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Abslmcf-In this paper we consider the problem of automat- 
ically determining whether regions in an outdoor environment 
can be traversed by a mobile robot. We propose a two-level 
classifier that uses data from a single color image to make 
this determination. At  the low level, we have implemented three 
classifien based on color histograms, dimtional filters and local 
binary psttems. The outputs of these low level dsssifien are 
combined using a voting scheme that weights the results of 
eacb classifier using an estimate of its error probability. We 
present results from a large number of trials using a database 
of representative images acquired in red outdoor environments. 

I .  INTRODUCTION 
In recent years there has been rapid progress in the area 

of vision-based navigation by mobile robots (see [l] for a 
review of recent research). Much of this research is concerned 
with the two problems of localization and mapping, although 
there are visual servoing approaches that use an implicit map 
of the environment [21, [3]. The problem of map construction 
requires the ability to distinguish landmarks in the environment 
[4]. [5]. When the dual problems of localization and mapping 
are treated simultaneously (the SLAM problem), a variely of 
techniques can be applied, all of which require identification of 
some sort of landmarks [6], [7]. In nearly all cases, recognized 
landmarks are used in conjunction with a global (possibly 
constructed incrementally) map. 

None of these methods deal with determining whether an 
object is traversable or not. This problem is much different 
from the problems of localization or mapping, since it is 
inherently a local problem, and since landmark recognition 
is not required. In a sense, determining traversability can 
be treated as a binary classification problem, and this is the 
approach we take in the present paper. 

Past work in determining traversability has focused largely 
on the geometric aspects of the objects that populate the 
robot's immediate workspace 181, [9], [IO], [Ill,  [12J For 
example, objects larger than some predetermined size are 
typically considered to be obstacles. LIDAR or stereo vision 
are particularly useful for providing this kind of data. However, 
a purely geometric approach fails to exploit the fact that 
in natural environments many objects are not rigid, and can 
therefore be traversed by most robots. The bushes in Figure 

1 are an example of this; since the bushes are flexible, many 
robots could easily roll over them. Since traversability is not 
purely a geometric property of an object, techniques based 

Fig. 1. An example of a traversable environment 

on contours [I31 or general shape I141 are not well suited 
to the problem. Because of this pose consistency methods like 
those based on [15] seemed to be of minimal use. Additionally, 
aspect graph based techniques [16] l i e  1171 are not applicable 
because of the deformable nature of the traversable obstacles. 
This implies appearance based methods [IS] do not yield good 
results either. 

In this paper, we deal with the problem of determining 
a classification scheme that relies on data from a single 
color image to classify regions of the environment as either 
traversable or non-traversable. We use three single-feature 
classifiers together with a weighted voting scheme to make 
the classification. In particular, we investigate the use of color 
histograms, directional filters, and local binary pattems to 
derive three classifiers. The results of these are combined by a 
probabilistic voting classifier that weights the results of each 
of the individual elements by its correct classification rate. 

The remainder of the paper is organized as follows. In 
Section 2, we present the three individual classifiers. Then 
in Section 3 we describe how the outputs of these classifiers 
are combined to reach a single classification. Experimental 
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results on a large data set of images of natural environments 
are presented in Section IV. 

11. FEATURES 
For this exercise only manually chosen features were eval- 

uated. Manually chosen features, which are less rigid than 
learned features, were chosen because of the desire to extend 
this research to have a semi-supervised classification technique 
with a variable number of output classes. The classification 
technique was trained in an arid mountainous outdoor envi- 
ronment encompassing the high desert to woodland transition. 
The benefit to training a certain environment is that the number 
of classes and images in the database can be minimized, thus 
keeping computational time down because smaller databases 
can be searched more quickly. If the robot needs to automati- 
cally select the correct database for the given environment, the 
technique proposed in [I91 that use the earth movers distance 
of an entire image to figure out the type of environment can be 
implemented. Conversely, if the type of environment is known 
ahead of time, the environment’s database can be preloaded. 

