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Abstract 
This  work makes  two contributions to  geometric mo t ion  

planning f o r  multiple robots: i )  mo t ion  plans can be deter- 
mined that simultaneously optimize a n  independent perfor- 
mance  criterzon f o r  each robot; i i )  a general spectrum is  de- 
fined between decoupled and centralized planning. 

B y  considering independent performance criteria, we in- 
troduce a form of optimality that is consistent with concepts 
from multi-objective optimization and game theory research. 
Previous multiple-robot mo t ion  planning approaches that con- 
sider optimality combine individual criteria in to  a single cri- 
terion. A s  a result, these methods can fail  t o  f ind m a n y  poten- 
tially useful mo t ion  plans. W e  present implemented, multiple- 
robot mot ion  planning algorithms that are derived f r o m  the 
principle of optimality, for three problem classes along the  
spectrum between centralized and decoupled planning: a) co- 
ordination along fixed, independent paths; ia) coordination 
along independent roadmaps; i i i )  general, unconstrained mo-  
t ion planning. Several computed examples are presented f o r  
all three problem classes that illustrate the concepts and algo- 
ri thms. 

1 Introduction 
As robot applications continue to increase in complexity, 

the need for coordinating the efforts of multiple robots contin- 
ues to expand. This paper addresses problems in which the 
task is to simultaneously bring each of two or more robots 
from an initial configuration to a goal configuration. In ad- 
dition to ensuring collision avoidance, each robot has an in- 
dependent objective to be optimized. 

This final point differs from previous approaches to 
multiple-robot motion planning. Typically, if optimality is 
considered, performance measures for the individual robots 
are combined into a single scalar objective. For instance, in 
[5, 111 the objective is to minimize the time taken by the last 
robot to reach the goal. In [12], the performance measures 
are aggregated to yield a single objective. When individual 
objectives are combined, certain information about potential 
solutions and alternatives is lost (for general discussions, see 
[7, 10, 131). For a given a vector of independent objective 
functionals, we show that there exists a natural partial or- 
dering on the space of motion plans, yielding a search for the 
set of minimal  motion plans. 

In addition to introducing multiple-objective optimality 
to the multi-robot geometric motion planning, we expand 
the traditional view of centralized and decoupled planning 
by considering these two approaches as opposite ends of a 
spectrum. An approach that weakly constrains the robot 
motions before considering interactions between robots could 
be considered as lying somewhere in the middle of the spec- 

trum. By utilizing this view, we show that many useful so- 
lutions cart be obtained by constraining the robots to lie on 
independent, configuration space roadmaps. A roadmap is a 
one-dimensional network of curves, which is practical to uti- 
lize for ouii context since several general methods exist that 
produce thisem. 

2 General Concepts 
We first; introduce some common geometric motion plan- 

ning termknology. We consider each robot, Ai, as a rigid 
object, capable of moving in a workspace that contains static 
obstacles. The position and orientation of the robot in the 
workspace are specified parametrically, by a point in an n- 
dimensional configuration space, C“ The free configuration 
space, e,,,, represents the open set of configurations in which 
Ai does not collide with an obstacle. In this work, we allow 
a robot to move in C v a l i d ,  which is the closure of Cf,,, (i.e., 
includes t h e  boundary of CiTee) .  

We next define a state space, X ,  that simultaneously rep- 
resents the configurations of all of the robots: 

X = X ’ x X 2 x . . . x X N ,  (1) 

in which each xi E X i  represents the configuration of Ai. We 
can take X i  = Cia l id ,  or further restrict X i  to be the image 
of a path lor roadmap, as discussed in the coming sections. 
We use the notation di(zi) to refer to the transformed robot, 
Ai, at configuration xz. 

