
Proceedings of the 1999 IEEE 
International Conference on Robotics & Automation 

Detroit, Michigan May 1999 

Measurement error estimation for feature tracking 

Kevin Sickels 
knickels@trinity.edu 

Dept. of Enginwring Scieric.o 
Trinity Vriiversitj- 

Sari Antoiiio TS 78212 

Abstract 

Perforwr (Lncc e.% tirrr ut ion f o r  f eotrr r e truckirrg is n 

kilt el lag eri  thy.  hi this p a p  1'; w c d c  r i v  e qimri t it a t %ne 

ture trucker. TIiis ,rri, et /rod  uses tire r w i r l  t s  f i .om tli e 
s U rii  - of- s yir a d -  diflcren ces cor.rel(r t io rr 'in eus~uw co m - 
,rnorrly rrsc:d f o r  feutrim trnckirrg to 
racy (in tlie trna!je plone) of the ,feotii,r.e t i d i % i ! j  remit. 
Jn this way,  featrrrp t r n c k i q  i ~ s . u l t . s  can lie oriau1:tJzed 
and ezploited to n gwuter e2;te.n.t without pdaciiiy wr- 
due confidence in z'rruccw~a.tr r e s d t s  or throwing out 
accurate results. We crryi,e that this interpretation of 
results is more flexible and irsefiil than  s i ~ i n p l y  iisirtg 
a corifidmce ~ineusure on, trucX:ing rrsirlts to accept or 
mjec t  features. For rixuniple: (111 ezterided Kul~wLri f i l -  
tering fmrnework c m  ossirnilute these tr(ickiiiy results 
directly to moni tor  the  rimcer~tainty $11 tlie estimrition 
process f o r  the state of a n  articulated object. 

critical i .S<SUC, if Jentlrrf: trrsckirry rcsIr1t.s ( L I C  to be rrsed 

p'ltial u~:~~l l , racy  of 0 pur~ticular feu- 

1 Introduction 

Estiniatirig the effectiwmess of feature tracking in- 
formation is a very important topic in image process- 
ing today. In correspoiideii(:e-bas~~d object t,racking 
the results from several feature trackers: each tracking 
salient points or edges of an object, are coIribiried to 
track a (possibly articulated) object. [l]. Point track- 
ing for the purpose of coinput,ing image flow requires a 
metric for the confidence in a motion estimate. so that 
estimates from regions of high confidence can be used 
to improve estimates in regions of low confidence [ 2 ] .  
Feature tracking confidence measures haw also bcen 
used in a visual servo control to iiicreaw thcx robust- 
ness of the servo control [3] .  

We characterize t.he accirrucy of a feature tracking 
result by the accuracy of the location cornputcd by the 
feature tracking. This characterization leads to tlie 
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evaluation of the corrfideri.cc of a fwtu r t>  tr;ic:king result 
for i i  itiore general purpose than t,liat 0 1  acccpt,ing or 
rejljccting thc featlire for IISO iii tracliing. \Ye aiialym 
tht? uncertainty iii t h t  trij(:l;iiig l)ro( 
keep track of tho iiiicc!rtainty in tlio estiinatioii pi'occss 
being driven by t 1ic: featiiro tr;icI;ing. 

\]'e begin n-ith ;I rv\-icw of sta1id;irtl f'~~i\tLl~c tl.il('kilig 
inet,liods. Follon-irig this: i\:e tlosc.ril)e o i ~ r  goals wit11 
respcct to  cliaract,eriziiig t,hc spiltit~l cliscriniinatioii of 
features. Tlien n-t' prcwnt a C;aiissian ~ ~ ~ ) ~ ~ l [ ) ~ i i ~ ~ ~ ~ ~ i ( ~ i i  
and describe lion- sufficitn( statistics can lw used t o  
characterize this approsiiiiat ion. Finally. we prrsoiit 
some results froni our inipleniented trackiug system. 

2 Correlation and feature templates 

In coxrelatioil-basetl f(!iltlIlr) t.rackirig. ;I f(1ri.t / in :  t e , rr i -  
p h t e  is used t o  detcct, n feature i i i  an iiiiagc.. X fwtl l ro  
ternplate contains sonic reprcwntation o f  t l i c s  ftwtllrc> 
and is compared against portioiis of an  iiiiagc to locat(, 
t,hat feature in t,lie image. This coinparison utilizcs a 
similarity metric to rate the similarity of t h c b  tmiplatc, 
and the iiriage patch. Thc iinagc: region found to h i  
the most similar to the tcmplatct is usually taken to  
be the 1oca.tion of the featurc. 