Feature extractors can be categorized using either global or 
local methods. Global methods are methods that work on the 
image as a whole. Global methods are sensitive to noise and 
fluctuations in scale, lighting conditions, pose, and rotation; 
all of which are prevalent in outdoor environments. In general 
most global methods were avoided in this research. However, 
the global method classifying color is sensitive only to lighting 
conditions and therefore was deemed reliable enough for use 
for classification. 

In contrast, local methods only analyze a small region of 
the image. Local methods were used to analyze the image for 
underlying features (basic components of the objects shape). 
Texture analysis techniques were used to find such features. 
However, before texture analysis techniques could be used, the 
images needed to be segmented into tiles of texture pattems. 
This was accomplished by using a key texture selection 
technique that found a certain subset of tiles best representing 
the image as a whole. In [201 the color histogram is computed 
locally along with the LBP texture, but [21] suggests that the 
color histogram need not be local, so global histograms were 
used. 

I J  Global Techniques: Color Histogram 

Fig. 2. Example of Differing Colon 

Color is a natural choice as an identifiable and characteristic 
feature, as seen in Figure 2. Color histogram comparison 
between images is done by first converting the image from 
RGB space to Hue Saturation Value (HSV) space. This trans- 
formation is done because HSV is more robust to changes in 
lighting conditions than RGB. Once the image color space 

is converted, a 3 dimensional histogram is calculated for 
each component (H, S, V). This allows the unknown object’s 
histogram to be compared with the known histograms in the 
class database. This comparison is done using the Histogram 
Intersection technique [21], which has been shown to be in- 
variant to translation, rotation, and scale. It also performs well 
under pose changes and occlusion. The Histogram Intersection 
technique is based on calculating the intersection between 
two different histograms. Where the intersections between 
histograms Model ( M )  and Reference ( I )  is defined as: 

with j equal to the number of bins in the histogram. This result 
represents the number of pixels that are shared between the 
model and reference image. The results can then be normalized 
by dividing the above equation by: 

Cmin(Mi, I j )  
C M i  

H ( I ,  M )  = 

which can he thought of as the area of the image. If the areas 
of the reference image and model image are the same, or: 

EM; = I ,  (3) 

then this method becomes a representation of the city-block 
metric or I-norm method of calculating the distance between 
two elements. Because of the motivation for images to be 
the same scale and to obtain a distance measurement, for the 
implementation in this project all reference images are scaled 
to the model histogram size. Then the class associated with 
the maximum intersection value is assigned to the test image. 

Fig. 3. Example of inter-class differences 

2) Local Techniques: Texfure Analysis 
The key to a successful classificatiou system relies on a 
good texture analysis technique. This is primarily due to the 
variations between similar objects as can be seen in Figure 3. 

Even though variations commonly occur in parameters such 
as shape and scale changes, the textures withim the shape stay 
relatively unchanged. A significant portion of the available 
literature on texture analysis uses various forms of wavelet 
filters, most notably, the popular Gabor Filter technique. 
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However, as suggested in [22] most of these wavelet routines 
perform poorly. In addition to poor performance, wavelet 
based techniques are computationally expensive and, therefore, 
were not used in this exercise. 

In  the analysis of texture, two major approaches were taken. 
The first was to apply a set of image directional filters to the 

the fundamental properties of an image texture. These patterns 
are generated from the local neighborhoods surrounding pixels 
[251 as seen in Figure 5. Beyond being algorithmically simple, 
the other benefits of this approach are that it is orientation 
independent and invariant to any monotonic transformation in 
the image intensity value. First to calculate the LBP value, the 

extracted windows. The second employed a technique called 
Local Binary Patterns (LBP) [23]. 

Directional filters operate in a specified direction by perform- 
ing an approximation of the derivative in that direction. While 
vertical and horizontal filters are popular and a natural part 
of some filter techniques, such as the Sobel edge detector, 
they are perpendicular to each other. Therefore, many features 
that may be present at other angles are not detected by 
these techniques. Directional filters can provide quite a hit 
of information about the images if enough directions are 
chosen, thus it has become common [24] to use a grouping 
of directional filters at different angles to analyze and classify 
images. The difficulty with choosing the number of filters or 
more precisely the angle between filters comes down to time, 
more filters require more computational time and give more 
information. Because the eventual goal is to create a real time 
system the number filters was chosen to he either 16 segments 
or 11.25 degrees of separation. As will be seen this number 
produced satisfactory results. 

