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Abstract 
In this paper we describe GINKO, an integrated 

learning and planning system that we have applied to an 
autonomous mobile robot domain. The goal of GINKO’s 
learning system is to partition the robot’s Configuration 
space into regionsin which actions exhibit a uniform qual- 
itative behavior. This partitioning is performed by an in- 
ductive learning algorithm that classifies regions of the 
Configuration space with regard to the effects of the robot’s 
actions when executed in those regions. GINKOs learning 
is driven by its attempts to perform tasks. Thus, the 
learned effects of actions are directly applicable to normal 
system performance. 

1. INTRODUCTION 
Many of the potential applications for autonomous 

mobile robots require the robot to function with little or no 
apriori knowledge about its environment. This is true for 
space exploration, undersea applications, and some indus- 
trial settings. To perform effectively in such situations, a 
robot must be able to adapt to its environment in ways not 
necessarily envisioned by its designers. To do this, the ro- 
bot must observe its environment (through external sen- 
sors), and ascertain how environmental features affect its 
performance. This knowledge must then beapplied to new 
problems as they arise. 

In this paper, we introduce GINKO, a system that 
we believe makes a significant step toward this goal. GIN- 
KO combines techniques from machine learning with a 
task planner to learn how to function effectively. Equipped 
with an initial description of the robot’s capabilities, GIN- 
KO is instructed to perform various tasks. This initial de- 
scription takes the form of a set of characteristic regions for 
the actions, where a characteristic region is a region in the 
robot’s configuration space over which the action exhibits 
uniform qualitative behavior. 

Of course we do not expect that GINKO’s planner 
will be able to produce plans for all tasks, since this would 
assume that the system designer anticipated all possible 
contingencies. When the planner fails, GINKO is in a posi- 
tion to leam new ways to achieve goals. There are two 
ways that the necessary knowledge can be acquired: GIN- 
KO can ask for assistance from a human, or it can indepen- 
dently explore possible solutions to the problem. In either 
case, GINKO is able to learn the effects of actions when 
they are executed in different regions of configuration 
space. Thus, the learning component is forced to continu- 
ally refine and improve the set of characteristic regions for 
each action as novel configurations are encountered. 

To illustrate the utility of GINKO’sleaming mecha- 
nism, in the experiments reported in this paper we have 
purposely provided the planner with an inadequate initial 
characterization of the effects of the robot’s actions. For 
example, GINKO is not told that forward progress is 
impeded when an obstacle is encountered. As our experi- 
ments show, such incomplete knowledge causes a number 
of failures, which are subsequently generalized into a set of 
characteristic regions for the actions. The qualitative be- 
havior associated with these characteristic regions is “no 
change in forward position.” 

The remainder of the paper is organized as follows. 
We first give an overview of GINKO, a list of its compo- 
nents, and how they interrelate. We then proceed to devel- 
op the machine learning background necessary to appreci- 
ate the inner workings of the system, its methodology and 
tradeoffs. Finally we discuss related research and present 
some preliminary results of this research effort. 

2. OVERVIEW 
GIN KO (Guided Induction and KnowledgeQrgani- 

zation) is a system for problem solving in domains wherc 
sensor data is continuously available and sufficient for 
proper monitoring of actions. It  is currently being devel- 
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oped on the test-bed of mobile robotics. We assume, for 
the moment, that the robot is the sole agent in a determinis- 
tic world; nothing changes unless the robot effects such a 
change, with the exception of time. Learning how to navi- 
gate is the main focus in this paper. Effective navigation 
requires planning, monitoring, and dynamic response; 
thcse are the subjects discussed herein. 

GINKO consists of four main components. It has a 
set of sensors that continuously monitor the environment. 
It has a memory which is conceptually divided into two 
parts: a set of characteristic regions for each action and a 
description of the associated behaviors (i.e. the description 
of how the actions behave when executed in various re- 
gions of the configuration space), and the sensor data that 
has been collected for each characteristic region. The per- 
formance element, which includes a planner and plan mon- 
itors, is responsible for carrying out tasks in the environ- 
ment. Finally there is an induction component which, 
upon receiving a description of an action’s behavior from 
the performance element, retrieves relevant data points 
(previous sensor readings) and generalizes them to con- 
struct a new characteristic region for the action. This new 
characteristic region can be used in future planning efforts. 

2.1. CONFIGURATION SPACE 

In most robotics literature, a configuration is a geo- 
metric description of the position and orientation of an ob- 
jcc t. Our use of the word is a bit more general. Specifical- 
ly, by a configuration we mean a complete specification of 
the state of the robot. Therefore, in GINKO, since the set of 
values returned by the robot’s sensors define the state of 
the world, a configuration is specified by a tuple of sensor 
values. 

