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Abstract 
This paper proposes an approach for motion planning 
in indoor environments based on incomplete and un- 
certain information from a line-based binocular stereo 
system. The primary goal of the planning process is 
to plan an optimal path through an unknown or par- 
tially known environment, depending on the informa- 
tion gained from exploration and the current mission 
goal. This paper presents an adaptable motion plan- 
ner that supports sensor-based map construction, ob- 
ject recognition and navigation in an unknown envi- 
ronment while carrying out a mission. Also presented 
are some prelimina ry experimental results that demon- 
strate the utility of the approach. 

1 Introduction 
A mobile robot needs knowledge about the environ- 
ment to plan its actions and to fulfill the mission goals, 
which are often specified relative to the known obsta- 
cles in the local area. The environmental models can 
be known beforehand, but gradual changes in the envi- 
ronment deteriorate the usability of those models for 
sensor data interpretation. A better approach is to 
explore the environment and maintain the geometric 
models by using the sensor system. 

The idea for the planning system is to consider the 
global mission goal and hints from the sensor systems 
and interpretation modules to achieve the best infor- 
mation gain in a given period of time. Time con- 
straints are also considered to optimize the planned 
path. 

This paper describes an adaptable, two-part plan- 
ning system that supports sensor-based map construc- 
tion, object recognition, and navigation in unknown 
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environments while achieving its missions. The upper 
level part of the planner, the strategist, plans paths 
for the robot using a topological graph of the environ- 
ment. The purpose of this graph is to take advantage 
of the structure available in indoor environments to 
simplify the global planning task. The lower level part 
of the planner, the navigator, handles the details of 
moving the robot amid obstacles. 

The remainder of this paper is organized as follows. 
First, an overview of the system in which the planner 
is integrated is given in Section 2. This is followed by a 
description of the planning approach itself in Section 3. 
Some experimental results are described in Section 4, 
and some concluding remarks are given in Section 5 .  

2 System Overview 
A motion planner does not work by itself; it requires 
additional components to handle sensing of the en- 
vironment, management of the information obtained 
from the environment, and control of the motions of 
the robot. The architecture of the overall system that 
includes the planner is shown in Figure 1, where the 
arrows in the figure represent the primary direction 
of information flow (commands and data) among the 
components. In this figure, the parts that correspond 
to the motion planner are those labeled “strategist” 
and “navigator.” The role of the other parts of the 
system are discussed below. 

Sensors The robot has one or more sensors with 
which it gathers information about its environment. 
Each physical sensor has three types of modules asso- 
ciated with it: a control module, a calibration mod- 
ule, and one or more processing modules. The control 
module is the interface to the hardware of the sensor, 
and it maintains the state information of the sensor. 
For example, for a stereo camera system, the control 
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Figure 1: The flow of information in the system. 

module controls the tilt, pan, and vergence angles of 
the cameras. The calibration module uses sensor in- 
formation about objects in the environment, model in- 
formation about those objects, and information about 
the current position of the robot to recalibrate the sen- 
sor parameters and the sensor hardware state. 

Whereas a sensor, in general, requires only one mod- 
ule for control and another for calibration, it can have 
many different processing modules associated with it. 
For example, the cameras of a stereo camera system 
can be used for both three-dimensional line segment 
extraction and optical flow computation. The differ- 
ent processing modules can also be active at differ- 
ent times, to maximize the precision of their measure- 
ments, for example. For the stereo camera system ex- 
ample, three-dimensional line extraction is most ac- 
curate when the cameras are not in motion because 
the vibration of the cameras is reduced. On the other 
hand, optical flow processing can obtain information 
about a static scene only when the cameras are in mo- 
tion. 

Each processing module uses calibration and state 
information about the sensor as well as state infor- 
mation about the robot to  determine the location of 
features it finds in its data. The processing modules 
can also use information stored in a dynamic local 
map (described below) from prior processing opera- 
tions to  simplify or improve the processing of new data 
from the sensors. For the stereo camera example, this 
includes limiting the number of matching operations 
needed to find a segment in both camera images. 

