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Sensor-Based Navigation in 
Cluttered Environments 

Ricardo Swain-Oropeza, Michel Devy , Seth Hutchinson 

Abstmct- In this paper, we present a new approach to 
sensor-based navigation in cluttered environments. In our 
system, tasks are specified in terms of visual goals, and 
obstacles are detected by a laser range finder. To effect 
task performance, we introduce a new gain scheduling visual 
servo controller. Our approach uses a diagonal gain matrix 
whose entries are adjusted during execution according to 
one of several proposed gain schedules. Obstacle avoidance 
is achieved by allowing the detected obstacles to generate 
artificial repulsive potential fields, which alter the motion of 
the mobile robot base. Since this motion affects the vision- 
based control, it is compensated by corresponding camera 
motions. Finally, we combine the obstacle avoiding and vi- 
sual servo components of the system so that visual servo 
tasks can be performed as obstacles are avoided. We illus- 
trate our approach with both simulations and real experi- 
ments using our experimental platform HihreZ is .  

Keywords- Sensor-based mobile robotics, visual servoing 

I. INTRODUCTION 

N recent years, much progress has been made in the area I of sensor-based robotics. In particular, visual servo con- 
trol has seen increasing popularity as a method for spec- 
ifying sensor-based robotic tasks [ll], [15]. However, in 
spite of its growing popularity, there are still many tasks 
for which visual servo control is not well suited. Obstacle 
avoidance is one such task, since avoiding obstacles requires 
recognizing obstacles, and the recognition task is not yet 
readily solved in real time by computer vision systems. In 
contrast, obstacles can be easily recognized using real time 
range sensors (e.g., sonar or laser range finders). For these 
reasons, we have chosen to  investigate a multi-sensor ap- 
proach, in which tasks specified in terms of visual goals 
are performed using visual servo control techniques, while 
obstacles are detected using a laser range finder. The re- 
sulting system is able to perform fairly complex navigation 
tasks in a structured but cluttered environment. 

Our multi-sensor approach requires that inputs from the 
vision system and the laser range finder be combined to  
determine control inputs for the robot. This has led us to 
develop a new visual servo controller, which we have inte- 
grated with an obstacle avoidance system. In particular, in 
Section I1 we describe a new, gain scheduling visual servo 
control system. The system a diagonal gain matrix whose 
entries are adjusted during execution according to  one of 
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several proposed gain schedules. 
In Section 111, we describe how obstacle avoidance is ef- 

fected, using a potential field method that alters the mo- 
tion of the mobile robot based on data from the laser range 
finder. Since motion of the robot base will induce a camera 
motion, it must be compensated. Our approach for provid- 
ing this compensation is also described in Section 111. 

In Section IV we combine the results of Sections I1 and 
111, yielding a system that can avoid obstacles while per- 
forming visual servo tasks. Our approach uses a convex 
combination of inputs provided by the obstacle avoidance 
and visual servo systems, with the emphasis gradually 
shifting between obstacle avoidance and visual servo per- 
formance as the execution progresses. 

Besides numerous simulation experiments, we have im- 
plemented our approach on our robot, H i b r e B i s  (shown in 
Figure 8), a nonholonomic robot equipped with a SICK 
laser range finder and a camera mounted at the end effec- 
tor of a six degree of freedom arm. At present, we use the 
arm to effect a pan/tilt mechanism for the camera (i.e., we 
do not fully use the six degrees of freedom). We present 
experimental results in Section V. 

The work that we describe in this paper is built on our 
past research. In [32], [33], we have presented how visual 
servoing formalism can be used to execute high-level com- 
mands like Follow a wall or Turn around a corner. In this 
work, a planner was integrated with a visual servo system, 
and the planner determined the sequence of visual servo 
tasks to be performed, as well as trajectories to avoid ob- 
stacles. Later in [34], [35], [6] we presented some prelimi- 
nary results for avoiding obstacles during visual servoing. 

11. A GAIN SCHEDULING VISUAL SERVO CONTROLLER 
In this section we provide a brief review of visual servo 

control, and then present our new gain scheduling ap- 
proach. 

