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Abstract 

W e  describe a model-based object tracking system 
that updates the configuration parameters of a n  ob- 
ject model based upon information gathered from a 
sequence of monocular images. Realistic object and 
imaging models are used to  determine the expected 
visibility of object features, and t o  determine the ex- 
pected appearance of all visible features. W e  formulate 
the tracking problem as one of parameter estimation 
f rom partially observed data, and apply the Extended 
Kalman Filtering (EKF) algorithm. The  models are 
also used to  determine what point feature movement  
reveals about the configur-ation parameters of the ob- 
ject. This information is  used b y  the EKF to update 
estimates for parameters, and for the uncertainty in 
the current estimates, based o n  observations of point 
features in monocular images. 

1 Introduction 

In this paper we desciribe a model-based object 
tracking system that updates the configuration param- 
eters (state) of an object model based upon informa- 
tion gathered from a sequence of monocular images of 
a robotic arm. We formulate the tracking problem as 
one of parameter estimation from partially observed 
data, and apply the EKF algorithm to this problem. 

The use of complex explicit kinematic models in 
object tracking has increased in recent years [5] [7]. 
When tracking a known three dimensional object, the 
use of an explicit object model enables an ongoing as- 
sessment of the usefulness of each tracked feature in 
computing each internal degree of freedom of an ob- 
ject. Explicit models also allow feature measurements 
to decrease the uncertainty in the estimation of in- 
ternal degrees of freedom of an object. This reduced 
uncertainty can then be used to aid in disambiguating 
other measurements. Our work uses a robotic arm ex- 

ercising three internal degrees of freedom. This work 
demonstrates that object tracking with explicit mod- 
els of objects with complex geometry is feasible, even 
for objects with many internal degrees of freedom. 

Previous work has assumed a constant set of vis- 
ible features [lo], or the use of features with simple 
primitlives (edges or corners) [5 ] .  Since we use realistic 
object and imaging models to1 compute the expected 
visibility of features, we can accommodate a set of fea- 
tures distributed about the object such that several 
will be visible in most configurations of the object, yet 
concentrate our search efforts during feature tracking 
on those features expected to be visible in the current 
(estimated) configuration of the object. Since we use 
object and imaging models to compute the expected 
appearance of features, this work can track features 
with more complex geometry, and therefore less ambi- 
guity, than lines or edges. For example one finger of 
a gripper, or the edge of a gear linkage, could be used 
as basic features to track. This is in contrast to track- 
ing edges or corners, then building up these tracking 
results into a complex feature (afterwards. 

The remainder of the paper is organized as follows. 
In Sectiion 2 we describe our system for using kinematic 
and imaging models for object tracking. We begin in 
Section 2.1 by introducing our formalization for the 
tracking problem, and the notation used throughout 
the paper. In Section 2.2 we describe in more detail 
the methods used to calculate the expected feature 
appearance and visibility. We review in Section 2.3 
some methods for feature tracking, and describe in 
Section 2.4 our method for extracting an estimate of 
the measurement error as well as the most likely lo- 
cation for a feature. All these pieces are consolidated 
in Section 2 5, where we present the relevant equa- 
tions from the Extended Kalman Filtering literature, 
and describe our use of the filter. Finally, in Section 3 
we present some experimental results for the case of a 
three degree of freedom robotic arm. 
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2 System Overview 

In this section, we present an overview of the track- 
ing system. First, we present our formalization of the 
tracking problem. We next describe how our use of 
object kinematic and appearance models enables us to 
compute the expected appearance of each visible fea- 
ture. We then describe the feature tracking process, 
where a comparison of portions of the actual input im- 
age to the expected feature appearance is made. We 
describe how an estimate of the uncertainty involved 
in the extraction of each feature is made. Finally, we 
present the relevant equations from Extended Kalman 
Filtering, and describe how our system uses this frame- 
work to  update estimates for all internal degrees of 
freedom of an object. 

2.1 Formalization and Notation 

We wish to  estimate the joint angles, x k  of a robotic 
arm, which we shall call the state vector of the system, 
at each time step k. In this paper, X k  E 8’. We will be 
modeling the X k  as a random vector and we associate a 
covariance matrix, P k ,  with the state vector. We can- 
not observe the joint angles directly, but we can define 
a vector valued function h k  mapping joint space into 
observation space. We denote our observations by z k  . 
Any bias about likely motion in joint space is defined 
in the system model f k ,  a vector valued function map- 
ping the a-posteri state estimate at each time step into 
the a-priori state estimate at the next time step. 

Certain parameters will be conditioned on the num- 
ber of observations made. We denote this with a 
subscript. Thus we use the notation i i k l k - 1  to rep- 
resent the optimal estimate for the vector X k ,  given 
zo . . ~ z k - 1 .  Similarly, P k l k  denotes the covariance of 
x k  given zo . . . z k .  We often use P k  interchangeably 
with p k p .  This notation is standard in the Kalman 
Filtering literature. 