DLM Raw sensor information can overwhelm a mo- 
tion planner and prevent it from finding a path be- 
cause of the amount of noise and uncertainty that the 
raw sensor information contains. The dynamic local 
map (DLM) serves as a feature filtering module that 
accepts features from the sensor processing modules 
as well as from interpretive modules that generate hy- 
potheses for the sources of the features. The feature 
filtering has three purposes. (1) It is used to reduce the 
effects of noise in the sensor system. Sensor noise can 
come from a variety of sources, such as vibrations of 
the robot and sensors, calibration errors, and shadows 
and other lighting effects. (2) It provides verification 
of hypotheses about objects in the environment. (3) 
It serves as a basis for fusing information from the dif- 
ferent sensors. As a result of filtering, each feature is 
assigned a confidence value that reflects the likelihood 
that the feature comes from an object in the environ- 
ment. More detail about the DLM can be found in 
PI* 
PSC To reduce the amount of information that is 
needed to describe the obstacles in the environment, 
it is helpful to recognize the objects from which the 
features detected by the sensor system originate. Ob- 
ject recognition is especially important when the task 
of the robot is specified in terms of the objects in 
the environment. The Predictive Spatial Completion 
(PSC) module uses sensor information stored in the 
DLM to construct geometric models of objects in the 
environment. To accomplish this, the PSC uses model 
knowledge about the types of objects expected in the 
environment and sensor information to generate hypo- 
thetical completions of the sensor features that match 
object hypotheses. The hypothetical completions are 
then stored in the DLM. As more sensor features are 
received by the DLM, the hypothetical features either 
gain support by being matched with new sensor fea- 
tures, or they are rejected after a predefined interval. 
The PSC is described in more detail in [2]. 

GEM A database is needed to store information 
that is gained from the environment in order for that 
information to be used again. In addition, a database 
is needed for the templates that are used for object 
recognition. The Geometric Environmental Model 
(GEM) stores a hierarchical geometric representation 
of the environment. This model includes a graph struc- 
ture of the connected regions of the environment and 
the objects found in those regions. The model for ar- 
ticulated objects is also hierarchical, with the root of 
the graph describing the geometry of the fixed por- 
tion of the object and edges from the root describing 
joints attached to the fixed portion of the object. In- 
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formation useful for the different sensors is also stored 
with the representation of the object. The model is 
described in more detail in [3]. 

Localizer The accuracy of the information derived 
from the sensors depends in part on how well the robot 
knows where it is and how it has moved. The localiza- 
tion module uses data about the objects in the envi- 
ronment and the geometric information from the envi- 
ronment model about these objects to produce an esti- 
mate of the position of the robot. This estimate is pro- 
vided to the platform module to be incorporated with 
the dead reckoning information to more accurately lo- 
calize the robot. Techniques used for localization are 
described in more detail in [4] for vision-based localiza- 
tion and in [5] for laser range finder-based localization. 

Platform To make the planning system more in- 
dependent of the type of mobile robot that is used, 
a robot-independent interface is used. The platform 
module is the interface to the drive hardware of the 
robot and maintains the position and orientation state 
information about the robot. The position and ori- 
entation information is derived primarily from dead 
reckoning, with the localizing module supplying cor- 
rections. Since the data processing by the localization 
module requires some time to complete, the position 
estimate produced may correspond to a prior position 
of the robot. A Kalman filter-type approach is used 
to integrate the position estimates from the localiza- 
tion module and the position estimate from the dead 
reckoning information. 

3 Motion planning 
To find a solution to a problem, it is often easier to 
split the problem into two or more parts and construct 
the overall solution by combining the solutions to the 
subproblems. In motion planning, this is commonly 
achieved by splitting the motion planning problem into 
two parts: one that plans on an abstraction of the 
environment and the other that handles the details of 
moving the robot amidst obstacles. An early example 
of this was reported in [6], in which the abstraction 
used first-order predicate calculus to plan the actions 
of the robot. 

Roadmap motion planning methods are another 
variation on the multi-part technique for solving mo- 
tion planning problems. In this case, the steps of the 
solution involve connecting the current and goal con- 
figurations of the robot to the network and finding a 
path along the network connecting the two connection 
points [7]. Randomized roadmap methods are simi- 
lar, except that they involve the use of a local planner 
during the construction of the roadmap and during the 

planning phase to connect the initial configuration and 
the goal configuration to the network [8]. 

The motion planner described here is a two level 
planner that uses a roadmap defined by the topology of 
the environment. The upper level of the planner plans 
paths in the roadmap and uses the lower level planner 
to connect the nodes at each stage of the plan. This use 
of the local planner to connect nodes in the roadmap 
is also performed by the randomized roadmap motion 
planners, although the randomized planners connect 
the nodes only once during the pre-processing phase. 