A .  A Brief Review of Visual Servoing 
With image-based visual servo control, tasks are defined 

in terms of features that can be extracted from and tracked 
in an image sequence [ll], [15]. The key tool in this ap- 
proach is the interaction matrix, also called the image Ja- 
cobian matrix, which relates changes in the image to the 
velocity of the moving camera. In particular, if s denotes 
the features that are extracted from the image, then the 
interaction matrix satisfies 

i = L ~ T ,  (1) 
in which i represents the variation of the features in the 
image, and T, is the camera kinematic screw. In our exper- 
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iments we use only point features, (i.e., the image features 
are points in the image, which are projections of 3D points 
in the world), and thus LT describes the relationships be- 
tween point velocities in the image and the camera motion. 
In this case, LT is a function of both s and the depth of the 
scene points relative to the camera. The interaction ma- 
trix also depends on the camera parameters (which must 
be determined during camera calibration), but several eval- 
uations have shown that a coarse approximation to these 
parameters is sufficient. 

For so called eye-in-hand systems, the camera is mounted 
on a robot arm, which may in turn be mounted on a mobile 
platform. If we denote by J the manipulator Jacobian for 
the robot, and by q the joint variables for the robot, then 
the relationship between the joint velocities and the image 
feature velocities is given by 

We can use this result to perform robotic tasks. We 
define the classical visual task function [ll] as the error 
vector e 

e = ~ ( 5 ; )  - S* (3) 
in which T denotes the camera position in the environment, 
s(F) is the value of the visual features currently observed by 
the camera, and s* denotz the desired value for the feature 
vector. We choose to  impose an exponential decrease on 
the error [ll], which leads to e = -A e, with a scalar value 
for the gain A. Combining this constraint with equations 
(2), (3) we obtain the following result: 

q = - A  (LT J ) +  (s@) - s*) . (4) 

The dimension of the error vector e depends on the num- 
ber of features, and for most applications, the matrix prod- 
uct (LT J )  is not a square matrix. In our previous work [32], 
we have explored two possible solutions to this problem: we 
have used the pseudo-inverse, (LT J ) + ,  as in (4), and we 
have used the SVD method to solve the corresponding lin- 
ear system (shown in (6) below). We have found the latter 
approach to be more reliable. 

As mentioned above, L is a function of both the fea- 
ture vector, s, and of the depth of the corresponding scene 
points. Thus, it is necessary to estimate the depth of the 
scene points in order to compute the interaction matrix. 
There are several possible alternatives to directly estimat- 
ing depth, and a good review of these can be found in [7]. 
A fairly popular approach is to  use the value z* (i.e., the 
depth of the scene points when the goal is achieved) for 
the depth. Further, it is sometimes beneficial to compute 
the interaction matrix off-line. To this end, the value s* 
is sometimes used instead of s, allowing the off-line com- 
putation of L, since s* is constant. Figure 1 illustrates 
these choices. In the figure on the left, s and the actual 
depth value are used, while in the rightmost figure, S* and 
the value z* (i.e,, the depth of the scene points when the 
god is achieved) are used. This approximation to LT (i.e., 
using the values s* and z') affects the convergence, and 

the trajectory of the feature points in the image, increas- 
ing the risk that the features will exit the field of view. 
Therefore, this approximation is useful only when the re- 
quired feature motion is small, i.e., when the features are 
initially near to their goal configuration. A second example 
is shown in Figure 2 for our mobile robot executing a visual 
servo task, computing L using z* and s'. In this case, the 
features leave the image during execution. 

Fig. 1. Feature trajectories for two methods of computing L: On the 
left, L is computed using actual depth and s. On the right L is 
computed using desired depth, z* and 5'.  

Fig. 2. The robot motion is illustrated on the left, and the feature 
trajectories in the image are shown on the right, both for the case 
when L is computed using z* and s'. 

B. The New Gain Scheduling Approach 

The choice of X in (4) is crucial for performance. At 
the beginning of the task, X should be chosen rather small 
(less than l), since at this stage of execution the error will 
be large, and a large value of X would lead to undesired 
effects (loss of image features, saturation of the actuators, 
etc.). However, at the end of the task, the error will be very 
small and a large value of X (greater than 1) will be needed 
to generate control values sufficiently large to be executed 
by the robot. Finally, instability problems occur when X 
is chosen far too high. This phenomenon is linked to the 
proportional structure of the control law. For this kind 
of control law, control theory shows that the choice of a 
gain that is too high leads to instability. For these reasons, 
we have chosen to  use an adaptive gain, an approach also 
known as gain scheduling. Gain scheduling has also been 
used by [3], [16]. An alternative approach has been pro- 
posed in [8], in which avoiding problematic configurations 
is posed as a secondary task. 