Let -4: denote the interior of Ai (i.e., the open set corre- 
sponding to the exclusion of the boundary of Ai). We define 
(see Figure 1) 

which represents the set of states in which robots i and j 
collide. The implication of using the interior of A; is that we 
allow the robots to “touch”. The collision subset, Xcoll c X 
is represented as the open set, 

A state is in the collision subset if the interior of two or more 
robots intersect. We define Xvalrd as the closed set, X-Xcoii. 
Figure 1 shows the cylindrical structure that Xcoll retains, 
which is exploited in our algorithms to significantly reduce 
the number of collision detections. 

We consider a state trajectory as a continuous mapping 
z : [0, T ]  + X .  A trajectory for an individual robot is repre- 
sented as x i  : [0, TI + X i  (a final time, T ,  is presented only 
to prevent ithe consideration of limits). 
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Figure 1. The set X z l l  and its cylindrical structure in X .  

The motion of an individual robot, A;, is specified through 
the state transition equation, 

2 ( t )  = fi(zi(t),ui(t)) (4) 

in which ui(t) represents a control func t ion  for Ai, which is 
chosen from a set of allowable controls. 

We assume that the dynamics are negligible, and a robot. is 
capable of switching between a fixed, maximum speed, IIv' 11, 
and remaining motionless (this represents a typical assump- 
tion in geometric motion planning [2, 6, 81). We next express 
the performance criteria for the robots. For each robot, Ai, 
we define a loss functional of the form 
Li (2 in i t ,  2 g o a I ,  ul, . . . , U N )  = 

~ T y ' ( t , z i ( t ) , h ( t ) ) d t  + C c ' j ( z ( . ) )  +$(z'(T)), (5) 
i#i 

which maps to the extended reals, and @(z(.)) = CQ if 
z ( t )  2 Xyal id ,  and zero otherwise. Also, qa(zi(T)) = 0 if 
~'(2') = zboal, and CO otherwise. The function gi represents 
a continuous cost function, which is a standard form that 
is used in optimal control theory. We additionally require, 
however, that 

g i ( t , z i ( t ) , u i ( t ) )  = o if zi ( t )  = ziOa1. (6) 

This implies that no additional cost is received while robot 
Ai "waits" at zZgoal until time T .  The middle term in (5), pe- 
nalizes collisions between the robots. The function qi (zi((T)) 
in (5) represents the goal in terms of performance. If a robot, 
Ai, fails to achieve its goal z60al, then it receives infinite loss. 

2.1 A Proposed Solution Concept 

Suppose that a coordination problem has been posed 
in which the state space, X ,  is defined, along with ini- 
tial and goal states, zinit and zgoal. We will use the no- 
tation yi to refer to a robot strategy for d,, which repre- 
sents a possible choice of control, function that incorporates 
state feedback, represented as uz(t )  = y ' ( z , t ) .  We refer to 
y = {y', y 2 , .  . . , yN} as a strategy. Let r denote the set of all 
allowable strategies. 

A stationary strategy is a special form of strategy that de- 
pends only on state, and not on a particular time. For the 
motion planning problems that we consider, the solutions are 
naturally stationary. If T = CO, and f "  and g* are time invari- 
ant, then the resulting solution strategies will be stationary. 
This is true since the objectives ( 5 ) ,  and the effects of the 
control ui(t) on the system, remain invariant through the 

passage of time. The algorithms that we present in Sections 
3-5 can be extended to handle time-varying nonstationary 
problems. 

For a given $init and strategy y, the entire trajec- 
tory, z( t ) ,  can be determined. If we assume that xinit 
and zgoal are given, then we can write Li(y) instead of 
Li(zinit, zgoai, ul, . . . , #). Unless otherwise stated, we as- 
sume in the remainder of the paper that Li (y )  refers to the 
loss associated with implementing y, to bring the robot from 
some fixed zinit to zgoal. Hence, we can consider the loss 
functional as a function on r. 

In general, there will be many strategies in I? that produce 
equivalent losses. Therefore, we define an equivalence rela- 
tion,,-L, on all pairs of strategies in I?. We say that y N L  y' 
iff L'(y) = Li(y') V i  (i.e., y and y' are equivalent). The 
equivalence relation, NL,  induces a partition of into classes 
that produce equivalent losses. We denote the quotient strat- 
egy space by TI-, whose elements are the induced equivalence 
classes. An element of r/- will be termed a quotient strategy 
and will be denoted as [ T I L ,  indicating the equivalence class _ -  
that contains y. 

