
An Efficient Hybrid Planner in Changing Environments 

Michael Barbehemi  Pang C. Chent Seth Hutchinson1 

$Artificial Intelligence Group 
The Beckman Institute for Advanced Science and Technology 

University of Illinois at Urbana-Champaign 
Urbana, IL 61801 

tSandia National Laboratories 
Albuquerque, NM 87185 

Abstract 
In this paper, we present a new hybrid motion planner 

that i s  capable of exploiting previous planning episodes 
when confronted with new planning problems. Our  ap- 
proach i s  applicable when several (similar) problems are 
successively posed for the same static environment, or 
when the environment changes incrementally between 
planning episodes. At the heart of our  system lie two 
low-level motion planners: a fast ,  but incomplete plan- 
ner  (which we call LOCAL), and a computationally costly 
(possibly resolution) complete planner (which we call 
GLOBAL). W h e n  a new planning problem i s  presented to  
our planner, an efficient meta-level planner (which we 
call MANAGER), decomposes the problem into segments 
that are amenable t o  solution by LOCAL. This  decompo- 
sition is made by exploiting a task graph, in  which suc- 
cessful planning episodes have been recorded. I n  cases 
where the decomposition fails, GLOBAL i s  invoked. The  
key t o  our planner’s success i s  a novel representation of 
solution trajectories, in which segments of collision-free 
paths are associated with the  boundary of nearby obsta- 
cles. Thus  we effectively combine the efficiency of one 
planner with the completeness of another t o  obtain a 
more efficient complete planner. 

1 Introduction 
Robot motion planning is the problem of computing 

a collision-free trajectory from one robot configuration 
to another. Although some work has been done to cope 
with changing environments in which the changes are 
known completely in advance e.g. [5, 7, 61, little work 
has been done to cope with environments that change 
in unknown ways. Some local planners are able to cope 
with environments changing in unknown ways e.g. [lo] 
but suffer from problems of local minima. 

The basic idea for this paper is given in [3, 41, which 
describe the integration of an efficient local planner with 
a global planner to produce a more efficient global plan- 

ner for robot manipulators. In this paper, we present a 
full implementation for mobile robots, and extensions. 

This paper addresses three issues in robot motion 
planning. (1) We address the issue of solving many dif- 
ferent planning problems in a given environment. Thus 
we want to save the results from solving one planning 
problem 80 that they can be applied to help solve sim- 
ilar planning problems in the future. (2) We address 
the issue of making use of multiple planning methods 
so that each method can be used to its best advantage. 
In particular, we present a hybrid planner that relies on 
a local planner for efficiency and a global planner for 
completeness. This results in a new, faster, global plan- 
ner. We do not study the selection of one planner over 
another, nor how to decompose a planning problem into 
subprablems, each specially suited for particular plan- 
ners e.g. [9]. (3) We address the impact of incrementally 
changing environments on our saved planning results. 

In this paper, we examine the problem of a polygonal 
robot amid polygonal obstacles in the plane. We reduce 
this problem to  that of finding a path in the three di- 
mensional configuration space of the robot, C = R2 x S’ . 
All configurations q E C for which the robot intersects 
some obstacle belong to the set of configuration space 
obstacles, denoted by CB. For all other configurations, 
the robot is in free space, denoted by Cfree. A planning 
problem is specified by an initial and a goal configura- 
tion, qinit  and qgoal respectively. A solution trajectory 
is a continuous mapping T : [0,1] -+ Cj,,,, such that 
~ ( 0 )  = qinit and ~ ( 1 )  = qgocl. Because obstacles are al- 
lowed to move between planning problems, CB and CJ,,, 
change incrementally over time. 