In order to plan a path from an initial configuration 
to agoal configuration, GINKOmustunderstand theeffects 
of taking each action in every intermediate configuration. 
In reality, an action cannot be expected to have identical ef- 
fects in any two distinct configurations, or even the same 
configuration at distinct points in time. For example, at- 
tempting to move forward in a unobstructed situation 
moves the robot forward, but by varying amounts: there 
might be loose dirt or oil on the surface or some slippage in 
a gear meshing. In order to create successful plans under 
such circumstances, the planner would require a complete 
characterization of the effects of each action in every indi- 
vidual configuration in the configuration space. Planning 
with such exactness is intractable; and storing that much 
information exceeds the capabilities of today’s computer 
systems. 

By assuming that executing actions in neighboring 
configurations results in similar behaviors, a great many 
configurations can be described by one contiguous charac- 
teristic region of configuration-space. By a behavior, we 
mean the aggregate qualitative (monotonic) changes ob- 
served in the sensor values. These qualitative changes are 
classified as being either increasing, decreasing, or con- 
stant. More precisely, the sign of the difference between 
every consecutive pair of sensor readings is a qualitative 
vector of change, and this change is referred to as the ob- 
served behavior. In our formulation, we assume that there 
are no temporally distal effects, so that the behavior ob- 
served in each configuration can be attributed to the just- 
executed action. 

These assumptions give GINKO license to general- 
ize beyond what it has observed. Each generalization is a 
hypothesis about the behavior of an action when it is ex- 
ecuted in a particular characteristic region of the confgu- 
ration space. In part, the size and shape of these hypothe- 
sized regions are functions of the representation language 
used by the induction component. Here, each region corre- 
sponds to a conjunction of sensor valueranges. In general, 
there are several disjoint characteristic regions associated 
with a particular qualitative behavior of an action [Ren- 
de11901. 

2.2. INDUCTION 

Induction, in machine learning, is a generalization 
process by which a set of examples is partitioned into con- 
cept classes and a description of each class is obtained. 
(For this paper, a concept class corresponds to a set of char- 
acteristic regions in configuration-space for which an ac- 
tion exhibits uniform qualitative behavior.) One of Ihe 
most difficult problems faced by an inductive learning sys- 
tem is that of accurately partitioning the instance space (or, 
in our case , the configuration space). Optimally, charac- 
teristic regions will be such that the action will exhibit the 
same qualitative behavior when executed at any configura- 
tion in the region. This might be relaxed depending on the 
amount of noise in the sensor values, the description lan- 
guage used, the desired complexity of the description, and 
the desired accuracy. 

Consider the example illustrated by the figure be- 
low. In this example, the mobile robot is placed in a room 
containing two obstacles, both of which are rectangular. 
The robot is told to execute the action that moves it to the 
right in the room. At first, the robot is able to move freely 
to the right (sample data points along this successful path 
are illustrated by the symbol ’+’). After a short while, the 
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first obstacle is encountered, and forward progress is 
halted (these points are illustrated by the symbol '0'). At 
this point, a partition is erected that divides the space into 
two regions, one in which the action has the effect of mov- 
ing the robot to the right, and the other in which the action 
has no effect on the position of the robot. As the robot con- 
tinues roaming about, it will encounter more instances of 
both success and failure, and in the process, new partitions 
will added. The figure illustrates how a number of these 
partitions will be constructed. Notc that all partitions are 
orthogonal to an axis of the configuration space. 

The induction algorithm used by GINKO is a vari- 
ant ofRendell's PLS. (For example, our version uses data- 
directed trial splits rather than fixed increments and has 
been generalized to handle multiple classes.) PLS is ap- 
propriate because it was designed for numeric data and it 
has been shown toperform well [Rendell89]. PLS takes as 
input a list of classified examples and returns a partition of 
instance space that separates examples of different class 
membership. The examples in our system are configura- 
tions that are classified by whether or not executing a spe- 
cified action had a desired effect. 

The action behaviors are analyzed one dimension 
at a time (recall that a configuration is defined by a tuple of 
sensor values, and therefore each sensor defines one di- 
mension in the configuration space). Trial splits are ex- 

amined to see how well they separateregions of the config- 
uration space based on uniformity of action effects. A 
good split produces two regions of high purity (the config- 
urations are classified similarly) to replace one with lower 
purity. The best split for each dimension is kept. When all 
dimensions have been analyzed, the overall single best 
split is erected and the program calls itself recursively on 
each half. The resultant regions (which are hypercubes, 
since all splits are orthogonal to axes of the configuration 
space) can be represented in a decision tree with their asso- 
ciated data. 

The PLS metric for measuring the goodness of a 
trial split, called the dissimilarity, is defined by the func- 
tion d = I log u1 - log u21 - fa log ele2 where ui is a class 
membership probability estimated by the relative propor- 
tion of positive configurations in the region, e, the error 
factor due to finite sample size, and ta the confidence fac- 
tor [Rende1186]. The dissimilarity metric measures the dil- 
ference in the relative proportions of positive examples in 
the two regions. 