We define a partial ordering, 5 ,  on the space PI-, The 
minimal elements with respect to  r/- will be considered 
as the solutions to our problem. For a pair of elements 
[y]~,[y']~ E r/- we declare that [y]~ 1' [ y ' ] ~  if Lz(y) 5 
L'(y') for each i. If it further holds that L J ( y )  < LJ(r ' )  
for some j ,  we say that [ y ] ~  is better than [ y ' ] ~ .  Two quo- 
tient strategies, [ y ] ~  and [ y ' ] ~ ,  axe incomparable if there ex- 
ists some i , j  such that L a ( y )  < La($)  and L J ( y )  > L'(y ' ) .  
Hence, we can consider [ y ] ~  to be either better than, worse 
than, equivalent to, or incomparable to [ y ' ] ~ .  We can also 
apply the terms worse and better to representative strategies 
of different quotient strategies; for instance we could say that 
y is better than y' if [ y ] ~  5 [y' L. We say that [ y * ] ~  is a mzn- 
imatstrategy if for all [y]~ # I y * ] ~  such that [ y ] ~  and [ y * ] ~  
are not incomparable, we have [ y * ] ~  5 [y]~. 

2.2 Related Forms of Optimality 

In this section we briefly state how the minimal strategies 
relate to optimality concepts from multiobjective optimiza- 
tion and dynamic game theory. See [7] for a more detailed 
discussion. The minimal quotient strategies are equivalent 
to  the nondominated strategies used in multiobjective opti- 
mization and Pareto optimal strategies used in cooperative 
game theory. Furthermore, it can be shown that the minimal 
strategies satisfy the Nash equilibrium condition from non- 
cooperative game theory, which implies that for a strategy 
y* = {y'* . . . yN*), the following holds for each a and each 
ya E r f :  

Lt(y1*, . . . ,y'*, . . . 7") 5 Lyyl*, . . . ) Y E , .  . .yN*). (7) 

We can also consider the relationship between our mini- 
mal strategies, and scalar Optimization. In multiobjective op- 
timization literature, this is referred to as scalarzzatzon [lo], 
in which a mapping that projects the loss vector to a scalar, 
while guaranteeing that optimizing the scalar loss produces a 
nondominated strategy. This is advantageous since standard 
optimization techniques can be applied to produce a mini- 
mal strategy. The tradeoff, however, is that the scalarizing 
function selects only a single minimal strategy. This makes 
the particular choice of a scalarizing function crucial, and 
information about the solution alternatives is lost. 

We present a linear scalarizing function for which we have 
shown that optimizing the scalar objective yields a minimal 
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strategy. This function is used in Section 5, in an algorithm 
that determines minimal solutions. Consider a vector of pos- 
itive, real-valued constants, = [PI  PZ . . . P N ] ,  such that 
llpll = 1. If we take pi = for all i E ( 1 , .  , , , N } ,  then 
the scalarizing function produces the average loss among the 
robots. In principle, this scalarizing function could be con- 
sidered as a flexible form of prioritization. It has been shown 
that for a fixed p, if y* is a strategy that minimizes H ( y , P ) ,  
then the quotient strategy, [ 7 * ] ~  is minimal [7]. 

3 Motion Planning Along Fixed Paths 

In this section we consider the problem of coordinating the 
motions of multiple robots, when each robot is independently 
constrained to traverse a fixed path. This work makes new 
contributions to the problem of coordinating multiple robots 
along fixed paths. First, we generalize the coordination space 
to more than two robots by exploiting the cylindrical struc- 
ture of Xcoll. The principle of optimality is then applied 
to yield an algorithm that determines all minimal quotient 
strategies. This algorithm can be specialized through scalar- 
ization to a standard dynamic programming algorithm, in 
which A* search could be used to guide computation,. 