The following sections discuss three areas crucial 
to correlation based tracking: the content of this torn- 
plate; the definition and use of  a specific similarity 
metric for tracking. and the definit,ion of corifidencr 
measures on the tratl;iiig rrsults. 

2.1 Template content 
Thc content of tlie t,einplate is iL11 iiriport.ant choice 

in feature tracking. If the teriiplat,e faithfully repro- 
duces the actual iIL>i,car:lilce of thc feature in the iin- 
age, t,racking \\-ill w ) r k  n-ell. However, if a template is 
oversimplified or does not, inatch t,he appearance of a 
fea.ture in the irriagcs due to unmodeled effects, feature 
tracking will pprforin poorly. 
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X teinplate can be generated from I I  ci\noilical view 
of the feature, arid template uiatchiiig cloncl in ii search 
wiridon- centered about the prdictcd position of the 
image. Brunelli and Poggio give a good review of this 
tmhnique in the contest of facial fcbi l t  itrc tracking [4]. 
The maiii problem with this strnightforn-ard approach 
is that the simple template is a 2D entity. and the 
image patch rriay undergo tIansfoi.iriations that the 
template cannot model, such iks rotntion. 

A more complex algorithm that also n-orks in cer- 
tain situations is to use an image patch Froni the pre- 
vious image, talien from the area around the last com- 
pitted position of the feature in tha t  image, for the 
template, Hager [5] uses this approach for visual ser- 
voing. Hager and Belhumeur [6] have also used pre- 
vious t,racking information to  warp this image patch 
before use as a feature template: which increases the 
fiexibilit,y of this approach. 

If object and scene modeling are part of the t,rack- 
ing framr:n-ork, it is possiblo to  creatc t,eniplates from 
this iiiformation. Lopez et al. [7] Iiave a 3D regis- 
trretl testiire of a face as part of their olJject, iiiodel. 
Computer graphics techniques arc: used to render the 
relevant portion of the scene coniplete with sophisti- 
cated texture ma.pping to estimate t,he a.ppeari\nc.e of 
a feature in the image. This image patch is then used 
as a template in the feature tracking portion of the 
syst,eiri. Our mork uses 3D irtoclels for coniples articu- 
lated objects, also in a graphics-based framen-ork [8]; 
to generate feature templates. 

2.2 The SSD similarity metric 

In correlation-based tracking, a similatlity metric is 
used to compare the feature template described aboi-e 
to areas of the image to  locate the feature in the image. 

The standard sum-of-squared-differences (SSD) 
metric for grayscale images is defined as: 

ssqu, I J )  = [T(rn, n)  - I(. + m, 2, + n)]” (1) 
m.nEN 

where T is the template image and I is the input 
image. The location ( U ,  w) represents some location 
in the input image whose content is being compared 
to  the content of the template. Papanikolopoulos [3] 
uses the SSD measure to  generate tracking results that 
are then used for robotic visual servoing experiments. 
Anandan [a] and Singh and Allen [9] use this SSD 
metric for the computation of image flow. 

Often, this measure is not computed for the en- 
tire input image, but only for some search window in 
the input image. Primarily for computational reasons, 

this wst,iictioii also serves as a focus of attention for 
the f w t i w  trackiiig algorithm. Singh a.nd -4llen [9] 
define a fiscd size square search window surrounding 
tlie prcvious locat,ion of the feature. Kosala arid Kak 
[lo] corisider at length the shape and location of the 
search n-intlon. They niodel the scene and conipute a 
spatial probability density function for the location of 
each feature. t,lieri scarch the image area corresponding 
to 8.5% of the probability mass. We use a constant- 
velocity niodel for an articulated object to predict, 3D 
positions for relevant points on the object. Imaging 
niodels are then itsed to project these locations to 
points 011 t,lie image plane. A fixed size rectangular 
search window centered at  these locations is estab- 
lished in tlie input image. See [8] for more details. 