In this paper, as in [3, 41, we will restrict our atten- 
tion to a single global planner and a single local planner, 
which we will refer to here collectively as “the workers.” 
The local planner (LOCAL) is assumed to be extremely 
fast, but incomplete; the global planner (GLOBAL) is 
assumed to be quite slow but complete. The implica- 

2755 
1050-4729194 $03.00 0 1994 IEEE 



tion here is that LOCAL can only solve a small number 
of planning problems by itself. The fundamental goal 
of this paper is to give an effective mechanism through 
which LOCAL can be used to solve many different plan- 
ning problems over time, in an environment in which the 
obstacles are not (necessarily) stationary. This mechzG 
nism is itself a planner that is responsible for coordinat- 
ing and delegating planning problems to the workers. 
We will refer to this top-level planner as “the manager.” 

The manager (MANAGER) maintains an abstract task 
graph with which it keeps track of planning problems 
LOCAL is known to be able to solve. Each vertex v E V 
in the task graph 7(V, E) represents a robot configura- 
tion q ;  and each edge ( u i , u j )  E E in 7 indicates that 
LOCAL is able to solve for the robot motion from the 
configuration associated with one vertex to the configu- 
ration associated with the other. Task graphs are similar 
to, for example, the connectivity graph of free epace for 
an exact cell decompmition method. In that case, the 
configurations associated with vertices are the sample 
points for each cell of the cylindrical algebraic decom- 
position, and edges connect the vertices corresponding 
to adjacent empty cells [ll, 11. 

Given a plannin problem ‘move from robot configu- 

solve directly) the manager searches 7 for a sequence of 
subproblems that, when given consecutively to LOCAL, 
will solve the overall planning problem. There are three 
phases to this process. 
1. MANAGER finds a starting vertex vi in 7 such that LOCAL. 

can solve for the robot motion between ginit and Vi. 

2. MANAGER finds a goal vertex vg in 7 such that LOCAL. 
can solve for the motion between vg and qgool. 

3. MANAGER finds a path in 7 connecting vi and up. 
Thus MANAGER is able to use LOCAL to solve a plan- 

ning problem that LOCAL is unable to sblve by itself. In 
the event that MANAGER lacks suflicient information to 
enable LOCAL to solve the planning problem, MANAQER 
invokes GLOBAL to  solve the planning problem. In this 
case MANAGER incorporates the resulting solution tra- 
jectory into 7 for future reference. How this is done wil l  
be discussed in Section 2. 

The process, outlined in steps 1-3 above, is quite sim- 
ilar to planning methods that rely on a global roadmap 
of free space, such as a Voronoi diagram. For example, 
first the initial and goal configurations are “retracted” 
onto the roadmap, and then the roadmap is searched for 
a connecting path. 

The task graph will change dynamically over time in 
two ways. (1) The solution trajectory returned by 
GLOBAL is decomposed by MANAGER into subproblems 
suitable for LOCAL. New vertices are created to repre- 
sent the initial and goal configurations of the subprob- 
lems, and added to 7. New edges are created to inter- 
connect the new vertices, and to connect the new ver- 
tices with the old. (2) As obstacles move, portions of 7 
may become invalid. The configurations associated with 
vertices may no longer be in C f r e e ,  or LOCAL may no 

ration qinjt to con a guration qgoal” (that LOCAL cannot 

longer be able to solve the planning problem represented 
by an edge. 

The task graph is not necessarily connected, even if 
free space i s  connected. The task graph represents por- 
tions of trajectories in the robot’s configuration space 
that have been computed during previous planning 
problems. Only those trajectories for planning prob- 
lems that LOCAL is unable solve on its own are saved in 
7. Not only is 7 limited to the set of planning problems 
that have occurred, but also by how they have been in- 
corporated into 7. This will be discussed in more detail 
in the remaining sections. 

In this paper we will address the underlying imple- 
mentation issues that make this approach both feasible 
and practical. The remainder of the paper is organized 
as follows. In Section 2, we describe the manager in 
detail. Section 3 examines the nature and structure of 
7. Then Section 4 evaluates several methods of saving 
planning results. In Section 5 we present an efficient 
storage mechaniem which allows effective use of LOCAL 
to obtain an efficient and complete planner. Finally, 
Section 6 gives our conclusions. 