We assume that each robot, &,,is given a path, T',  which 
is a continuous mapping [O, 11 + Ctal;d. Without loss of gen- 
erality, assume that the parameterization of T~ is of constant 
speed. Let Si = [0 ,1]  denote the set of parameter values 
that place the robot along the path 7'. We define a path 
coordination space as S = S' x S 2  x . . . x S N .  

A strategy y E r must be provided in which sinit = 
( O , O , .  . . , 0) and sgoal = ( 1 , 1 , .  . . , l ) ,  and the robots do not 
collide. This corresponds to moving each robot from ~ ' ( 0 )  to 
ri(l), and we assume that a robot, Ai,, monotonically moves 
toward ~ ~ ( 1 ) ;  waiting at a particular T ' ( s )  for some si E ( 0 , l )  
is also allowed. Each T ~ ,  is assumed to be a solution to the 
basic motion planning problem for Ai (with the other robots 
removed). 

We perform a discrete-time analysis of this problem (sim- 
ilar to that of [SI). The tradeoff is that general com- 
pleteness is sacrificed, and replaced by resolution complete- 
ness, which is typically applied to approximate decompo- 
sition methods. Thus, S is represented by a finite num- 
ber of locations, which correspond to possible positions 
along the paths at time k A t  for some k. For each robot, 
say A', we partition the interval S' = [0,1] into values 
that are indexed by i' E { 0 , 1 , .  . . , ikaz}, in which ikaz is 
given by 1Zength(7')/ l lw1llAtJ.  Each indexed value yields 
T~ (2' llul IlAt/Zength(T')) .  We denote the discrete-time ver- 
sion of the path coordination space as S =-S' x S2 x . . . x S N .  
This yields a restricted space of strategies I' r. We consider 
sc0ll and Sva l ,d ,  however, as continuous subsets of S. These 
can be considered as approximate, cellular representations of 
Scoll and &&d, respectively (in which cell boundaries are 
determined by elements in 3). 

During the time interval [(k - l)At,  k a t ]  each robot can 
decide to either remain motionless, or move a distance llwillAt 
along the path. The choice taken by a robot, Ai, is referred 
to as an action, which is denoted at stage k as U;.  The 
set of actions for the robots at a given stage is denoted by 
'ilk = { U ; ,  . . . ,U:}. The choices for U ;  can be represented as 
0, for no motion, and 1 to move forwFd. We can specialize 
(4) to obtain the next state from ?(s i ) ,  with action U;: 

We cart approximate (5), in discrete time as 

in which 

g y t ,  X i @ ) ,  Ui(t))dt 
4k:l;At 

I ; ( &  U:) = 

and 

0 
oc) otherwise 

if z( t )  # Sz,, V t  E [(k - l)At, kat] C Z ( X ( . ) )  := 

The I t  ancl qi terms of (9) comprise the standard terms that 
appear in a discrete-time dynamic optimization context [l].  
The middle term, cy represents the interaction between the 
robots, by penalizing collision. As will be seen shortly, 1; 
will typically be considered as a constant, which for instance, 
measures time. 

We next present an algorithm that determines all of the 
minimal quotient strategies in F/-. We apply the princi- 
ple of opt,iimality (see [4] for background) to our partially- 
ordered space of strategies (i.e., portions of minimal strate- 
gies are rniinimal). Both Sc0ll and S are represented with N- 
dimensional arrays. A strategy y E r must insure that the 
robots do :not collide during the transitions from X k  to Z k + l .  
(i.e., ~ ( t )  does not produce a collision Vt E [(k - l )At,  k a t ] ) .  
In practice, this computation depends on the type of curve 
T', the geometry of Ai, and the type of transformation that 
is performed to obtain Ai(z')). 