There are several choices for scheduling the gains, includ- 
ing constant, linear, and exponential (see, e.g., [33] for more 
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detail). We have chosen an exponential schedule, given by 

where 8, y and 6 are other gains that must be chosen, and 
I e ( k )  lmo5 is the maximal value of e in the iteration t The 
performance difference between the schedule in ( 5 )  and a 
linear schedule is illustrated in Figure 3. Figure 3a shows 
visual servo results using a linear schedule for X and Figure 
3b shows results using (5). In each of these, the left figure 
illustrates the motion of the mobile robot, the center figure 
illustrates the feature trajectories in the image, and the 
right figure illustrates the variation of X during the task 
execution. We note that, although the results appear very 
similar, in the linear case the convergence is more rapid, 
with larger motions for the time steps at the beginning of 
the trajectory. 

Fig. 3. (a) Linear schedule for A. (b) Schedule given in (5). 

To avoid some typical problems that arise during visual 
servoing (see, e.g., [7], [36], [lo]) and to  keep features from 
leaving the image, we use a diagonal gain matrix, A, instead 
of the scalar gain given in (5). Thus, (4) becomes 

LT J q = -A (s(P) - s* )  (6) 

in which A = diag(Xi) E RnXn, with n the dimension of 
the error vector. The value of each Xi is chosen using (5), 
with I e ( k )  I,,, replaced by the absolute value of the i th 
component of e. This leads to  the control law 

- (L  J)tA(s(t) - S*), (7) $8 ~ 

in which qua denotes the commanded joint velocities from 
the visual servo system. We use here the superscript vs 
to distinguish between the control provided by visual servo 
and control used for obstacle avoidance (which we discuss 
below, in Section 111). 

The use of matrix A provides more degrees of freedom 
in designing the controller, which allows us to  adapt the 
dynamics of each component e; of e. For example, if s is a 
2-dimensional vector (U v ) ~  representing the coordinates of 
a point in the image, then, imposing a faster decrease for 
v than for U leads to horizontal centering of the features 
before approaching the target. At the beginning of the 
task, the features will be brought to  the horizontal center 
(closer to the desired position in v), reducing the risk of the 
features leaving the image. As will be described in Section 
111, our main interest is to  keep the center of gravity of 
the target in the middle of the image in order to  eliminate 
the possibility of feature loss during the avoiding obstacle 
phase. 

Figure 4 shows experimental results for a diagonal gain 
matrix, using the linear schedule (Figure 4A) and an expo- 
nential schedule (Figure 4B). As mentioned previously, we 

can see that the work area is almost always near the center 
of the image when we use a A matrix (Figure 4). 

I I (b) I 
Fig. 4. (a) Linear schedule for A. (b) Schedule given in (5) for each 

A;. 

Figure 5 shows the results of using our new approach for 
the same task as is illustrated above in Figure 2. Note that 
with the new control scheme the features do not exit the 
field of view and the task is successfully executed. 

Fig. 5. The experiment of Figure 2 under the new control scheme. 

111. AVOIDING OBSTACLES 
Now, let us consider the presence of unforeseen obstacles 

in the scene. Several methods of obstacle avoidance ex- 
ist in the literature, and sensor-based navigation has been 
previously examined by different researchers, using sensors 
such as stereo vision [30], [24], [14], monocular vision using 
the normal flow [9], [30], ultrasonic sensors [17], and laser 
range finders [25]. 

In this paper, we wish to combine vision and range data 
(our system uses a SICK laser range finder) to perform a vi- 
sual servoing task while avoiding obstacles. Our approach 
will be to  construct repulsive potential fields around obsta- 
cles, and to allow these potential fields to affect only the 
motion of the base of the mobile robot. The idea of com- 
bining potential fields with visual servo has been previously 
discussed in [20], [22], and allowing the repulsive field to  
affect only the motion of the mobile robot base has been 
used in [38]. Of course the resulting motion of the base of 
the robot will affect the position of the camera, and these 
effects must be compensated for in order to keep the target 
features within the field of view. 