In summary, we assume a fairly standard nonlinear 
system model, 

where f k  and h k  are vector valued functions with 
ranges of dimension n and q respectively, and GI, is 
a matrix valued function of dimension n x p .  We make 
the usual (in Kalman Filtering literature) assumptions 
with respect to  the correlation of the noise ( w k  and vk) 
and initial conditions ( x g ) :  

In terms of our tracking problem, hk(xk) contains 
the image plane coordinates of each feature when the 
arm is at configuration x k .  The system function f k  

could be used to  implement a motion model. For ex- 
ample constant velocity motion in joint space could be 
assumed, if this type of motion was expected to be seen 
often. In this case, j i k  would contain estimates for the 
angular velocities of each angle as well as estimates for 
the joint angles. 

2.2 Expected Feature Appearance and 
Visibility 

Our work uses a realistic model for the robotic arm, 
both in terms of kinematics and appearance. A per- 
spective imaging model is used for the camera. At 
each time step k in the tracking process, the optimal 
state estimate given the observations from time 0 to 
k-1, x k l k - 1 ,  is combined with these models (using the 
OpenGL graphics language) to  generate a synthetic 
image of the scene. One such scene is shown in Fig- 
ure 1. The system does not use texture mapping, but 
simulates the effect of multiple overhead lights shining 
on a relatively non-reflective surface. The background 
is approximated by a constant-color surface, with the 
same lighting model. For all surfaces, Gouraund shad- 
ing is used to interpolate the color of interior of each 
polygon based on lighting calculations done at  the ver- 
tices of the polygon. Multiple computations are based 
on this image, as described below. 

Figure 1: A Synthetic Image 
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Since the object models, camera imaging models, 
and assumed illumination of the scene are used to cre- 
ate the feature templates, errors in these models will 
effect the feature tracking to the extent that the fea- 
ture templates are incorrect. The specific effect of er- 
rors in these models, as well as the use of even more 
sophisticated rendering techniques, is a topic for fur- 
t her investigation. 

For each feature, the forward kinematics of the robot 
are used to compute the 3D location of that feature, 
and its 2D projection onto the image plane. If the 
2D projection is not contained in the portion of‘ the 
image plane actually observed, that feature is deemed 
not visible. During the rendering process, the depth of 
the closest object to the image plane at each pixel is 
recorded in a special buffer termed the z-buffer. This 
is a well known method for 3D rendering in computer 
graphics. For each feature, the depth recorded in the 
z-buffer is compared against the computed depth for 
that feature to determine if that feature is visible at 
the given configuration. A feature is visible in a given 
configuration if it’s depth is equal to that recorded in 
the appropriate portion of ithe z-buffer. 

For each feature that is expected to be visible by 
the above criterion, we record its expected appearance 
for use as a template to compare portions of the input 
image against during the feature tracking phase of the 
tracking. This is done by saving a region of the syn- 
thetic image about the feature’s projection onto the 
image plane. This enables us to use arbitrary points 
on the surface of the object as features, and allows the 
use of the same framework whether the feature is a 
line, a spot, a corner, or the center of the letter P. 

2.3 Feature Tracking 

Feature detection can be accomplished by compar- 
ing an image region against a template for the feature, 
and using some metric, usually the Sum of Squared 
Differences (SSD), to rate the similarity. A good re- 
view of this technique is given in [3]. The main prob- 
lem with the naive approach is that the simple tem- 
plate is a static 2D entity, and the image patch in a 
dynamic scene may undergo transformations that the 
template can not model. 

A slightly more complex algorithm that also works 
in certain situations is to use an image patch from the 
previous image, taken from the area around the last 
computed position of the feature in that image, for 
the template. The main difficulty of this approach is 
feature skew, where the template slowly stops tracking 
the feature of interest and creeps onto another feature. 
The next step in sophistication is to  have a template 

that can model more general transformations than the 
simple template, such as affine distortion. 

An even more sophisticated template might have a 
3D registered texture as part of the template, and use 
the predicted position of the object, along with com- 
puter graphics techniques, to render the relevant por- 
tion of the scene, complete with sophisticated texture 
mapping techniques, and estimate the appearance of 
a feature in the image for use as a template to match 
against [4] [8]. 

In our work, we presently use a basic SSD similar- 
ity measure, in conjunction witlh a tem,plate generated 
from the synthetic image as described in Section 2.2. 
In the current implementation, fixed size templates of 
size 13 x 13 are generated. A fixed rectangular area 
(size 25 x 25) of the image, centered about the pre- 
dicted feature location, is compared with this tem- 
plate. 