We construct a data structure that maintains the com- 
plete set airminimal quotient strategies from each discretized 
value, B E S. Each position B = (sl, s2, .  . ~ , s") in the coordi- 
nation space S will contain a list of minimal strategies M ( F ) ,  
which reach ( 1 , 1 , .  . . , 1 )  from 3. In M ( 3 ) ,  we have only one 
representattive strategy for each class in f'/-. Each element 
m E M ( s )  is of the form: 

Above, U k  denotes the vector of actions that are to be taken 
by the robots, in the first step of the strategy represented by 
m. Each Li* represents the loss that the robot Ai receives, 
under the implementation of the minimal strategy that m 
represents. Using (8), the actions U k  will bring the system to 
some i'. A t  this state location, there will be a set of strategies 
represented, M(B'), and j above indicates which element in 
M(S')  will1 continue the strategy. 

For a given state, 3, it will be useful to represent the set 
of all states that can be reached by trying the various com- 
binations of robot actions that do not yield a collision (one 
can easily check the array representation of S ) .  We define 
the neighborhood of the state Z, as the set of immediately 
reachable states: 
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in which fk represents the next state that is obtained for 

possible action vectors. 
Consider the algorithm in Figure 2. Only a single iteration 

is required over the coordination space. In Step 1, all states 
are initially empty, expect for the goal state. Lines 5-8 are 
iterated over the entire coordination space, starting at  the 
goal state, and terminating at the initial state. At each 

the minimal strategies at each neighborhood element. 

4 Motion Planning Along Roadmaps 

imal strategies for the case in which the robots are restricted 
to independent This allows many strate- 
gies to be considered than for fixed path coordination, while 
only causing a modest increase in computation, Many of the 
general concepts are similar to those from the last section; 
however, the complicated topological structure of a Cartesian 

the end of the section, several computed minimal strategies 

the vector of robot actions, uk, and U denotes the space of this section we present a method that determines min- 

merit, 5, the minima1 strategies are determined extending product of roadmaps makes this problem more complex. At 

1 
2 For each i' from zf down to 0 do 
3 

Let M ( i g O a l )  = {(0, [O,O, . . . ,O], B)}, and all other M ( 5 )  be 0 

For each i2 from iza= down to 0 do 

4 For each iN from iN down to 0 do 
5 Let i = ( i ' , i ~ ,  . . .  
6 

7 
8 
9 Return M ( 5 i n , t )  

Let Mu be a set of strategies that is the union of M(I ' )  

Construct a set M: be extending the strategies in Mu 
Let M ( i )  consist of all unique-loss minimal elements of A 

for each 5' E N ( i )  

Figure 2. A fixed-path coordination algorithm. 

Consider the extension of some m E M(3')  in which 
6' E N(3).  Let uk be the action such that S' = f (3 ,  m).  Sup- 
pose that m is the ith element in M(B'). When Si' # B ~ o , ~ ,  
each loss for the extended strategy is L6 = Li' + Zi(Bi,ui), 
otherwise, L; = 0. Suppose that m is the jth element in 
M(3') .  The third element of m (recall (12)) represents an 
index, j ,  which selects a strategy in M(S').  

We now discuss how to execute a strategy that is repre- 
sented as m E AI(;). If the action 'uk is implemented, then 
a new state 6' will be obtained. The index parameter, j ,  is 
used to select the j t h  element of M(S') ,  which represents the 
continuation of the minimal strategy. From the j t h  element 
of M(S') ,  another action is executed, and a coordination state 
S" is obtained. This iteration continues until the goal state 
(1,1,. . . ,1) is reached. 

In Figure 3.a we show an example in which there are three 
robots. The initial positions are indicated in Figure 3.a: AI 
is black, A2 is white, and AS is gray. Figure 3.b shows the 
computed representation of s. The axes +ow distances along 
the paths. The cylindrical structure in Scoll can be clearly 
observed in this example. The two vertical columns corre- 
spond to the two collisions that can occur between dl and 
Az. Each of the two horizontal columns represents collisions 
of As with AI or Az. There are two minimal quotient strate- 
gies for this problem, for which representative strategies are 
depicted as paths in the coordination space. 

a. b. 
Figure 3. A coordination space for a three-robot problem. 

are shown. 
We consider a roadmap,for Ai. to be a collection ,of curves, 

T ,  such that for each ~ j "  E T ,  ~ j "  : [0,1] -+ C:azid. We 
assume (without loss of generality) that each parametrization 
is of. constant, speed. The endpoints of some paths coincide 
in Ctal id  = X " ,  to form a network. 

