 
University of Illinois at Urbana-Champaign 

Urbana, Illinois 61801-2918 
USA 

Nicholas Gans 
Dept. of Electrical & Computer Engineering 
University of Illinois at Urbana-Champaign 

Urbana, Illinois 61801-2918 
USA 

Abslmct-In this paper we examine the selection of fea- 
ture points for visual servoing methods using multiresolution 
critical-point P ten  (CPF). With the increased number of 
feature points made available to us using CPF, we hope 
to improve the robustness of the system by allowing the 
algorithm to automatically detert usable feature points on 
virtually any object without any a priori knowledge of the 
object. Furthermore, the algorithm will revise these points at 
each iteration to account for events that may have otherwise 
caused feature points to be lost and led lo the visual YNU 

method ending in failure. 

I. INTRODUCTION 
Visual =NO control is the use of image data in the 

closed loop control of a robot end-effector’s position 
or velocity. There are three general approaches to vi- 
sual servo control: Image-Based Visual Servo (IBVS), 
Position-Based Visual Servo (PBVS) [11-[4], and hybrid 
methods that incorporate techniques from both IBVS and 
PBVS [5]-[9]. 

One fundamental requirement that all these methods 
share is the need for accurate detection of features in an 
image, and in the case of IBVS, the hybrid methods, and 
some PBVS methods, the need to match features in two 
different images. This is a considerably difficult task, and 
has typically required fabricated solutions such as white 
feature points on a black background or the use of prede- 
termined pattems. This rules out the successful tracking of 
objects that are not known a priori or specifically selected. 

In this paper, we incorporate a recent method for object 
tracking and image matching to the problem of visual 
servo control. This method, multiresolution critical-point 
filters (CPp) [lo], [l I] utilizes several typical metrics such 
as pixel intensity and position to match features in two 
images. CPF has recently been used as a means of real- 
time object tracking by tracking points in the interior of an 
object and then recovering the shape of the object with a 
“painting” scheme [12], 1131. This allows for the tracking 
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of an object with no prior knowledge of its shape, color, 
or texture. 

In Section II we provide details on the use of CPF. 
Section IU will outline our method of selecting the best 
feature points for use in a visual servo method. Finally, 
we will present experimental results in Section N. 

11. IMAGE MATCHING 
CPF was first introduced by Shinagawa [lo], [ll].  The 

filters provide a means of accurately matching the critical 
points of two images. It is necessary that the height and 
width of the image be equal and that they be a power 
of two. Once the filters are applied, an energy equation 
based on pixel intensity, location, and edge value will be 
computed to judge the quality of a potential mapping. The 
mapping that minimizes this energy will be kept. 

A. The multiresolution critical-point filters 
We compute a multiresolution hierarchy of size 2‘* 

2‘( 1 5 1 5 n )  images, where n is the depth of the hierarchy. 
Four submappings are calculated for each image at each 
level of the hierarchy. The submappings represent the 
maximum, minimum and saddle points of each image 
determined by ( l t (4) .  We define p&) and I$?) as 
the point at ( i , j )  in the source and destination images 
respectively, where 1 is the level of the hierarchy and m 
is the subimage computed. 

‘ J )  
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The multiresolution hierarchy is computed for both 
the source and destination images. An example of the 
subimages computed is shown in Fig. 1, where a tan chess 
piece is shown on a purple background. Each subimage 
can he computed in O(n2) time, where n is the width of 
the image at the next higher (finer) level. 

Points are mapped in a top down approach (coarsest to 
finest level) by computing and comparing the energy of 
candidate points located in the inherited quadrilateral of 
the destination image as shown in Fig. 2. The inherited 
quadrilateral is described in further detail in [lo]. Except 
for in cases where the inherited quadrilateral must be 
expanded to insure a bijective matching of points, as 
described in [IO], image matching can be performed for 
each level in O(n2) time as well. 

B. Computing energy of mapping 
The energy is a function of pixel intensity, hue, and sat- 

uration, distance between pixels in submappings, distance 
between neighboring mappings, and value related to the 
edge. The intensity term is based on the multiresolution 
hierarchy described before. If we call P(~, , ]  the point 
to map and q(,,g) the point to test within the inherited 
quadrilateral, then the "intensity" distance between the 
two points is computed using (5) for each subimage and 
at each level of the hierarchy. 

Fig. 1 .  Original image, minimum, first saddle point. maximum. and 
second saddle point (clockwise from upper left) computed at level 5 of 
the h i e m h y  (original image is 256 * 256) 
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Fig. 2. Recursive mapping of poinrs 

( 5 )  
2 

CI = (P( i , j )  -q(i ,; j))  

We further define the energy to include a hue and 
saturation term as presented in [ l l ]  by the equation 

which is also computed at each level and for each 
submapping, where the hue, sawation, and intensity are 
defined by the following equations as in [14] 

t ( ~  - G )  + ( R  - B )  

( ( R  - c)2 + ( R  - B)(G - B ) )  
H =cos-' 

(8) 
R + G + B  

3 
I =  

3 t min(R,G,B) 
I 

s =  1 -  

In (7)-(9), Q G, and B represent the red, green, and 
blue components of the pixel. 