The parts of the motion planner are called the 
strategist, which plans paths in the roadmap, and the 
navigator, which is the local planner. The strategist 
is also responsible for accomplishing the current mis- 
sion of the robot, and it coordinates the actions of the 
navigator to achieve this. The navigator uses sensor 
information to guide the actions of the robot to sat- 
isfy the goals given to it by the strategist. These two 
parts will be described in mode detail in the following 
sections. 

3.1 Strategist 
The strategist is the upper level planner. To accom- 
plish a mission, it plans paths through a global topo- 
logical graph of the environment and coordinates the 
actions of the navigator to follow the path in the graph. 
The graph structure used by the strategist for plan- 
ning and the actions performed by the strategist dur- 
ing path execution are the subject of this section. 

Graph structure The topological graph used by 
the strategist is a set of nodes and edges where each 
node in the graph corresponds to a room in the en- 
vironment and each edge corresponds to a doorway 
connecting a pair of rooms. Most edges in the graph 
are bidirectional, which means that the doorway can 
be used in both directions. Unidirectional edges are 
used for doorways that can be used in only one direc- 
tion, such as the “in” and “out” doors associated with 
cafeterias and the like. 

Each node is associated with its own local coordinate 
system that is used for navigation within that room. 
The location of each doorway in the local coordinate 
system is also stored. In the case that more than one 
doorway exists between a pair of rooms, an edge is 
stored in the graph for each doorway. 

An example of a topological map for a portion of 
an office environment is shown in Figure 2. In the 
figure, the labels 01 to 08 correspond to offices, L1 
and L2 are laboratories across from the offices, C1 is a 
conference room, P1 is a printer room, and H1 is the 
hallway connecting them. The dashed lines Figure 2.b 
correspond to connections outside the region shown 



The strategist controls the behavior of the navigator 
within each room. The behavior can be as simple as 
reaching the goal in the shortest amount of time, or it 
can be dependent on the amount of prior knowledge 
of the room. For example, if the robot enters a room 
about which little is known, the strategist may instruct 
the navigator to  explore the room to find out more 
about what is there. This may also be used if the 
robot has been away from a room for a long time. In 
this case, the robot looks for things that may have 
changed since the last time it was there. 

The actions of the strategist are most complicated 
when the robot is brought to  an environment about 
which nothing is known. This is a non-trivial problem 
that has been the subject of much prior research. One 
approach to  this problem is described in [9], where a 
robot equipped with a vision-based recognition system 
carries out a systematic exploration of its environment 
using the landmarks it finds along the way as reference 

At  a high level, the actions of the strategist in an un- 

the strategist uses the navigator to  explore the current 
room, using the robot's initial position as the origin 
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Figure 2: An example office environment and its Cor- known environment can be described as follows. First, 
responding graphs. 

in Figure 2.a. The dashed line connected to node :P1 
represents a staircase to another floor that is present 
in the room. 

The topological graph for an environment can be 
constructed in one of two ways. One method is that 
the robot itself builds the entire graph as it explores a 
previously unknown environment. The second method 
is that the plans for the building are used to build the 
graph. The latter case will also involve an exploratory 
phase in which the robot determines the local coordi- 
nate system to be used in each room as well as the 
positions of the doorways in the room with respect to  
that local coordinate system. In both cases, the robot 
will acquire a model of the objects in each room as the 
robot explores the environment. 

Path execution To execute a plan, the strategist 
performs the following actions. For each node in the 
plan, the strategist uses the navigator to  plan a path 
from the current location of the robot to the next door- 
way in the plan. Upon reaching the doorway, the state 
of the DLM and the navigator is reset, and the posi- 
tion and orientation of the robot are set to correspond 
to the local coordinate system for the next room. The 
DLM is then loaded with the known features of the new 
environment, and the navigator uses these features for 
its initial plan to  reach the next goal provided by the 
strategist. This cycle repeats until the robot finishes 
its mission. 

of the coordinate system for the room. During the 
exploration of the room, doors and their coordinates 
are identified and are inserted into a topological graph 
that uses the current room as the root. Depending on 
the requirements of the situation, the robot may linger 
longer in the room to build models of the objects in the 
room, or the robot may move to  a different room to 
continue constructing the graph of the environment. 
During the initial exploration of the room, the sen- 
sor calibration modules are disabled until models of 
objects in the room are sufficiently stable to  permit 
sensor calibration. 