In our previous research, we have considered three dif- 
ferent approaches to this problem. In [36], the repulsive 
potential fields affect only the base of the robot and no 
compensation is made for the induced camera motion. In 
[34], [35], the base of the robot is controlled by the repul- 
sive forces and a pan/tilt head moves the camera to exactly 

1664 



cancel the effects of this motion in the image. In [37], [6], 
the movement of the pan/tilt head is decoupled from the 
motion of the robot base, allowing obstacle avoidance while 
performing visual servo tasks. 

We will now briefly describe how the camera motion can 
be used to counteract the motion induced by the repulsive 
fields. Then, in Section IV we will describe our approach 
to obstacle avoidance while performing visual servo tasks. 

Since the repulsive forces act only on the base of the 
robot, we partition the control system into two subsys- 
tems: one corresponding to the mobile robot base, and one 
that positions the camera (this could be a pan/tilt head, 
or, as in our case, a camera mounted to the end effector 
of a robot arm). Let g e p  denote the vector of joint ve- 
locities for the robot base, induced by the repulsive fields 
around the obstacles. In our experiments, this potential 
field is generated using the methods described in [17], [HI. 
Let C P  be the vector of joint velocities for the camera 
positioning mechanism, commanded to compensate for the 
motion of the robot base. If we consider, for the moment, 
only the repulsive forces that act on the robot, we can write 
the Jacobian relationship for the system as 

in which Jr is the Jacobian matrix for the base, and J, is 
the Jacobian matrix for the camera positioning mechanism. 
Using this relationship along with (6) we can write 

L J,GTp + L J c C p  = -Ae .  (9) 

We can solve this equation for the velocities a e p  that will 
attempt to satisfy the visual servo goals, in effect canceling 
the effects of the motion of the base 

c p  = - ( L  JC)-l  (A e + L Jpqyp). (10) 

This represents a decoupled system, in which the robot 
base is controlled so that obstacles are avoided, while the 
camera positioning mechanism attempts to achieve visual 
servo goals. If we wish to exactly cancel the effects of the 
motion of the base on the image, then we merely set e = 0, 
eliminating the visual servo component of the control law. 
Note that, in general, the motion allowed by the camera 
positioning mechanism will not be sufficient to perform the 
visual servo task. Therefore, we now turn out attention 
to the problem of combining the obstacle avoidance with 
performing visual servo tasks. 

I v .  AVOIDING OBSTACLES WHILE PERFORMING VISUAL 
SERVO TASKS 

We can view $'", given in (7), as a control that performs 
a visual servo task without regard to obstacles. In contrast, 
qFp, given by (lo), is a control that attempts to  avoid 
obstacles by moving the robot base, while the remaining 
degrees of freedom (i.e., those that are used to position the 
camera) attempt to achieve a visual servo goal. As we have 
mentioned above, the control given in (10) is unlikely to be 

able to accomplish the visual servo task, since the robot 
base occupied solely by obstacle avoiding behavior. 

To combine obstacle avoidance with visual servo task 
performance, we propose to use a convex combination of 
these two controls 

in which 0 < p < 1 determines the relative weighting of 
task performance and obstacle avoidance. 

This formalism essentially creates a virtual potential field 
in which the robot moves. The goal defined in the Carte- 
sian space, is modeled by an attractive potential, the obsta- 
cles by a repulsive one, and the robot follows the gradient 
of the sum of these potentials until it reaches the minimum, 
see Figures 6 and 7. In this paper, the attractive part of 
the potential corresponds to tf", which is generated not 
by the goal in the Cartesian space, but by the goal in the 
image space, using the visual servoing formalism. 

Fig. 6. Combining visual information and repulsive forces 

~~ ~~~~ 

Fig. 7. Potential fields approach 

Clearly, the choice of p has a crucial impact on perfor- 
mance, as it fixes the weight of the visual servoing task 
during the obstacle avoidance behavior. Therefore, p must 
be chosen so that the target features won't be lost because 
of obstacle avoidance. This problem occurs when the er- 
ror, e, between the current and desired features becomes 
too large. Therefore, we have decided to make p depend 
on this error. Since p is a scalar quantity, we will use the 
error for the center of gravity of the target. We propose 
the law 

(12) p = 1 - e - ( " w - ~ ; c )  

where sgc and s7;, represent the current and desired cen- 
ters of gravity of the image feature points (respectively). 
Thus, when sgC - slC is large, p tends to 1, giving a more 
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significant weight to visual servoing, which brings back the 
target in the camera's line of view. This leads to  a decrease 
of the error sgc - s& and therefore of p. Visual servoing is 
then less important and the robot avoids obstacles without 
losing the target. Relation (12) shows that p is less than 
1 by construction; however, it can be zero if sgc = s&. 
But, as visual servoing is perturbed by avoiding obstacles 
movement, it cannot be realized perfectly. So, this problem 
cannot occur during obstacle avoidance. 