2.4 Measurement Error 

One advantage to SSD based featujre detection is 
that in addition to an extracted feature location, some 
knowledge of the “goodness of fit” of that feature to 
the surrounding image is returned, in the form of an 
SSD surface [l]. The local shape of the SSD surface can 
tell in which directions the template is a good match 
with the local image content, and in wlhich directions 
the template differs greatly from the local image con- 
tent [ 101. 

If we interpret the feature location as a two di- 
mensional random vector, the surface returned by an 
SSD measurement can be normalized and treated as 
a probability measure on the image pla.ne position of 
the feature. Since the matching properties of the SSD 
measurement are only valid within some region of the 
feature location in the image, this interpretation and 
normalization needs to be a local one. Away from 
the feature location, other features interfere with the 
matching process, and the match score no longer re- 
flects the spatial uncertainty for the given feature. 

The mode, or most probable value, of the random 
vector is located at the peak of the SSI) surface. We 
take this as the feature location measurement, zk. As- 
suming a symmetric unimodal random vector (for the 
purposes of the EKF, the random vector is assumed to 
be Gaussian), contours of equal probability surround 
the mode. 

It has been noted 1121 that the covariance matrix 
of a random vector determines the shape and orienta- 
tion of these contours (in the noiseless case, they are 
ellipsoids) of constant probability. Kosaka and Kak 
[6] provide an in-depth discussion on the equivalence 
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between a covariance matrix and the related error el- 
lipsoids. The orientation of the semi-major axes of the 
error ellipsoids determine the eigenvectors of the co- 
variance matrix. The lengths of the semi-major axes 
determine the eigenvalues of the covariance matrix. 

The variance of U (ai), the variance of w (D: ) ,  and 
the covariance between U and v (puuouuu) can be es- 
timated directly from the (scaled) SSD surface [ll], 
yielding the desired covariance matrix, 

(3) 

which contains complete information about the orien- 
tation and shape of the error ellipsoids. 

To date, researchers have used the local shape of the 
SSD surface only as a confidence measurp, and those 
researchers have only looked at  the curvature along the 
image plane axes [l] or the image plane axes and 45" 
lines in the image plane [lo]. More importantly, the 
curvature estimates are used only as a computation 
of the certainty of the match between the template 
and the local image structure, not as an uncertainty 
measurement on the location of the match. 

Retaining only uncertainty measurements along im- 
age plane axes is equivalent to  recording U% and uv. 
Thus, the implicit assumption made by these re- 
searchers is that the contours of equal probability have 
their semi-major axes aligned with an image plane axis 
or a 45" line in the image plane. By computing the co- 
variance as well as the variances, we retain information 
about the orientation of the ellipsoids of constant prob- 
ability, as well as their intersection with the U and w 
axes. Therefore, we gain the ability to maintain infor- 
mation about directions of good spatial discrimination 
even if that direction of that discrimination doesn't 
happen to  be aligned with the ( U ,  w) image plane axes. 

2.5 Extended Kalman Filtering 

Extended Kalman Filtering is an extension of the 
classic Kalman Filtering algorithm to the nonlinear 
case. Kalman Filtering computes the optimal linear 
least squares solution to observations of a linear sys- 
tem corrupted by white Gaussian noise [2]. The follow- 
ing equations can be derived from the linear Kalman 
Filter by linearizing the system function f k  and the ob- 
servation function hk about the optimal state estimate 
x k I k - 1 .  This set of equations, collectively defining are-  

cursive estimation algorithm, is generally collectively 
called the Extended Kalman Filter: 

T 

( x k - 1 )  P k - 1 , k - 1  - a f k - 1  (kk-l)]  ] [axk-1 

( 5 )  

with initial conditions PO,O = Var(xo) ,  and XO = 
E(xo) .  

As described above, our system uses realistic object 
and imaging models to define h k .  The system Jaco- 
bian, 2, is computed algebraically. As we currently 
use a constant position motion model (all movement 
is modeled as random noise wk injected into the state 
vector), f k  = I ,  and axk-1 - - 0. Currently, &A is a 
constant diagonal matrix, and the computation of Rk 
is described above. 

3 Tracking Results 

In this section, we will present some tracking results 
for the case of a three degree of freedom arm being ob- 
served by a 2D sensor. In order to concentrate on the 
effect that the object kinematics have on the tracking 
algorithm, no motion model is used. In all cases, the 
512 x 485 input image is subsampled by a factor of 
three before tracking. Joint speeds are restricted so 
that features do not escape the fixed search areas. 