2 The Manager 
The manager is the primary planner responsible for 

solving a given planning problem. The manager solves 
a planning problem by coordinating the efforts of the 
workers. In this paper we expect MANAGER to  optimize 
planning time, rather than solution quality (e.g. execu- 
tion time or trajectory length). Thus we assume that it 
is always best to  use LOCAL whenever possible. 

The first thing MANAGER does with a new planning 
problem is see if LOCAL can solve the planning problem 
outright. If LOCAL succeeds, nothing more is done. In 
general, storing such “easy” planning problems increases 
the size of 7 without contributing to the completeness 
of the MANAQER-LOCAL team, so such solutions are not 
added to 7. 

If LOCAL cannot solve the problem on its own, 
MANAGER follows the three steps described in Section 1. 
Note that following the three steps is not necessarily a 
straight-forward process, as is illustrated in Figure 1. In 
the figure, C = R’, and qinit and qgoai are depicted as 
hollow circles. Also in the figure, the vertices in 7 are 
depicted by solid circles, and the edges, which represent 
linear trajectories, are depicted by solid line segments. 
Potential trajectories between qini: and V i  and between 
vg and qgoal are drawn with dotted lines. If no path ex- 
ists between vertices vi and up in 7, then other choices 
for ui and/or ug must be made. Let V;. be the set of 
all vertices vi such that LOCAL can solve for the robot 
motion between qinit and vi; and let V, be the set of all 
vertices vg such that LOCAL can solve for the robot mo- 
tion between vg and qgool. In the worst case, all possible 
pairings between vertices in V;. and Vg must be exam- 
ined in the search for a path. Note, however, that we 
can eliminate from E and V, all but a single member 
from each connected component of 7. Similarly, we can 

2756 



Figure 1: Multiple Initial and Goal Vertices in a Dis- 
connected Task Graph. 

compute the connected components of 7 and restrict 
our search for vi and vg to each component in turn. In 
Figure 1 , l4 = { v1 , v z )  and V, = ( U S ,  uq}. 

The manager does not know a priori which obstacles 
will move, how they will move, or by what magnitude 
they will move. It is assumed that the obstacles will not 
move during the course of planning or execution, and 
that all obstacle locations are always known at planning 
time. 

Changes in the robot’s environment may result in the 
invalidation of some of the solutions stored in 7. If, in 
the course of planning, an edge or a vertex is discovered 
to be invalid, it is deleted from 7. Once MANAGER has 
obtained a path in 7, the subproblems represented by 
the path must be verified by LOCAL. If some vertex 
or edge is invalid, an alterate path must be found. By 
dynamically maintaining the shortest paths tree in 7, 
the best path is always immediately available [2]. 

An important part of the manager’s task is to cache 
for future use solutions computed by GLOBAL. If 
GLOBAL yields a solution trajectory r ,  the manager de- 
composes T into subproblems suitable for LOCAL. The 
manager then incorporates these subproblems into 7 for 
future use. If, for example, GLOBAL returns piecewise 
linear solutions in Cj, , ,  , = qlqz  - . qn and LOCAL can 
execute any linear trajectory, then an obvious decom- 
position suitable for LOCAL is the sequence of configu- 
rations q 1 , 4 2 , .  . .qn. In this case, the configurations will 
be associated with new vertices v l , v 2 , .  . .U,; and new 
edges will be created at least between each consecutive 
pair of new vertices. Additional edges might also be 
created between new vertices and other vertices in 7. 

In general, MANAGER must verify the decomposition 
by having LOCAL solve the proposed subproblems. In 
our example, LOCAL would be asked to solve the n - 1 
problems: q1 to q z ,  q2 to q3, and so on, edges and vertices 
being created only after LOCAL has demonstrated its 
ability to solve the corresponding problem. 

The basic issues that must be addressed for an effi- 
cient implementation of MANAGER are efficient storage 
and retrieval of previous solution trajectories ri found 
by GLOBAL, and effective selection of vertices from ri. 
To understand these issues better, we must look at the 

basic quantities that are being manipulated, and how 
they are affected by incremental changes in the robot’s 
environment. There are three general issues that must 
be addressed in the context of moving obstacles: the 
size of VI the density of E, and the representation of 
configurations associated with V. 