Finally, our control law is given by relations (11) and 
(12). This first attempt to  couple vision with US in order to  
realize a specified task, allows us to  perform visual servoing, 
while avoiding obstacles by a potential field method. The 
switch between the two tasks is done via p. When the 
robot is close to an obstacle, the velocities on the wheels 
are modified by the repulsive potential, while the one of 
the arm is still given by the visual servoing. 

V. EXPERIMENTAL RESULTS 
Our algorithms have been completely implemented on 

Unix desktops, and then, integrated under the real-time 
OS VxWorks using a tool for the specification and the im- 
plementation of functional modules in a distributed robot 
architecture named GC"oM [13]. To test our algorithms in 
real-time, we have a simulation system (see Figures 12, 13, 
14). 

A.  The Experimental Testbed: HibreBis 

We have performed several experiments using our mobile 
robot HibreBis, shown in Figure 8. HibreBis is a nonholo- 
nomic mobile robot with two actuated wheels, equipped 
with a six degree of freedom robot arm that holds a cam- 
era. 

Fig. 8. The robot HibreBis. 

In practice, the presence of non holonomic constraints in 
a mechanical system prevents it from following some paths 
[23]. Therefore, the application of visual servoing to  non- 
holonomic mobile robots is not direct. It is for this reason 
that we mount the camera at the end of the robot arm. 
When the whole mechanical system (robot plus arm) is 
considered as a single kinematic chain, it becomes possible 
to fully control the camera motion without being limited 
by the non holonomic constraint of the mobile basis [27]. 

k 
b 

Fig. 9. The mobile robot kinematic model. 

Yql 
Fig. 10. The arm kinematic model. 

The kinematic model of HihreZis and its configuration 
is represented in Figure 9. Even though the robot arm has 
six degrees of freedom, for our experiments we have chosen 
to use the arm as a pan mechanism, as illustrated in Figure 
10. We denote by qil the effective panning velocity of the 
camera, which is effected by the first joint (q1) for large 
motions and by the wrist joints for small motions. We de- 
note by X, and Y, the linear speed of the midpoint of the 
two actuated wheels (which we denote by, C). The angular 
velocity of the mobile base is given by 8,. Finally, &i, &, 
are the speeds of the right and left wheels, respectively. Us- 
ing this notation, we can apply the formalism proposed by 
Samson [29] to express the kinematic model of the system 
as 

- T sin 8, - T sin 8, 0 

2 T 2 T ( ) . (13) - -- 
2DY 2DY 

T T -  -- 
2Dy 2DY I J 

Using the appropriate coordinate frame transformations, 
we can express the kinematic model of the entire system 
(base plus arm) [27] as 

T , = J G  (14) 

in which T, is the camera kinematic screw (expressed 
with respect to  the camera frame), J represents the Ja- 
cobian matrix of the mechanical system, and finally, q = 
(qhi qie qbl)T. We note that J depends on several param- 
eters that must be either dynamically read from encoders 
(X,, Yr, O r ,  e,,), or estimated off line during the arm con- 
figuration. An example Jacobian matrix is given in (15), 
shown in Figure 11. For this case, the camera is horizontal, 
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has fixed elevation (i.e., it cannot translate along its own 
X-axis), and can rotate only about the vertical axis (i.e., 
its X-axis). More details can be found in [28], [32], [37]. 

Thus, for our experimental platform, we write (8) as 

and we write (10) as 

q;::=(LJc)-' ( A e + L J r  [ 1) .  (17) 

To exactly cancel the effect of the robot base motion on 
the image, we set e = 0, and for this system we thus obtain 

B. Simulation Results 
We present now simulation results for several complex 

visual servoing tasks. We define the repulsive potential 
fields as in [14], [17]. This approach has previously been 
implemented on the robots in our lab, and runs in real 
time. A dedicated software module, called AVOID [17], is 
able to give us the linear and angular velocities needed for 
avoiding obstacles. Using these, it is a simple matter to 
express the velocities of the right and left wheels, namely, 
q:,'p" and 4;''. We calculate p as explained above. 