Together the total energy related to pixel intensity, hue, 
and saturation becomes 

c = CI + IYCHS, (10) 

where w is a constant (0.25 in our experiments). 
Do is computed for each submapping at each level of the 

hierarchy, where x( i ; j )  is the point with the lowest energy 
computed for the previous submapping as shown in (11). 
In this way, the mapping that keeps the energy of all of 
the submappings low is obtained. 

DO = llq(ir,j() -x(i,j)ll (11) 

For the first submapping, m = 0, 

x(;,~) = 2*f('xm)(parent(i, j ) ) + m o d ,  (12) 

where f('J'"(parent(i, j)) is the mapped location (from 
source to destination image) of the parent of pixel (i, j ) ,  
and 

(13) i i  
p a r 4 i , i )  = (l~l,l~1). 

Additionally, mod is a corrective term. If (i, j )  is the 
upper left pixel of its parent, then will be in the 
upper left of its parent. This is used as an initial guess for 
the pixel location for the first submapping to be computed. 
D1 compares the distance between the current pixel and 

its candidate mapped position with the distance between 
neighboring pixels in the source image and their already 
mapped position in the destination image. DI is given by 

where q(p,y,) is the location of the mapped point in the 
destination image corresponding to p( i ,~ , j~ t ) ,  which are the 
neighbors of P ( ; , ~ ) .  It is also computed at each level and 
for each submapping to ensure a smooth mapping. 
Do and Dl combine to contribute a distance component, 

D, to the total energy of the mapping by the equation 

D=q(Do+Di), (15) 
where q = 1 * 0.01, in order to put more emphasis on 

position at liner levels of resolution. 
In order for the mapping to be more accurate, we 

use two edge detection filters (Sobel filters) for level n 
( h e s t  resolution) of the hierarchy: these two filters create 
horizontal and vertical edge detection images, edgeh and 
edge, respectively, in both the source and destination 
images. For the other levels of the hierarchy, we only 
average the value of the pixels from the filter at level n, 
giving 

for the horizontal filter at level I (1 5 I < n), and 
similarly for the vertical filter. Then, the "edge" distance 
between the two points at each level of the hierarchy is 

(17) 

which is the total energy related to the edge. 
With the above elements, we can define the total energy 

of the mapping to he 

A C + D + B E ,  (18) 

are constants (10 and 100 respectively 
in our experiments). Again, we want to find the mapping 
of a pixel that provides a minimum value to this energy 
function. 

The algorithm has been shown to track the object during 
translation, rotation, and scaling of either the object or 
the camera (as long as the object or a sufficient number 
of feature points remain in the image). If the object 
rotates on an axis other than the viewing axis, matching 
is complicated because its shape and color may change. 

111. DYNAMIC SELECTION OF FEATURE 
POINTS 

where I and 

We hope to define the object in such a way that our 
feature points are consistently mapped to the correct point. 
Furthermore, we want to ensure that these points are 
informative to the visual servo method and lead to a robust 
system. 

Points along the border are chosen to increase the edge 
term of the energy function, which are likely to be seen 
in both the source and destination images and are well 
defined, as opposed to an arbitrary point in the interior of 
the object or in the background. These points will fill a 
buffer of goal points from which the feature points will 
be selected for our visual servoing algorithms. Figs. 3, 4, 
and 5 show the border defined in the source image on 
the left and the points mapped in the destination image 
on the right for three test cases. Figs. 6, 7, and 8 show 
actual position of the original points denoted by "x" and 
the mapped points denoted by "+." Here the ten best points 
are shown on the left and all points are shown on the right. 
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At each iteration of the visual servoing method, when 
a new image is captured, all points along the border are 
mapped again. At this point we follow a nave strategy 
of feature point selection. We sort through mapped points 
and select the ten that most minimize the energy function 
for use as feature points. We have seen that these lowest 
energy points usually correspond to the points that have 
the least error in pixel placement. We record the index 
of the ten best points and use this index to retrieve the 
corresponding point in the goal buffer. In this way we 
can compute the difference between the goal and current 
position. 

More complex methods could be devised to select the 
best feature points. The idea, however, is that with an 
accurate matching of points from source to destination 
image, almost any point could be chosen at each iteration 
of the visual servoing method. Here we leave increased 
accuracy in the mapping and the more complex feature 
point selection schemes to future work. 

IV. EXPERIMENTAL RESULTS 
To demonstrate the abilities of the CPF in defining 

feature points, we will look at three cases: a “small” 
translation of 20 pixels, a “large” translation of 70 pixels, 
and a rotation of 15 degrees clockwise about the center of 
the image. We first capture a single image, the source 
image, and then alter that image in software to more 
accurately produce the subsequent images, the destination 
images, with their appropriate translation or rotation. This 
process does not compromise the validity of our matching 
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Fig. 3. GUI output of mapping with horizontal translation of 20 pixels 
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Fig. 5. 
center of image 

GUI output of mapping with ” i o n  of 15 degrees about the 

method because all major components of the energy 
function which determine the mappings (intensity, color, 
position, and edge) are preserved. 