3 Task Graph Flexibility and 
Redundancy 

Ideally, we would like 7 to represent the topology of 
Cjree in some minimal way. So, it would be best if 7 
had as few vertices as possible. Fewer vertices mean less 
computational overhead due to graph maintenance. Ex- 
tra edges, on the other hand, provide shorter solution 
trajectories, in general, and add redundancy in case ob- 
stacle motion invalidates some edges. 

When MANAGER incorporates a solution trajectory 
returned by GLOBAL, new vertices are added to 7. In 
order to introduce as many edges as possible, for each 
new vertex v added to T, new edges need to be created 
connecting v to  every vertex U’ in I such that LOCAL 
is able to plan the motion between v and U‘. In other 
words, MANAGER needs to have LOCAL attempt to solve 
[VI planning problems for each new vertex, where IVI is 
the number of vertices currently in 7. 

In order to maintain as few vertices as possi- 
ble, MANAGER must be conservative when it decides 
whether a new vertex v needs to be introduced into T. 
Let the neighborhood of a vertex U be the union of { U )  

with the set of vertices to which edges can be found. One 
criterion for deciding whether to introduce a new vertex 
into 7 is to compare the neighborhood of v with that of 
another vertex U ’ .  If one neighborhood is a subset of the 
other, that vertex does not need to be in 7. Assuming 
MANAGER is concurrently introducing as many edges 
as possible, then every graph neighbor of v would need 
to be examined under the neighborhood subset relation. 
The problem with this criterion is that it depends on 
the current vertex set and does not reflect the true ac- 
cessibility of a particular vertex with respect to C j r e e .  
Under this criterion, if there were two vertices in a corri- 
dor, placed on either side of an intersection, MANAGER 
would not introduce a new vertex at the intersection be- 
cause it does not contribute to motion within the corri- 
dor, although such a vertex might be sufficient to enable 
LOCAL to branch into adjoining corridors in the future. 

Another criterion would restrict the neighborhood of 
a vertex to be contained within the current solution tra- 
jectory. In other words, if r = q l q z . .  .qn is the cur- 
rent trajectory, and the configuration associated with v 
is such that LOCAL can plan from some qi-1 to v and 
from v to q i + l ,  then a vertex for qi is not needed. The 
problem with this definition is that it is possible that 
every single configuration on r is needed, but some sub- 
sequence of the configurations on r may not be needed. 

It should be noted that while a graph with a minimal 
number of vertices may seem computationally attrac- 
tive, it is not necessarily a good idea. Besides the extra 

2751 



time spent carefully incorporating new vertices into 7, 
another drawback is the loss of redundancy and flexibil- 
ity alluded to earlier. Eepecially as obstacles move, and 
gaps between obstacles open and close, it is convenient 
to have extra vertices to “tap” into. Specifically, it is 
not the number of vertices we want to worry about, so 
much as it is the selection, or placement, of the vertices. 
We do not addreas vertex selection further here, edges 
are discussed further in Section 5. 

4 Vertex Representation 
This section addresses the issue of how the configura- 

tions associated with the vertices of 7 are represented. 
We also look at how this impacts on 7 for two different 
classea of solution trajectories. 

If the environment is static, then a reasonable im- 
plementation of 7 has robot configurations specified in 
world coordinates associated with the vertices [3, 41. 
This method of storage works especially well with most 
global planners which return solution trajectories that 
give good clearance from obstacles. Such trajectories are 
approximately equidistant from the nearest obstacles, 
with the exception of the trajectory endpoints which 
are influenced more by the initial and goal configura- 
tions than by the intervening obstacles. This storage 
method, in conjunction with such trajectories, provides 
the greatest leeway for obstacles to move without inval- 
idating any edges or vertices in 7, a8 illustrated in the 
leftmost portion of Fi . 