For this research a simple 3x3 Sobel kernel was used. The 
angular direction of the filter was computed from two basic 
directional filters (vertical and horizontal): 

Dhoriz =-[ -2 0 2 1  Due: = [ ! ] (4) 

Then these matrices were then multiplied by the angle 6' and 
added together. So that, 

(5) 

Figure 4 shows the directional filter output. The mean and 
standard deviation for each of the filter outputs is then joined 
together to create a point represented in a 16x2, or 32, 
dimensional space. To analyze the data Principle Component 
Analysis (PCA) was exploited to project the data to three 
dimensions. Then classification was performed using the K- 
nearest neighbor method. 

Local Binary Patterns 
The motivation for implementing two forms of texture analysis 
was to attempt to obtain techniques that operated in signifi- 
cantly different ways in order to compare the techniques. Also, 
the hope was that the data they shared would be orthogonal 
or non-overlapping in nature and thus complementary when 
used together in a classification basis system. 

As mentioned a significant portion of the current literature 
for texture analysis focuses on wavelet based techniques, along 
with Markov Random Fields. However, recently a new method 
was developed (231 claiming a higher correct match rate. The 
general premise of LBP is that certain local pattems make up 

Directional Filter 
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Fig. 5.  : The sampling neighborhood far various si= of the LBP Operator 

texture operator, T, is defined in the local neighborhood of an 
image by the joint distribution, t ( g ) ,  of the intensity values of 
P, where P > 1, image pixels: 

T =  t(gc,go, .... gp-I)  (6) 

Where ge is defined as the value of the center pixel of the 
neighborhood. 

Accordingly, the g,,. for p = O...P - 1, represent the values 
of the equally space pixels that form a circular set of radius 
R, R > 0, around the center pixel. The difficulty of R and P 
not coinciding with the descritized image, or the pixel spacing, 
is dealt with by interpolating values between pixels to extract 
the values of points in P that fall between them. To achieve 
invariance to the scaling of the pixel's intensity value, only 
the signs of the differences between values are considered. 
Therefore, the equation for the texture, T, is modified to be: 

2- cz M g o  - gc), s(g1 - gc), ... ,s(gp-1 - 9 3 )  (7) 
Where the function s(x) is defined as: 

s(x) = { 0,x  1 , x 2 0  < 0 

Now the number of uniform patterns, LBPgkz (where rid2 
is an indication that this is variant of the LBP method that 
the finds uniform patterns) is computed by: 

Where U, the uniformity measure, is the number of spatial 
transitions in binary value, switches in signs, in the image 
and is defined as: 

When the value of U is at most two the pattern is considered 
uniform. Then a histogram is composed for each of the pixels 
in the image. The histogram is created from the set 0, ..P + 1 
of bins, where the P + 1 bin corresponds the the '"others" 
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Fig. 4. Results of 8 segments directional filters 

bin and the uniform patterns. Therefore the number of bins 
for the method is P + 2. To measure the differences between 
textures through the histograms is used on each of the model 
histograms, a nonparametric test to avoid assumptions about 
feature distributions . This is accomplished by use of the G- 
statistic or log likelihood ratio. Given a test sample S and a 
model hf the log likelihood is calculated as: 

B 

L(S,M) = cs , , logMb (11) 
b=l  

This ratio is calculated for each of the models in the training 
set. Then the sample is assigned to the class of the model 
value, M ,  with the maximum ratio value with the sample. 