We let Ri denote a set that represents the union,of 
transformed domains of the paths in 7". Using the W's, 
we can describe a roadmap coordination space, R = R1 x 
R2 x ... x RN.  We can specify a position r E R by 
r = (r1,r2, . . . ,rN; sl, s 2 , .  . . , s N ) .  Each r2 specifies the 
path in Ri that Ai has chosen, while each si specifies the 
position of the robot along that path. A problem is specified 
by providing an initial configuration, Tinit E 'R', and a goal 
configuration T ~ , , ~  E RZ for each robot, A;. 

and 7?, 
which are similar to scoll and S. We build one array for each 
combination of path choices for the robots, each of which can 
be constructed in the same manner as for scoli and S. This 
representation can be intuitively be thought of as a network 
of coordination spaces that exists in RN. 

There are two primary differences between the roadmap 
coordination problem and the fixed path coordination prob- 
lem. The first difference is that robots on '72 are allowed 
to move in either direction along a path, usually resulting 
in 3N - 1 choices for uk as opposed to 2 N  - 1 (there even 
more choices when one or more robots moves into a junction, 
because a new path must be selected). This leads to more 
complicated strategies; for instance, if &(xi, U ; )  = At, then 
there will in general exist minimal strategies in r that cause 
one or more robots to oscillate on a path. The second major 
difference is the complicated topology of R, which leads to a 
complicated neighborhood structure. 

A set of 
roadmap coordination states, termed a wavefront, Wi, is 
maintained in each iteration. During an iteration, the com- 
plete set of minimal strategies is determined for each element 
of Wi. The initial wavefront, WO, contains only the goal state. 
Each new wavefront Wi is defined as the set of all states that: 

We construct the discrete representations, 

We now describe the algorithm in Figure 4. 

1) can be reached in one stage from an element in W,, and 
2) are not included in any of W,-I ,  . . . , WO. The algorithm 
terminates when all states have been considered. This algo- 
rithm could be viewed as a multiple-objective extension of 
the wavefiont algorithm that is used in [3]. 

We present some computed examples that were obtained 
with the algorithm in Figure 4. Figure 5 presents one minimal 
strategy in a roadmap coordination problem that involves 
three robots in S3, with different roadmaps for each robot. 

Figure 6 presents an example in which there are two robots 
in the plane that move along independent roadmaps. The 
configuration spaces of the individual robots is three dimen- 
sional in this case because robots can rotate while moving 
along the roadmap. There are five minimal quotient strate- 
gies for this problem, and the two that are shown do not 
require either robot to wait. Quite distinct routes, however, 

' 
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- 
1 
2 
3 
4 
5 
6 

7 
8 
9 
10 

11 

Initialize 7i 
Let WO = {?init} 
i = O  
Until Wi = 0 do 
For each i E W ;  do 

Let M,, be a set of strategies that is the union of M ( i ' )  

Construct a set MA by extending the strategies in Mu 
Let M ( i )  consist of all unique-loss minimal elements of M: 
Let i = i + 1 

Let W; be set of all neighbors of W;-1 that have not yet 

for each i' E N(F) 

been processed 
Return M(P;,;t)  

Figure 4. An algorithm for independent roadmaps. 

are taken by the robots in the different strategies. 
Figure 7 shows an "H"-shaped roadmap coordination so- 

lution with rotating robots (from left to right). This problem 
is perhaps one of the most complex in terms of solution al- 
ternatives; one minimal quotient strategy out of sixteen is 
represented in the figure. 