In the first simulation, the goal is to position the camera 
in front of the target while avoiding the obstacles present 
in the scene (Figure 12A). Figure 12B illustrates the per- 
formance of the robot, which avoids the different obstacles 
without losing the target. 

/I 

Fig. 13. Achievement of a visual servoing task with obstacle avoid- 
ance. 

Fig. 14. A more complex task. 

C. Experiments using HiLdre2Bis 

Our first experiment demonstrates the visual servo ap- 
proach described in Section I1 (no obstacle avoidance is 
used in this experiment). The commanded task is Go to 
object. The robot trajectory is illustrated in Figure 15A, 
and the linear and angular speeds of the robot are shown 
in Figure 15B. The initial and final configurations for the 
features in the camera are shown in Figure 16A, and the 
evolution of the feature trajectories is shown in Figure 16B. 
Note that the robot performs the task and the features 

, reach the desired positions. For this experiment, the in- 
teraction matrix, L, was computed using s* and z* as the 
feature and depth values. Thus, for this experiment, it was 
possible to compute L off line. The robot motion is peri- 
odically computed on line by the solution of equation (6). 
As for the linear and angular velocities given by the con- 
trol law (Figure 15B), they do not violate the acceleration 
and speed constraints of our robot, and therefore can be 
applied to Hibre2Bis. 

I I C  I 

Fig. 12. Initial configuration & achievement of a visual servoing task 
with obstacle avoidance. 

A second simulation is illustrated in Figure 13. Again,, 
the robot is able to perform the task while avoiding ob- 
stacles, and, in this case, without being trapped in a local 
minimum that could arise due to the nonconvex obstacle. 
More details regarding this simulation can be found in [6]. 

Figure 14 illustrates a more complex task. Here, the 
robot is commanded to follow a wall, turn around a corner, 

Fig. 15. A) Go to 4 points. 

Our second experiment 

I 

B) Linear & Angular Speeds. 

illustrates obstacle avoidance 
follow a wall, and finally to move to a location in front of a 
target. Several obstacles are present in the workspace, and 
the robot is able to successfully navigate around these ob- 
stacles while performing the appropriate visual servo tasks. 

while performing a visual servo task. For this experi- 
ment, obstacles were detected by a SICK laser range finder 
mounted on the robot with a cycle time of approximately 
25 ms. The data given by the SICK laser range finder is 
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J =  

0 0 0 

-f(sin(e,r) + g c o s ( e p l )  + &) -f(sin(e,r) - cos(epl) - &) a 

$(cos(Q) + E sin(0,r) - &) -b  

-1 

$(cos(ePl) - E sin(6,l) + &) 
r r 

2DY 2DY 
-- - 

0 0 0 

0 0 0 

Fig. 11. An example system Jacobian matrix. 

Fig. 16. Go to an object: A) initial losition. B) Final position. 

Fig. 17. A) First image. B) Final image. 

illustrated in Figure 18. When the robot is far from the tar- 
get, the visual tracker runs at approximately 4Hz (with a 
window size of 50x90 pixels, see Figure 17A) but when the 
robot is closer to the target, the frequency of the tracker 
slows to as low as 2Hz (with the image size of 240x460 pix- 
els, see Figure 17B). Figure 19 shows the execution of the 
visual servoing task with obstacle avoidance in our robot 
HiLreBis. 

VI. CONCLUSIONS 

In this paper, we have presented a new multi-sensor ap- 
proach to  navigation in cluttered environments. We be- 
gan by presenting a new gain scheduling visual servo con- 
trol system. We developed an obstacle avoidance mech- 
anism, and demonstrated how obstacle avoiding motions 
could be compensated by the vision system. We then 
combined these two systems, yielding a system that could 
avoid obstacles while performing visual servo tasks. Fi- 
nally, we presented both simulations and real experiments 
using HiLreBis.  

Fig. 18. Environment given by the SICK 

I -- - 

Fig. 19. Reel-time obstacle avoidance. 

In our future work, we plan to improve our tracking 
method; the integration of a prediction step using Kalman 
filtering will allow us to intelligently modify the size of the 
search window making tracking process faster and more ro- 
bust. We also plan integrate the selection of natural land- 
marks as we proposed in [19], where the landmarks will 
determine the task class that should be performed. 
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