U’ 
Fig. 6. Image with corresponding Mask 

3) Tamre Selection: Because the texture techniques re- 
quire small regions of the image a method was developed, 
which separates an image into tiles of a specified size. To 
accomplish this a mask, Figure 6, was used that outlined the 
segmented object to compare the areas occupied by sample 
data for each of the tiles. If the total occupied area was less 
than 90%. the tile was thrown away unless there were not 
enough tiles that satisfied the condition. The remaining tiles 
were then passed to the LBP technique to generate a histogram 
for each tile. For this method the LBP parameters P=8, R = 1; 
P = 16, R = 2; and P = 24, R = 3 were concatenated 
into one histogram. These concatenated histograms were then 
used to project points into a multidimensional space of 54 
dimensions. With all the tiles in the image represented in 
this space, k-means clustering [26] was used to isolate the 
tiles that represented distinct clusters. K-means clustering 
segments a data space by assuming a Gaussian distribution 
of points. By specifying a number of distributions, or clusters, 
the technique chooses random mean values for each of these 
clusters and through several iterations refines the mean values 
of distribution by classifying all points relative to the clusters 
and then recalculating the mean of the points within the same 

class. This is done until some heuristic is satisfied. The most 
commonly used heuristic is convergence to stable values. Once 
the center of cluster is found, the point in the space that is 
closest to the mean value is selected as a key texture. K-means 
was chosen because it is simple and the number of clusters can 
be specified as an input parameter. This property was desired 
because of the want to limit the clusters to a small sct of the 
total number of tiles. 

111. CLASSIFICATION 

Once the features are extracted, they are passed to the 
classifier. The primary purpose of this classifier is to create 
the decision boundary that both minimizes the error while not 
over specializing the decision region. Over specialization may 
cause the ermr for the training set may be small but, because 
the region fits so tightly around the data, any new data may 
be misclassified. Poor classification may also result from an 
inaccurate decision region based on an inadequate training set. 

Because of the high accuracy of each of the individual 
methods, a complicated classification algorithm was not used 
to meld the results. Instead a probabilistic voting algorithm 
was used in which each of the three methods cast its vote 
for the class it thought it belonged to. Each of the votes was 
then weighted by an individual score that was based on the 
percent of its correct classification of the test data. Then a 
percentage of the total votes cast verses the votes per class 
was computed and the class with the highest vote percentage, 
or probability, was assigned to the test image. A benefit to this 
approach, although not technically complicated, is that it gives 
a certainty measure. If all the individual classifiers agree then 
it is very likely that the chosen class is correct. However, if 
they alI disagree and one class wins by a very small margin, 
then caution should be taken in accepting the results as valid. 

IV. RESULTS 
To tackle the problem of distinguishing negotiable and 

non-negotiable objects this work adds an additional level of 
intelligence to the navigation hierarchy. This level acts as a 
classifier for objects detected in the robot’s path. Once an 
object is segmented from the image, it is relatively easy to 
implement a system to classify the object and determine and 
its possible hindrances for use in a path planning technique. 

The process of identifying objects is done in four stages. 
The first stage retrieves the image. The images come from 
still images generated by a consumer level digital camera 
with a resolution of 1280x960 pixels. A human observer, 
wandering through the outdoor environment, acquires images 
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of relevant objects. For this system a total of eleven classes 
of objects were used to test the system. They were: arrow 
brush, sage brush, rabbit brush, yucca plant, decorative tree 1, 
decorative tree 2, juniper tree, pine tree, prickly pear cactus, 
russian thistle, and medium rocks. For each class the number 
of images per class is listed in Table I. The second stage 

TABLE I 
Imagc Dotobase 

I ClassI/ 1 1 2  1 3 / 4 1  5 1 6 1 7 1 8 1 Y 1 1 0 1 1 1 ]  
[ # I m a g e s ~ [ 1 3 ~ 1 3 [ 9 ( 8 ~ 1 0 ~ 9 ~ 7 ~ 3 ~ 4 ~ 2  1 4  I 

segments the retrieved images into likely objects. As automatic 
segmentation was not addressed in this paper, the images were 
segmented manually. Manual segmentation was done by fist 
by cropping the total image to the size of the object of interest. 
Then a border around the object was used to identify a mask 
image defining the region of interest. The third stage uses 
feature extraction techniques to analyze the segmented objects. 
The fourth, and final stage takes the data from stage 3 and 
classifies the unknown objects. Figure 7 illustrates the flow of 
a complete system for this approach. 