In the figure, C = R so that the obstacles correspond 
to CB; and LOCAL is restricted to linear trajectories in 
Cj, , ,  80 that the edge depicted corresponds geometri- 
cally to  the implicit trajectory. In the figure, both ob- 
stacles can move simultaneously towards the edge the 
full distance separating them ( d / 2  where d is the dis- 
tance separating the two obstacles). The total displace- 
ment allowed is therefore d = d / 2  + d / 2 .  If, on the 
other hand, the solution trajectory is close to CB, then 
some obstacles have great freedom of motion, while oth- 
ers have little. Thk is illustrated in the right half of the 
left-hand side of the figure. This is a very brittle, and 
undesirable, situation in that such edges are at high risk 
of being deleted. In the figure, the lower obstacle cannot 
move towards the edge without invalidating it, while the 
upper obstacle can move the full distance d towards the 
edge. Again, in this case the total displacement allowed 
is d. 

If the environment is dynamic, then not only may 
obstacles move and 90 block the trajectory represented 
by edges, but the configurations associated with vertices 
may no longer be in Cf,,, . This is especially problematic 
for portions of 7 that represent trajectories near CB. An 
alternative approach is recommended in [3, 41, in which 
a configuration associated with a vertex is represented 
relative to the nearest obstacle at the time MANAGER in- 
corporated the vertex into 7. Thus if an obstacle moves, 
the vertices “attached” to that obstacle move with it, 
maintaining their clearance. 

F2 

Mwlmum Minimum Maximum Minimum 
CIWWOO asaranoe Clearurea Clearance 
Path Path Path Path 

Edge Urrpttsohed Attached to Lower Obstacle 

Figure 2: Maximum Simultaneous Displacement of Two 
Obstacles Near an Edge in 7. 

Note that thie “object attachment” sometimes re- 
duces the mobility of adjacent obstacles in the sense 
that they are now more likely to invalidate an edge than 
before. This is illustrated in the right half of Figure 2. 
With object attachment and an edge representing a tra- 
jectory that is equidistant from two obstacles, the total 
displacement is reduced to d/2.  This results from the 
lower obstacle “pushing” the edge upwards as it moves. 
However, for an edge representing a trajectory near CB, 
that obstacle is now free to move the full distance to- 
wards the other obstacle, and vice versa. In contrast, 
the static edges allowed no motion for this obstacle in 
the direction of the edge. In this case the total displace- 
ment allowed is d. This is illustrated on the rightmost 
portion of the figure. 

In cluttered environments, the distinction between so- 
lution trajectories that skirt obstacle boundaries and 
those that maximize clearance becomes blurred. In clut- 
tered environments, most solution trajectories are close 
to obstacles. Once a vertex near an obstacle is attached 
to that obstacle, it will remain near that obstacle. Thus 
both classea of solution trajectories, those with minimal 
clearance, and those with maximal clearance, converge 
to similar representations. 

Another effect of object attachment is that as obsta- 
cles translate and rotate, they might “push,” “pull,” or 
“swing” vertices into other obstacles; and they might 
“stretch” edges across obstacles. This situation is de- 
picted in Figures 3 and 4. In the figures, C = R2, and 
as the shaded obstacle moves, it causes the attached 
vertices, also shown shaded, to move with it. The loss 
of vertices cannot be avoided to a large extent: either 
the topology of Cj,,, has changed, or the vertices are 
too close to other obstacles. The loss of edges can, 
however, be avoided to a large extent. The majority of 
edges are lost due to the interleaving of obstacles along 
the path in 7, as explained below. 

As the solution trajectory winds past obstacles, the 
configurations along the trajectory are associated with 
vertices attached to different obstacles. This interleav- 
ing of obstacle associations can lead to either an unnec- 
essarily high loss of edges when one of these obstacles 
moves, or to a distorted and inefficient solution trajec- 
tory. Two examples of edge loss are depicted in Figures 3 
and 4. Two examples of path distortion are depicted 
in Figures 5 and 6. As one obstacle moves away from 
another obstacle, alternate segments of the represented 

2758 



Figure 3: Loss of Edges and Vertices due to Obstacle 
Translation. 