3 Confidence, uncertainty estimation, 
and spatial uncertainty 

It lias been noted [2]  tha,t popular siinilarity meti- 
sures oft,cn lead to some unreliable matches, partic- 
ularly in image regions with little textural infornia- 
tion. For this reason, it is often helpful to conipute 
a confidence on the match found, as well as a loca- 
tion. This confidence measure typically gives infor- 
mation regarding the reliability of the match score. 
This scalar score often is used to estimate the relia- 
bility of t,he feature, i.e. for use in later tracking op- 
emtions OL‘ to  propagate image flow information from 
one portion of an ima.ge to  another. Below, we will 
describe a mat,rix-valued covariance ma.trix that con- 
t,ains information both about the overall confidence in 
a feature measurement, and information about how 
accurate the measurement is in all directions. 

Anaridan [2] used the SSD matching scores of a tem- 
plate with a 5 x 5 image region to  develop a match 
confidence measure based on the variation of the SSD 
values over the set of candidate matches. Anandari 
argued that if the variation of the SSD measure along 
a particular line in the search area surrounding the 
best match is small, then the component of the dis- 
placement, along the direction of that line cannot be 
uniquely determined. Conversely, if there is signifi- 
cant variation along a given line in the search area, 
the displacement along this line is more likely correct. 

Singh and Allen define a response distribution based 
on the SSD metric (1) as 

where k is used as a normalization factor. The normal- 
ization factor k was chosen in [9] so that the maximum 
response was 0.95. Sin& and Allen then argue that 
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each point in the search area is a candidate for the 
"true match." However, a point with a small response 
is less likely to be the true match than il point. n-ith a 
high rc'sponse. Thus, the response distrit)utiori could 
be interpreted as a probability dist,ribution 011 tho true 
match location - the response at, a point depicting the 
likelihood of the corresponding match being the true 
match. This interpretation of the response distribu- 
tion allows the use of estimation-theoretic techniques. 

Under t,he assumption of additive zero nicaii intle- 
pendent errors, a covariance matrix is a.ssociatet1 with 
each location estimate: 

(3) 

where U ,  and U ,  are the estimated locations, in the 
U and 2' directions, of the feature. The reciprocals 
of the eigenvalues of the covariance matrix are used 
as confidence measures associa.ted with the estimate; 
along the directions given by the corresponding eigen- 
vectors. To our knowledge, Singh and Allen are the 
first researchers treat the location of the best match as 
a random vector, and the (normalized) SSD surface is 
used to compute the spatial certainty of the estimate 
of this vector [9]. These confidence measures a.re used 
in the propagation of high confidence measurements 
for local image flow to regions with lower confidence 
measurements, such as caused by large honiogeneous 
regions. 

Our work develops a different normalization pro- 
cedure for R D  that is useful for the evaluation of iso- 
lated feature measurements from template images. As 
described in Section 4.2, we compute one covariance 
matrix and one location for each feature, and use this 
information in a model-based object tracking frame- 
work. We do not reject any tracking information, but, 
weight each measurement on the basis of this covari- 
ance matrix, using as much information as possible 
from the feature tracking. 

As the SSD measure is used to conipare the t,ern- 
plate to areas of the image near the area generating 
the minimum SSD score, some measure of the spatial 

disc 1%7ni,r1, ation power of the t er iipla t,e caii b cl gonera t,cd 
[2]. Spatial discrirnimtion is defined as the ability to  
detect feature motion along a given direction in t,he 
image. This concept is quite similar to t,he c.onfidence 
mwsures discussed in Section 3 that cstimatr the reli- 
ability of the location estimate. However, 11-c interpret, 
the confidences as spatial uncertainties in the returned 
location. 

While conclusions about the efficacy of a given teni- 
plate for .fea,ture localization can be clrawi from the 
fully computed SSDS, it is expensive both coniputa- 
tionally and from a computer memory standpoint to 
maintain the complete surface for this purpose. In the 
next, sect,ion, we derive a approximation for. R D  that 
is more usefiil. 

4 A practical approximation for 7227 

In order to maintain and use relevant iiiforriiation 
about t,he shape of the response distribution, n-r in- 
troduce a mathematical approximat ion to t hc (list ri- 
but.ion given in (2). By suppressing the off-pcdi r ~ -  
sponse of the feature tracking result! this rcsponso tlis- 
tribution function converts tlie SSDS into an approsi- 
mately Gaussian distribution that contains t lie feature 
tracking information we wish to maintain. Since rnany 
object tracking systems (including all I<alnian filter- 
based systems) assume measurements are rantloni vec- 
tors with Ga.ussian probability density fiiiictions. n.c i  
esplicitly model and approximate this density. 