Lbrl 

Fig. 7. Row chart of method development 

For analysis, the aforementioned methods for classification 
were first tested separately to obtain individual results. Then 
the methods were coupled together and used to form the 
complete object recognition system. The system was then 
tested in the same manner as the individual methods to verify 
the results of the system against the individual methods. In 
each case half of each of the images per class were used 
to train and the other half were used to test. Each test was 
iterated ten times to venfy the stahility and precision of the 
system. In addition, for several of the tests other parameters, 

l i e  tile size and the number of neighbors to use for K-nearest 
neighbor technique, were changed in order to ascertain the 
optimal parameters for each component. 

A. Individual Elemenfs 

I) Key Feature Window Selection: Because this method 
relies on the LBP algorithm to select which windows of the 
tiled image canied the most information, refer to the section 
of the results for the LBP method for a thorough analysis. To 
get an idea of the key texture selection performance, tests were 
done purely on a visual basis. A fraction of the whole image 
database was passed to the technique and then compared to 
the whole image. This comparison was the designer's simple 
evaluation of how well the selected textures represented the 
image in question. It is important for the reader to understand 
that only a crude approximation of the performance could be 
done this way. Figure 8 illustrates an example of tiles chosen 
for some the images. While for some classes it is difficult to 

Fig. 8. Key Tdes 
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see how each texture differs from the others within its class, 
there are two in particular, class 2 and class 3, for which, 
the texture variance is clearly discernible. It is important that 
the key texture selection method choose the textures that 
represent the most disparate tiles witbin the image. From 
visual inspection, which is by no means a robust analysis, this 
algorithm works adequately. The results of  the above window 
extraction method were then fed into the texture analysis 
techniques. 

Class 10 

Class I I  

Fig. 9. 
classes using 16 directional filters far a tile size of €Ilk80 pixels. 

Visualization by FCA of Directional F i l m  distribution between 

2)  Directional Filter: The first step in testing the directional 
filter method was to visualize a small subset of the data giving 
a general idea of the technique’s relative effectiveness. Since 
the filtering technique uses the mean and standard deviation 
of each directional filtered image, each image is represented 
in a 32 hyper dimensional space. In order to visualize this 
data, F‘CA was used to project from the 32 dimensional space 
to a 3 dimensional space for visualization purposes. Figure 
9 illustrates the results for the directional filter. Figure 9 also 
shows that each class is relatively well defined, in that there is 
good clustering within class and minimal class overlap. This 
can be seen in the sample of the results in Tables II, IU. 
These results were obtained by performing ten iterations of 
the classification system. The classification consisted running 
the k-nearest neighbor algorithm with differing values of k. 
Also, the tile size was varied to compare results as a function 
of the tile area. 

3) LBP: Like the Directional Filter technique, the data 
was first visualized, Figure 10. While the separation is not 
ideal, there does seem to be some distinction between classes. 
However, because the LBP method used Log-Liketihood as 
its distance metric, the figure does not represent the actual 
distance between classes and therefore should he regarded with 
some skepticism. To acquire actual results, the tiles from the 
texture selection method were passed to the LBP method for 
comparison. Each of the testing tiles was compared against 
all of the training tiles for each image and each class by 
calculating a distance measure. Then the class of the training 

1 14.93 17.21 0.00 0.00 0.00 0.00 
3 0.00 0.00 0.00 0.00 48.30 0.00 
1 11.86 13.02 17.21 0.00 0.00 0.00 
3 8.74 8.84 8.05 0.00 0.00 0.00 

TABLE I1 
Direcrional Filter Mean Values (%)Tile Size vs. C h s  

I II / 1 6 1 3 2 1  64 1 96 I 128 I 160 I 
I Clas I I1 K=l I 66.25 I 89.20 I 96.67 I 100.00 I 100.00 I 100.00 I 

sample that corresponded to the smallest distance measure 
between it and the test tile was then selected to as the most 
likely class. The test was performed 10 times for several 
different tile sizes. The results were then scrutinized to find 
the best tile size. Below, Tables IV and V depict a portion of 
the results according to the tile size along with the iterations 
averages and standard deviation per class. 