3.2 Navigator 
The navigator is the lower level planner for the system. 
It is concerned with planning paths within the current 
room, using the goals given to it by the strategist. It 
also coordinates the actions of the sensor system dur- 
ing the execution of the plan to  maximize the amount 
of useful information that can be gathered. The nav- 
igator has two modes of operation. The first mode is 
concerned only with reaching the current goal. The 
second mode permits the robot to  explore the envi- 
ronment. In both situations, the robot is given a goal 
location to be reached and the amount of time avail- 
able to reach it. 

The operation of the navigator can be described 
as follows. At each location at which the robot is 
stopped, the navigator performs a sensor scan of the 
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region around the robot. The new features found in 
this scan are then incorporated into the obstacle set for 
the robot, and a new path is planned to the current 
goal. During execution of the path, the stereo system 
is used as a visual bumper to detect unexpected ob- 
stacles in front of the robot. If the robot successfully 
reaches the goal, the cycle repeats again until no more 
goals remain. If the robot encounters an obstacle while 
in motion, the robot backs up a pre-specified amount 
along the path it was following, and performs another 
sensor scan of the environment at that location. A 
new path is then generated to take into account the 
new information that is found during the scan. 

A sensor scan consists of the turning the robot in a 
full circle, stopping at predefined angles. At each stop- 
ping angle, the stereo vision system performs a scan, 
first with the cameras level to the floor, and second 
with the cameras pointing toward the floor. In ad- 
dition, while the robot is in motion, the optical flow 
sensor is used to detect surfaces and moving objects. 
The number of stereo images taken at each level is in- 
versely proportional the amount of prior information 
that is available about the environment. The angle by 
which the robot rotates and the number and direction 
of stereo images are configurable parameters that can 
be used to optimize the sensor scan to suit different 
tasks. 

During exploration, the local planner plans paths for 
the robot to maximize the amount of knowledge that 
the robot acquires in the room. This involves moving 
the robot to regions that may provide more informa- 
tion to the sensor system. Three types of regions are 
defined: empty regions, where the robot has no infor- 
mation; uncertain regions, where the robot has some 
information, but the information is incomplete or im- 
precise; and cluster regions, where the robot sees a 
cluster of features that may be used for object recog- 
nition. The priority given to  each type of region de- 
pends on the current task of the robot. For example, 
a higher priority on the unknown regions means that 
the entire room is explored faster. A higher priority 
on imprecise information results in the precision of the 
features being improved before the robot finishes ex- 
ploring. Last, a higher priority on clusters of features 
focuses the robot on object recognition. 

4 Experimental Results 
The mobile robot used for experimentation, shown in 
Figure 3, consists of a TRC-Labmate platform onto 
which a set of three PC’s, a stereo camera system, a 
two-dimensional panoramic laser range finder , and a 
radio ethernet have been mounted. The stereo camera 
system is the primary sensor of the robot and is used 

for both three-dimensional line segment extraction and 
optical flow measurement. The laser range finder is 
primarily used for localization, and the radio ethernet 
is for communication with other computers in the lab. 
RPC is used for communication between the different 
modules of the system. 

Figure 3: The 
robot MARVIN. 

A preliminary version of 
the system has been tested 
in a laboratory environment. 
This setup tests the low-level 
planner in a relatively static 
environment with the stereo 
cameras pre-calibrated and no 
localization enabled. The 
robot was allowed to explore 
the room and it was able 
to successfully avoid obsta- 
cles. Figure 4 shows the 
planned path in a local area 
and the locations where the 

three-dimensional reconstruction was triggered. It 
shows the content of the navigation map with some 
tables, walls, and cabinets. 

The navigator used in the preliminary version uses 
a two-dimensional occupancy grid similar to the one 
in [lo] of the free space around the robot. This map 
is constructed by using the information from the sen- 
sors stored in the DLM. The primary features that 
the navigator uses are three-dimensional line segments 
extracted by the stereo camera system, with addi- 
tional three-dimensional line segments coming from 
the panoramic laser scanner. 

The three-dimensional line segments used to indi- 
cate the locations of the obstacles are those that meet 

Figure 4: Planned path in an indoor environment. 
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Figure 5: Content of the DLM for an arbitrary camera 
view: (a) all stored features and (b) features with a 
higher confidence. 

a set of pre-determined criteria, each of which can be 
adjusted to suit the planning environment. The first 
criterion is that the line segments must have a likeli- 
hood above a preset threshold. This criterion reduces 
the number of sensor artifacts that are Considered to  
be obstacles. Second, the precision of the endpoints of 
the line segments must fall within a preset range. The 
precision of the endpoints indicates the certainty of 
the sensor system that it found the endpoint of the line 
segment and the precision with which it could measure 
its location. 