4.1 Uncertain feature measurements 

The measurement vector zk is interpreted as an UP 

certain location in the ( u , v )  plane, and modeled as a 
2D Gaussian random vector. It is illustrative to ana- 
lyze the behavior of the density function for this vec- 
tor with respect to the spatial certainty of the feature 
t,racking result as Rk, the covariance matrix for the 
vector, changes. For example, if Rk = 0 ~ 1 ,  n-here C T ~  

is the variance of the vector, the location is equally 
certain in each direction. The ellipses of equal prob- 
ability on the density surface are circles. If o,, # e(.. 
where e; and o: are the variances in the U aiitl 11 tli- 
rect.ions: the location is more certain in one direction 
(given by the minor axis of the ellipses of equal proba- 
bility) than in the other direction (given by the major 
axis). As the length of the major axis approaches in- 
finity, complete uncertainty on the location along this 
dimension is asserted. It is well known that the mean 
and covariance are sufficient statistics for a Gaussian 
random variable. Therefore, if this Gaussian density 
surface is sufficient to model the tracking behavior, 

3232 



SSD Surface 

'L 
IT 

, i 

Response Distribution Density Function 

Figure 1: Approximation of response distribution by 
density function. 

it is 110 surprise that the mean and covariance suffice 
to  niaintairi this information. In the nest section we 
explain how we estimate these quantities. 

4.2 Parameter estimation from the SSDS 
This section describes a process for analyzing the 

SSDS to arrive at  estimates for the mean and variance 
of a Gaussian random vector. The density function of 
this vector acts as an approximation to the response 
distribution RD (see (2)) for the purpose of tracking 
features. 

OUI computation of the normalization factor k in 
(2) differs from that of Singh and Allen [9] .  We chose 
k such that 

R D ( u , v )  x 1. (8) 
u.wEN 

This has the effect of suppressing the off-peak response 
of the feature detector, when compared with Singh and 
Allen's normaliza.tion. Since we are using correlation 
between synthetic templates and images, the off-pea,k 
response in our situation is more significant than for 
Singh and Allen. As shown in Figure 1, our normal- 
ization makes the response distribution approximate 
a Gaussian density function with the desired charac- 
teristics with respect to feature tracking. 

The mode, or most proba.ble value, of a ra.ndom 
vector is located at the peak of the density function. 
We take the location of the minimum of the SSDS as 
our value for the mode of the vector, 

z!, = argmin,,,SSD(u, U). (9) 

The variance of ZL (a:), the variance of v (of), and 
the covariance between U and 7) (ptLwouav) can be es- 
timated directly from the response distribution using 
Equations (2) and (3)-(7), yielding the desired covari- 
ance matrix. 

which, as described above, contains complete informa- 
tion about the orientation and shape of the error el- 
lipsoids. Figure l illustrates this process for a vertical 
edge feature. 

Of course, as we are only ma.intaining the mean and 
variance of the random vector, and not the complete 
SSDS, this is only an approximation to the complete 
information about local image structure given by the 
SSD. However, it does give an indication of both the 
absolute quality of the match and, in cases where edge 
features exist, the direction of the edge. 

5 Results 

5.1 Gripper feature 
The feature illustrated in this section is the end- 

effector of a robot. Figure 2 shows the search re- 
gion, tracking result, and measurement uncertainty 
estimates for two different cases. Note that since the 
SSD measure involves the image area surrounding a 
pixel, a border around the search region must be re- 
tained for each search region. 

The results of feature tracking in normal circum- 
stances are shown in Figure 2(a). The cross indicates 
the location of the minimum point of the SSD surface. 
The complete SSDS and the Gaussian approximation 
to this surface are shown in Figure 2(b)-(c), both in- 
dicating equal accuracy of the tracking result in all 
directions. Note the effect in (b) and (c) of our nor- 
malization procedure. Even though there is significant 
off-peak response, the relative certainty in the peak re- 
sponse with respect to the lower responses indicated 
a single proper match. This fact is evident from the 
final result shown in (c). 