Figure 4: Loss of Edges and Vertices due to Obstacle 
Rotation. 

trajectory between the two obstacles are pulled in oppe  
site directions, deforming the trajectory into a zig-zag 
pattern. Interleaving is exaggerated when GLOBAL re- 
turns solutions that are equidistant to multiple obstacles 
(yielding maximal clearance), which is common in many 
global planners [8]. 

5 Decoupling Trajectory Segments 
One solution to the problem of interleaving is to de- 

couple motion around obstacles from motion between 
obstacles. One way to achieve this decoupling is to in- 
troduce two tiers of graphs: a high-level plan-graph PI 
and low-level obstacle graphs Q'. As GLOBAL produces 
solution trajectories near obstacle i, vertices attached to 
the obstacle y e  created and added to Q' . The first time 
this occurs, G' is created, and added as a vertex to P .  
Edges are added to Q' to represent trajectories around 
the boundary of obstacle i ;  and edges are added to P to 
represent trajectories between obstacles. 

The task graph relates to P and G' the following way. 
The vertices of 7 are partitioned into sets, one set per 
Q'. For every edge in 7 that connected vertices attached 
to the same obstacle i ,  there might be a corresponding 
edge in Q'. As we will see below, an improved storage 
mechanism allows for a more dense, more systematic, 

Figure 5: Zig-zag Path Produced as a result 
Translation. 

of Obstacle 

Figure 6: Zig-zag Path Produced as a result of Obstacle 
Rotation. 

Figure 7: Ambiguous Plan Graph. 

and more effective set of edges. Associated with the 
edges of P is some extraction from the edges of 7 that 
connected vertices attached to one obstacle with those 
of another. 

This decoupling prevents interleaving as identified 
above. There are no more edges connecting vertices as- 
sociated with one obstacle with vertices associated with 
another obstacle. Instead, all such edges are replaced 
with a single, abstract edge between obstacle graphs. 
Since there are fewer edges corresponding to trajecto- 
ries between obstacles there is less maintenance when 
obstacles move. 

This means of decoupling eliminates interleaving, but 
it introduces the problem of disconnected trajectory seg- 
ments associated with an obstacle. If, for example, the 
robot has approached an obstacle from opposite sides, 
there will be vertices associated with that obstacle that 
cannot be joined by LOCAL. This is illustrated in Fig- 
ure 7. The manager must therefore be able to reason 
about non-simple paths in 'P. One way to do this is to 
annotate each instance of a vertex on the path in P with 
specific obstacle graph entry and exit points e.g. [12]. 
The manager must also be able to identify false connec- 
tions as illustrated in Figure 7. A false connection is a 
path in P that is not supported by the underlying ob- 
stacle graphs. In the figure, there is a plan graph edge 
connecting Q1 with Q2, and an edge connecting Q2 with 
G3, however Gz is disconnected and the plan graph path 
cannot be realized. 

Instead, our manager does not incorporate trajecto- 
ries, or even segments of trajectories, verbatim. The ob- 
stacle graph vertices are maintained sorted by the polar 
coordinates ( r ,  0) of the origin of robot coordinate frame 
relative to the local obstacle coordinate frame, primarily 

2759 



Figure 8: Sample Problem and Environment. 

A 
Figure 9: Resulting Obstacle Graphs and Corresponding 
Plan Graph. 

by the angle 0 and secondarily by distance r .  These val- 
ues are invariant under obstacle motion, as is the relative 
orientation of the robot with respect to the obstacle to 
which it is attached. When a new vertex is introduced 
to an obstacle graph, LOCAL is used to attempt to fully 
interconnect the vertex with its nearest neighbors, both 
radially and, within the same orientation, by distance. 

The plan graph vertices no longer correspond to ob- 
stacle graphs in entirety, but rather to the connected 
components of the obstacle graphs. In this way we 
eliminate the need to reason about non-simple paths 
and false connections in P. All critical relationships are 
made explicit. As new vertices are added to obstacle 
graphs and interconnections added, connected compo- 
nents, and hence plan graph vertices, are merged. Sim- 
ilarly, as obstacle graph vertices are discovered, in the 
course of planning, to  be invalid, they are deleted and 
the connected component subdivided as necessary. 