Joints 0, 1, and 2 are the first three joints of 
a Unimation PUMA robotic arm, as assigned by 
the standard Denevit-Hartenberg parameters. In the 
first experiment, the arm moves from a parking po- 

block from the table. The arm then moves up away 
from the table, swings right (from the point of view 
of the camera), and moves down toward the table 
again. All three joints move significantly, in con- 
stant velocity motion in joint space. Note that this 
fact is not exploited at the current time. The ac- 
tual joint angles commanded, and the estimation of 
the joint angles by our filter, are shown in Fig- 
ure 2. The error in the tracking is shown in Figure 3. 

sition down towards the table, as if picking up a 



Figure 2: Exercising three degrees of freedom. Top: 
xo and 50, Middle: x1 and 22, Bottom: 5 2  and 5 2  

0.2 , 
I 

1 
-0 -00 7 5 0  zoo 2-0 300 

-0.2 

Figure 3: Tracking Error. Top: 50 - 20, Middle: 2 1  - 
31, Bottom: x2 - 22 

There are 11 features more or less evenly distributed 
about the arm. Only a subset of these are visible at  
any given time. We described in Section 2.2 how we 
determine the expected visibility of a feature. For the 
same experiment described above, Figure 4 illustrates 
the visibility of features throughout the experiment. 
The visibility of feature 0 is depicted on the top row, 
feature 11 on the bottom. Each time step is a column 
of Figure 4. Thus, a dark rectangle in a column in- 
dicates that a feature is visible at  a particular time 
step, and a light rectangle indicates that a feature is 
not visible at that time step. 

One feature of the system is the characterization and 
use of the uncertainties in the kinematic and imaging 
chain, as modeled by our object and imaging models. 
See [9] for an in-depth discussion on this. Figure 5 
illustrates the uncertainty present in the system dur- 

Figure 4: Feature Visibility 

ing the experiment described above. The variance of 
the estimate for each joint angle is shown. The time 
scale is the same as in Figure 2. Note particularly the 
behavior around time step 230 - 240. In this region, 
the arm is approximately parallel to the image plane. 
Also in this region, there is an increase in uncertainty 
for 20, and a decrease in the uncertainty for the es- 
timates for 5 1  and 2 2 .  Given the known kinematic 
models, this result corresponds to the well known fact 
that for a perspective imaging model, changes in depth 
are not easily observable, while changes in the two spa- 
tial dimensions parallel to the image plane are easily 
observable. 

0 0 1  

- 0- - -La--  
-: o=aoo 

Figure 5: Uncertainty in the tracking system. Top: 
P[O, 01, Middle: P[1, I], Bottom: P [ 2 , 2 ]  

This change in uncertainty can be predicted by look- 
ing at the behavior of the system Jacobian in these 
regions. In this region, the system Jacobian, %7 
becomes ill-conditioned with respect to XO, and well- 
conditioned with respect to x1 and 2 2 .  That is, mea- 
surement,s from the features do not change with in- 
cremental changes in 20, and are therefore effectively 
ignored when updating 20 in (6). Measurements from 
the features do, however, change significantly with 
changes in x1 or x2> and are therefore used when up- 
dating zIL and z2 in (6). Observing (4) and (5), we 
see that for state elements with low update weights 
in %, the time update increases the uncertainty in 
the system (corresponding to an iincrease in the uncer- 
tainty of our estimates as time advances), but we get 
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no corresponding decrease in the uncertainty from the 
measurement update. 

This selective weighting of image data is a feature 
of our tracking system. By analyzing the kinematic 
models, we can evaluate feature extraction results in 
the proper context, instead of assigning the same va- 
lidity to all extractions, regardless of their usefulness 
in tracking the parameters of interest (the joint an- 
gles, in this case). This selective weighting of features 
can be seen in Figure 6, where we illustrate the aver- 
age feature weighting factor for each state element, as 
a function of time. In this figure, a value of 0 indi- 
cates complete disregard of the measurement update 
computed by the feature extraction measurement, and 
figures away from zero indicate different levels of con- 
fidence in the updates. In the region mentioned above, 
note that the weight assigned to  the updates for x1 and 
22 increase, and the weight assigned to  the update for 
$0 decreases toward zero, as described above. 

0 00- 

0 0 0 0 ' s  

-0 000- 

0 -0 - 000- -e. 00- ---I.- 

0 - 0 . 0 0 7  0 000- 0 0 7  O - 0  

-0 00. OOI----i[ 

-0 0-0- 

-0 0-0- 

Figure 6: Update Weights (Average over all features). 
Top: 20, Middle: 21, Bottom: 5 2  

4 Conclusions 

We have described how to characterize the uncer- 
tainty in data observations in terms of both the per- 
ceptibility of feature motion and the quality of fea- 
ture extraction. We have incorporated these charac- 
terizations into an EKF formalism, and presented pre- 
liminary results for the case of 3D tracking. We are 
currently extending our results to a variety of more 
complicated problems, addressing such issues as oc- 
clusion, higher dimensional systems, tracking more 
complicated (possibly non-rigid) objects, and tracking 
objects with certain unknown kinematic parameters, 
such as link lengths. 
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