In (d)-(f), we present an illustration of the use- 
fulness of the on-line estimation of template efficacy. 
This feature has the same template as in the previous 
case. However, a person has stepped between the cam- 
era and the feature, occluding the feature. The fea- 
ture template thus does not match any portion of the 
search window well, as shown in (e). This mismatch 
causes larger values for the variances for this measure- 
ment, and (f)  indicates high uncertainty of the feature 
location in all directions. 
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A 2D measurement, represented by the cross in Fig- 
ure 2(a) and (d), and a 2 x 2 covariance measurement 
are the output of the feature tracking, and are used 
directly in the EKF framework described in [8]. 

extent: the result is neither endowed with inappropri- 
ate confidence due to the good accuracy in the direr- 
tion orthogonal to the edge nor unduly devalued due 
to the poor accuracy in the direction along the edge. 

(a) Search image (d) Search image (a) Search image (d) Search image 

(b) SSDS (e) SSDS 

(c) GRV density ( f )  GRV density 

Figure 2: Tracking results for gripper feature (a)-(c) 
normal (d)-(f) externally occluded 

5.2 Edge feature 

This case illustrates the usefulness of the measure- 
ment uncertainty estimation for tracking features with 
poor spatial discrimination in one direction. .4n edge 
feature can be tracked well only in the direction or- 
thogonal t o  the edge. This feature arises from a point 
on the edge of the robotic arm. Thus, the orientation 
of the edge in the feature depends on the configura- 
tion of the robot. As the configuration of the robot 
changes, the direction of the edge projected onto the 
image plane will change. In Figure 3 (a), the edge 
is in a diagonal orientation. The full SSDS shown in 
(b) has a ridge along this direction, indicating good 
match scores along the ridge. After normalization, 
the density function shown in (c) exhibits the same 
ridge, while suppressing the off-peak match scores on 
both sides of the ridge. Similarly, the edge in (d) is in 
a vertical orientation, so the ridges in (e) and (f)  a.re 
in the vertical direction. 

By maintaining this information, the system can 
exploit the feature tracking information to a greater 

(b) SSDS (e) SSDS 

(c) GRV density (f)  GRV density 

Figure 3: Tracking results for edge feature. 

5.3 Degenerate point feature 
In this section, we illustrate another aspect of the 

usefulness of on-line estimation of template efficacy. 
Since our object-tracking system works under widely 
varying configurations of the object, the appearance 
of features may change significantly during tracking. 
A single feature acceptance or rejectance decision will 
not suffice in this case. Figure 4 shows tracking iesults 
for a feature that undergoes such a change in appear- 
ance, a point of intersection of a black line on the edge 
of the robotic arm with the rear edge of the arm. 

This feature is a point of high texture in both di- 
rections when the arm is approximately parallel to the 
image plane, as shown in (a), and acts like a point 
feature. This feature location can be found with high 
accuracy in all directions, shown in (c). 

However, this feature acts like an edge feature in 
other configurations, such as the configuration shown 
in (d), where the arm is pointing roughly toward the 
camera. In this configuration, the feature appears as 
a vertical edge feature. The location of the feature in 
this case can be found with high accuracy in only the 
horizontal direction, as seen in (e) and ( f ) .  
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.Again. the mainterlance of the covariance matiis  
instead of a single confidence riieasui e makes this sub- 
optimal tracking result not only tolerable. but useful. 

(a) Search image (d) Search image 

(b) SSDS (e) SSDS 

I i / 

I 

?’ 
‘t 

(c) GRS; density (f) GRV density 

Figure 4: Tracking results for a point feature (a)-(c) 
nondegenerate and (d)-(f) degenerate (acting as edge 
feat Lire) 

6 Conclusions 

The method presented uses the SSDS, a common 
intermediate result in correlation-based feature track- 
ing, to  compute quantitative estimates for the spatial 
accuracy of the feature tracking result. This estimate 
consists of a covariance matrix for a Gaussian ran- 
dom vector. Analysis of this matrix yields information 
about the directions (if any) in which the template is 
discriminating the feature from the image background, 
and provides a quantitative measure of confidence in 
each direction. 

The feature tracking results, combined with this 
matrix, yields a composite measure that is useful when 
analyzing the tracking results. An example of the use 
of this matrix in model-based object tracking can be 
found in [SI. Analysis of the results can detect tem- 
plates that do not discriminate effectively in any direc- 
tion. By associating spatial confidence measures with 
feature tracking results, those results can be more fully 
exploited: the fact that some directions may have high 
confidence does not lead us to accept the entire mea- 
surement, and the fact that some directions may have 

lon- confidtmce t/ot.s riot lead us to disregard useful 
data. 
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