An example of actual obstacle graphs and the cor- 
responding plan graph our manager creates is given in 
Figure 9 for the planning problem, shown shaded, in Fig- 
ure 8. In this example, the environment consists of a tall 
triangle and a wide rectangle (C = R2 x S’); and LOCAL 
is restricted to linear trajectories in Cfree. The manager 
is asked to solve for the motion of the small rectangle 
from the left side of the triangle to the right side. In this 
example, LOCAL cannot solve the problem by itself, and 
there is no plan graph yet. The global planner returns 
the solution trajectory illustrated in Figure 8 which is 
piecewise linear in Cf,,,. The configurations along this 
trajectory are associated with the obstacles, and an ab- 
stract plan graph is created. These are illustrated in 
Figure 9. 

6 Conclusions 
In this paper we presented a fully implemented hy- 

brid motion planner that exploits the completeness of a 
global planner and the speed of a local planner to form 
a fast global planner that is robust under changing en- 
vironments. The key to the successful implementation 
of the planner lies in the representation of solution tra- 
jectories provided by the global planner for future use 
by the local planner. For our representation we chose 
to maintain a graph of connected obstacle graph com- 
ponents. This allows us to navigate successfully around 
obstacles, even after they have moved. 

Acknowledgements: This research. waa supported by 
the U.S. Department of Energy and Sandia National Labora- 
tories under contract DJCAC04-76DP00789 and the National 
Science Foundation under grant number NSF-IN-9110270. 
This paper benefited from the comments of Y. Hwang and 
P. Xavier, and from the encouragement of D. Strip. 

References 
D. S. Arnon. Geometric reasoning with logic and alge- 
bra. Artificial Intelligence, 37( 1-3):37-60, Dec 1988. 
M. Barbehenn and S. Hutchinaon. Efficient search and 
hierarchical motion planning by dynamically maintain- 
ing single-source shortest paths trees. In IEEE Int’l 
Conf. on Robotics and Automation, vol 1, pages 566- 
571, 1993. 
P. C. Chen. Improving path planning with learning. In 
Proc. Machine Learning Conference, pages 55-61, 1992. 
P. C. Chen. Adaptive path planning in changing envi- 
ronments. Report SAND92-2744, Sandia National L a b  
oratories, 1993. 
M. Erdmann and T. Lozanc-Perez. On multiple moving 
objects. In IEEE Int? Conf. on Robotics and Automa- 
tion, pages 1419-1424, 1986. 
P. Fiorini and Z. Shiller. Motion planning in dynamic 
environments using the relative velocity paradigm. In 
IEEE Int? Conf. on Robotics and Automation, vol 1, 
pages 560-565, 1993. 
K. Fujimura. Motion planning Using transient pixel r e p  
resentation. In IEEE Int’l Conf. on Robotics and Au- 
tomation, vol 2, pages 34-39, 1993. 
J. C. Latombe. Robot Motion Planning. Kluwer Aca- 
demic Publishers, Boston, 1991. 
S. Pandya and S. A. Hutchinson. A case-based approach 
to robot motion planning. In P m .  of the IEEE Int’l 
Conf. on SMC, pages 492497, 1992. 
S. Ratering and M. Gini. Robot navigation in a known 
environment with unknown moving obstacles. In IEEE 
Int’l Conf. on Robotics and Automation, vol 3, pages 

J. T. Schwartz and M. Sharir. On the piano movers’ 
problem: 11. In J. T. Schwartz, M. Sharir, and 
J. Hopcroft, editors, Planning, Geometry, and Complex- 
i ty  of Robot Motion, pages 51-96. Ablex, Norwood, NJ, 
1987. 
D. Zhu and J.-C. Latombe. New heuristic algorithms 
for efficient hierarchical path planning. IEEE Trans. on 
Robotics and Automation, 7(1):9-20, February 1991. 

25-30, 1993. 

2760 