5 Centralized Motion Planning 

In this section, we present an algorithm that determines 
one minimal strategy on the unconstrained state space, X = 
C:&d x C;&d x . - x c&d. We present some computed ex- 
amples for the case in which there are two translating robots 
in S2. 

A vector p is chosen such that a linear scalarizing function, 
H ,  is defined. We allow each robot goal to be a subset, X &  C 
X ' .  We approximate (4) by discrete-time state transition 
equations, z ; + ~  = f:(z;,u;). We define the action space 
for robot A' as Ut = [0,2?r) U (0). If U; E [0,2?r), then A' 
attempts to move a distance Ilv'llAt toward a direction in C', 
in which IIv'(l denotes some fixed speed for d'. If U; = 8, 
then the robot remains motionless. 

Suppose that at some stage k, the optimal strategy is 
known for each stage i E {k, . . . , K } .  The loss obtained by 
starting from stage k, and implementing the portion of the 
optimal strategy, {T;,. . . , -&}, can be represented as 

(14) 
k'=k 

The function L : ( z ~ )  is sometimes referred to as the cost-to- 
go function in dynamic optimization literature [4]. For this 
context, we modify the definition of qi(zk+l), by replacing 
~ ' ( 2 ' )  = xioal with ~ ' ( 2 ' )  E XA.  

We can convert the cost-to-go functions into a scalar func- 
tion by applying H ( T ,  p) to obtain 

N 

i= l  

Above, Hkf represents a single cost-to-go function, which im- 
plicitly assumes that p is given. 

The principle of optimality [l] implies that f f i ( z k )  can be 
obtained from H,'+,(.) by selecting an optimal value for U k .  
The following recurrence represents the principle of optimal- 
ity for our context: 

I 

I 3. 

6. 
I 

Figure 5. A representative of one of four minimal quotient 
strategies. 

H i ( Z k )  = minukEu 

f N  N 

i= l  j#i 

(16) 
For each choice of U k ,  Z k + l  is obtained by applying fl for 
each i E {I., . . . N } .  The boundary condition for this recur- 
rence is given by applying the scalarizing function to the q% 
The cost-to-go function HT(z1) shares similarities with the 
concept of a global navigation function in motion planning 

We determine optimal strategies numerically, by succes- 
sively building approximate representations of Hi for each 
dynamic programming iteration. We obtain the value for 
H ; ( z k )  by computing the right side of (16) for various values 
of U k ,  inchiding U k  = 0. The value for H; ( Z k )  is obtained by 
linear interpolation. For a stationary strategy, the optimal 
action uh, does not depend on the stage index, k. Hence, 
we perform dynamic programming iterations over the state 
space untill there are no locations at which is less than 
H i .  To execute a strategy, the robots use the final cost-to-go 
representation, which we call H ; .  The optimal U k  can be 
obtained from any real-valued location z E X though the use 
of (16), linear interpolation, and the approximate represen- 
tation of Er: .  

We present two computed examples that were obtained 
with the algorithm described in this section. Both examples 
involve motion planning for two robots, which are allowed 
to independently translate in R2 (without restriction to a 

~91. 
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Figure 6. Two of five solutions. 

Figure 7. One of sixteen solutions. 

path or roadmap). For the problem in the left of Figure 
8, we set PI = /32 = !j. In the solution, neither robot is 
required to wait; they move around each other. Figure 8 
shows another com uted example. The first solution is found 
when = /32 = 5, which is equivalent to minimizing the 
total a re ate time. The second solution corresponds to 
p1 = & and /32 = &. For this case dl (which is initially the 
rightmost robot) receives a greater priority, and is allowed to 
execute its time-optima1 solution, while A2 is forced to wait, 

? 
Bg 

6 Conclusions 
We have presented a general method for multiple-robot 

motion planning that is centered on a concept of optimality 
with respect to independent objectives. Strategies are deter- 
mined that simultaneously optimize an independent perfor- 
mance criterion for each robot. In addition, a general spec- 
trum has been defined between decoupled and centralized 
planning, in which we introduce optimal coordination along 
independent roadmaps. 
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