4) Color Histogram: Unlike the two texture approaches 
discussed above, the color histogram did not use the results 
of the texNre selection technique. Instead, it calculated the 
histogram information from the entire image. To test the 
classification accuracy of the Color Histogram technique, the 



TABLE V 
LBP Srondard Dmiation Values (I) l i le Size YS. Class 

11 16 [ 32 I 64 I % I I28 I 160 I Avg. 1 I 

TABLE VI 
Color Himgram Mean Values (%) Nwnber of Binr YS. Class 

I Avg. 11 2.35 I 71.56 I 73.26 I 74.24 I 73.64 I 74.62 I( 

Fig. IO. LBP Histogram for each class. Represented in 3D subspace. 

TABLE IV 
LBP Mean Valucs (I) lile Sire vs. Class 

I 1 1  16 I 32 [ 64 1 96 I 128 I 160 I Avg. I 

1 Avg. )I 39.80 159.79 I 82.54.1 90.99 I 94.14 I 95.68 I 

entire data set was split, as mentioned before, into two roughly 
equal sets of images per class: training and testing. When 
an odd number of images existed the training set contained 
the additional image. The testing was done by comparing the 
test image's known class to the class found by the Histogram 
Intersection method. Ten iterations were mn on the method 
to verify the results. To obtain the optimal histogram size, 
several different bin sizes were tested. To obtain the optimal 
histogram size, several different bin sizes were tested. Some 
of the results for the tests are Listed in Tables VI and W. 

color histogram were varied from each individual test with 
the same parameters to ascertain how the complete system 
performed.) 

B. Complete System 
The complete system was run with the same parameters as 

the other tests; the tile size, number of nearest neighbors to use 
for the directional filter, and the size of the color histogram 
color histogram were varied from each individual test with 
the same parameters to ascertain how the complete system 
performed.) Even with the simple voting algorithm most of 
the results show perfect classification. Because, at first, the 
system seemed to be performing too well, several of the tests 
were monitored to verify that the results were correct. 

v. CONCLUSION 

Each individual method faired remarkably well in the tests. 
The Histogram Intersection method average peaked with a 
76.67% correct classification rate. Illumination changes and 
inherent color variations within each class are the probable 
culprits for misclassificatione in this technique. Still, with such 
a high success rate, the Color Intersection method proved 
to be effective in outdoor environment classification. The 
Directional Filters' performance provided the most surprising 
results with a 96.72% maximum average performance for all 
the classes. Like the Directional Filters, the LBP algorithm, 

TABLE VI1 
Color H i m g r a m  Srnndnrd Dwiorion Values (I) Number of Binr vs. Class 

11 2 I 8 I 16 I 32 I 48 I M 11 Avg. I I 

I Avg. I] 21.96 I 18.11 1 10.58 I 10.59 I 12.66 I 13.03 1) 
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classified remarkably well with a peak 93.62% classification 
accuracy. To further enhance the LBP technique the full exteni 
of the algorithm needs to be implemented. Currently the VAR 
function is not used to scale the LBP function. This should be 
done in future applications as its addition, as suggested in [lo]; 
produces a more accurate and robust method. Also, techniques 
to obtain scale independent results need to be investigated. 

With near perfect scores for many of the methods results, 
the system out-performs each of the individual components. In 
fact only class 8, pine tree, did not obtain perfect classification. 
If further tests are performed with the system, additional 
and more complicated techniques for grouping the methods 
together should be investigated. 

The database as used contains four classes containing four 
or fewer images. For this case of the class with only two 
images, one image is used for training and the other is used for 
testing. This extremely small set of testing and training images 
is inadequate for a comprehensive test. Because of dataset 
limitations further testing should be done with an extended 
image database. Additionally, more classes need to be added 
to analyze how the breadth of classes affects the classification 
system. 

Once these above mentioned objectives are mef the next 
logical objective is to implement an automatic segmentation 
routine. It may be possible to combine both the classification 
and segmentation into one step. 
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