The third criterion that is used to  determine 
whether a feature is part of an obstacle is the three- 
dimensional location of the segment. The space 
around the robot is divided into three regions: an up- 
per region above the height of the robot, a middle re- 
gion below the height of the robot and above a preset 
height close to the floor, and a lower region close to  
the floor. The selection of features to  be used in path 
planning in the first two regions is simple: features in 
the upper region are ignored and features in the middle 
region are considered to be part of an obstacle. The 
lower region is a special case. The difficulty in this 
region is determining whether the feature is part of a 
pattern on the floor or whether it is part of an obsta- 
cle that extends above the floor. A simplistic approach 
is used in which if features can be found on the side 
of a floor feature opposite the robot, that feature is 
considered part of the floor and, therefore, is ignored. 

An example for the information reconstructed from 
image information is shown in Figure 5, where the 
dashed lines show the correct position of the lines and 
the solid lines represent the reconstructed line seg- 
ments. 

5 Discussion 
This paper presented an approach to motion planning 
for a mobile robot that operates in indoor environ- 

ments. The motion planner consists of two parts: a 
strategist that plans paths on a graph representation 
of the environment and a navigator that plans paths 
in each node of the graph using information obtained 
from sensors. Both parts of the planner are adaptable 
to the requirements of the situation, favoring explo- 
ration more when less of the environment is known. 
Some experimental results were also described. In the 
following, some limitations of the approach as well as 
some future directions will be given. 

While the planning approach described above is de- 
fined to  be highly flexible, several limitations remain. 

One limitation is outdoor environments. Although 
the planner was designed for working in indoor envi- 
ronments, a mobile robot would be more convenient 
to use if it can also navigate through a limited range 
of outdoor environments. For example, many insti- 
tutions such as universities consist of more than one 
building where there are no enclosed connections be- 
tween the buildings. The environment between the 
buildings may be sufficiently simple to allow the robot 
to operate there. 

While the topological graph structure may be ex- 
tended to the “concrete canyons” that typify the cen- 
ters of many large cites, which can be considered as 
extended grid-like hallways connecting different rooms, 
it is not well suited for general outdoor environments 
with more irregular terrain. An approach that may be 
used instead is one based on a hypergraph as described 
in [Ill.  

A second limitation is that the navigator depends on 
a sufficiently large number of features for localization 
to  limit the dead reckoning errors of the platform. An 
example of such a region is a hallway with uniformly 
colored walls and no features such as paintings or other 
artwork on the walls. This type of environment can 
be further complicated by flush-mounted doors, such 
that, when the door is closed, the junctions between 
the door and the wall are hard to detect reliably. In 
such a corridor environment, the robot may miss its 
goal because it could not see it. An additional problem 
arises when the robot is exploring the environment for 
the first time to build a map of it. In this case, the 
location uncertainty accumulates over time, ultimately 
reaching a point at which the robot can no longer plan 
a path to the other end of the corridor because of the 
errors in the estimates of the positions of the walls. 
An approach that limits this effect is described in (121. 

A third limitation is a warehouse-type environment. 
A warehouse consists of a large room with a regular 
array of shelving units. The tradeoff here is among the 
number of nodes to place in the topological graph, the 
difficulty in defining the junctions between nodes, and 
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the amount of detail stored for each room in the envi- 
ronment. The tradeoff arises because the speed of the 
DLM to  insert new features and verify old features is 
proportional to the number of features already stored. 
In addition, a large number of features increases the 
time required for path planning as well as the amount 
of space needed to find the path. 

Some areas for future work include the following. 
One problem is the specification of a task for a robot 
to perform when it has no prior knowledge of its envi- 
ronment. An example situation is the case that a user 
gets a new robot with the system described above in- 
stalled, turns the robot on, and, for example, instructs 
the robot to take the mail from the current room to 
the mail room. 

Another area for future work is the addition of an 
arm on the robot. The addition of the arm creates a 
requirement that the sensor system be able to detect 
surfaces in order to be able to find the obstacles that 
the arm must avoid. Other issues include how one 
might control the arm to perform a task, and what 
kind of visual servoing is needed. Some work in this 
area is described in [13]. 
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