With our known translations and rotations, we can 
estimate the location of each of the feature points stored 
in our goal buffer. The displacement is computed using 
the homogeneous transformation 

cos0 -sin0 dx 
R =  sine case (1% [ 0 0 4.1. 

where 0 equals the angle of rotation about the z-axis 
(15 degrees in our experiment) and dx and dy equal the 
pixel offset in the x and y directions respectively. The 
predicted location of each point is then given by 

P’ = RP, (20) 
These estimations are not used anywhere in the match- 

ing algorithm only in our evaluation of the mapped points. 
Fig, 9 does not give a clear look at the tradeoff between 

average error in feature point placement and the number 
of feature points tracked. The ermr reaches a minimum 
at about 15 feature points. Nevertheless, with a small 
translation such as this, the error is reasonably small for 
any number of feature points. 

Fig. 10 shows the average error for the larger transla- 
tion. This plot shows a dramatic increase in the average 

Fig. 6. Points mapped along border of object with horizontal translation 
of 20 pixels Fig. 4. GUI output of mapping with horjzontal mnslation of 70 pixels 
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Fig. 7. Points mapped along border of object with horizontal translation 
of 70 pixels 

Fig. 8. Points mapped dong border of object with rotation of I5 degrees 
about center of image 

ermr at about 10 feature points. This is due to the fact that 
one or more low energy mappings that correspond to large 
errors in feature point location occurred early in the feature 
point selection process. The average error then begins to 
decrease and approach a steady state as the number of 
feature points is increased. The plot suggests that a large 
number of feature points may be desirable to help account 
for the occasional "bad mapping. 

In Fig. 11, we again laok at the average error of pixel 
placement as we increase the number of feature points 

E. 'T 

Fig. 9. 
banslation of 20 pixels 

Average mor vs. number of feature points with horizontal 1 
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Fig. IO. 
translation of 70 pixels 

Average ermr vs. number of feature points with horizontal 

I .. 

Fig. 11. Average error vs. number of feature points with rowion of 15 
d e w  about center of image 

used. In this example, we rotate the chess piece clockwise 
by 15 degrees about the center of the image. The average 
ermr again jumps to a larger value at about 15 feature 
points and tben begins to level off. This pixel error is 
smaller than in the large translation, but still not quite as 
small as we may like. It also leads to the conclusion that 
more feature points is better. 

V. CONCLUSION AND FUTURE WORK 
We have shown a new method of feature point definition 

based on the method set fortb by Y. Sbinagawa [lo], [111 
and J. Durand [121, [13]. The results of ow experiments 
are promising. The most useful concept is the algorithm's 
ability to dynamically select feature points. For example, 
the servoing routines can lose feature points to a degree 
during execution without failure. The algorithm will con- 
tinue to find good points even when some information of 
the object is lost due to specularities, occlusions, or part 
of the object leaving the image. 



A troubling phenomenon of IBVS is that of camera 
retreat. Since the image trajectories will follow a straight 
line to their goal configuration, a change of scale must 
take place to turn the normally elliptical trajectories into 
straight lines. This scaling is achieved by the control law 
pulling the camera back along its z-axis. In the event of a 
large camera retreat, it is possible for the robot to extend to 
its joint l i t s  during visual servoing, resulting in failure. 
Another scenario is that pullback can seriously affect the 
camera, causing the focus to be incorrect and adversely 
affecting the system, possibly resulting in failure. Because 
feature points are constantly being redefined, camera re- 
treat in IBVS may be reduced. 

A complete foxward mapping of points used along with 
an inverse mapping to refine point placement could be 
used to ensure greater accuracy of our feature points. 
Currently, a complete mapping of two 256*256 images 
using this technique takes about 18 seconds [I l l .  This 
would, however, lead to almost arbitraty feature point 
selection and lessen the constraints imposed by the object 
being used in the visual servoing algorithms. 

In the event that it is not desirable to map every point 
in the image, our current method could be enhanced with 
the use of predicted parameters [12]. The centroid and 
area of the object being tracked is computed at each 
iteration. Polynomial interpolation is then used to predict 
these parameters in the subsequent image. This method 
has been shown to work well with translation, scaling and 
rotations of the object or camera about the optical axis. 

With the definition of the object boundary, major and 
minor second moments can be computed to implement a 
visual servoing method that uses lines instead of feature 
points. We could also use epipolar geometly to recover 
rotation and translation matrices directly from the image 
matching algorithm. 

Finally, we hope to explore multiresolution visual servo 
control based off of the multiresolution filters where a 
coarse motion can be computed from the coarse matching 
of feature points in the multiresolutional hierarchy. The 
motion can then be computed at subsequently finer levels 
of the hierarchy as the feature point error is brought to zero 
at each level. This could prove to be a fast and powerful 
tool for feature point identification and servo control. 
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