Trial splits may be made in various ways. This is 
one source of variation in the partitioning of configura- 
tion-space. When separating configurations of differing 
class membership, there is great freedom in where the 
boundary is placed. A conservative, or pessimistic, algo- 
rithm places the boundary so that it just includes the posi- 
tive configuration-thus by default, all unknown configu- 
rations are negative. A liberal, or optimistic, algorithm 
places the boundary so that it just excludes the negative 
configuration-thus by default, all unknown configura- 
tions are positive. 

2.3. PERFORMANCE ELEMENT 

The plans generated by GINKO consist of se- 
quences of monitored actions. The monitors can be either 
simple predicates that monitor sensor values to determine 
when halting criteria have been achieved, or reactive mon- 
itors that monitor for error conditions and construct local 
recovery plans. 

As new data is acquired (by monitoring the sensors 
during plan execution), it is associated with the character- 
istic regions of the configuration space, as generated by 
PLS. When a datum is misclassified (i.e. associated with a 
characteristic region which has a different associated be- 
havior) the characteristic region is marked as incorrect and 
is eventually repartitioned. Two parameters control the re- 
partitioning process. The strategy for repartitioning is ei- 
ther complete (all of configuration space) or incremental 
(only those regions which are incorrect). The strategy for 
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consistency checking is either active (errors are handled 
immediately) or passive (error correction is deferred). 

3. CONFIGURATION SPACE PLANNING 
The planning technique developed for GINKO is 

termed Orthogonal-Qualitative Backprojection (OQB). 
The definition of an OQB is best introduced by an exam- 
ple. Consider the figure shown below. Here, the robot’s 
task is to move into the indicated region, R,. In order to 
accomplish this, the planner searches its possible actions 
for any action that has an associated qualitative behavior 
that would move the robot into the goal region. The figure 
shows one such characteristic region, R, (the left pointing 
arrow indicates that the direction ofqualitativechange is to 
the left for the particular action when executed from within 
R,). Now, notice that the robot will only move into the goal 
region from this characteristic region if it is in the shaded 
subregion. This shaded subregion is one OQB for the 
goal region. More precisely, the OQB of a particular goal 
region R, with respect to a characteristic region R, is the 
intersection of R, with the extension of R, in the inverse 
direction of the qualitative change associated with R,. In- 
tuitively, an OQB is a region within which executing the 
associated action will head the robot towards the goal. We 
note that if the direction of qualitative change for R, had 
been down and to the left, then the entire region R, would 
be included in the OQB. 

-~ ~ 

The search for a plan is characterized by a subgoal 
region (initially thegoal region), a function thatretums the 
OQBs of the subgoal region for each action, and a stopping 
criterion. Pictured below are theroles of three actions with 
their partitions of configuration space for the given plan- 
ning problem. 

events), whether the next region has been entered, and fi- 
nally, whether the current OQB has been prematurely ex- 
ited. In this latter case, thereactive monitor inserts a patch 
plan to get from the current situation to the next OQB in the 
original sequence. This is a natural solution to the problem 
of ambiguity native to qualitative analysis. 

This view of planning is an integration [Gerva- 
si0901 of classical [Chapman87, Hutchinson90] and reac- 
tive [Agre87, Schoppers871 paradigms. It is classical in 
that regions are chained together to form explanations or 
proofs of success. It is reactive in that, for the most part, the 
exactness and optimality of the plans has been replaced 
with a strong notion of progress. 

4. RELATED RESEARCH 

Research related to that presented in this paper falls 
into a number of broad categories: learning for autono- 
mous navigation in mobile robotics, planning, and induc- 
tive machine learning. In this section we briefly review 
relevant literature from each of these categories. 

Most previous research in learning for autonomous 
navigation has focussed on mapping out previously unex- 
plored terrains. An algorithm to construct symbolic de- 
scriptions of an unknown environment is described in 
[Oommen87]. This algorithm constructs a visibility graph 
of the environment by performing random traversals in the 
environment. A systematic approach to the same problem 
is described in [Rao88], in which the robot visits the vcr- 
tices in the visibility graph in a depth-first manner. Elfes 
describes an approach to building multilevel descriptions 
of the robot’s environment by fusingrange information ob- 
tained by a sonar range finder from multiple view points 
[Elfes87]. Ayache and Faugeras take a different approach 
to the same problem [Ayache%, Ayache891. In their ap- 
proach, a passive vision system is used to obtain 3-D data, 
which is fused using an Extended Kalman Filter. This 
yields a geometric description of the environment, which 
includesgeometric uncertainty. In addition to theserecent 
efforts, additional research in the area of mapping unex- 
plored terrains can be found in CBrooks85, Chattergy85, 
Crowley85, Laumond83, Turchen851. 

Gervasio’s method of integrating reactivity into a 
classical planner is closest to GINKO’s planning method 

Given a solution sequence of OQBs and associated 
actions, the final generated plan is the sequence of actions 
with associated monitors, which are either simple or reac- 
tive. The basic monitor checks whether the current config- 
uration is in the goal region (to stop under fortuitous 

[Gervasio90]. Her planner defers reasoning about goals 
which are known to be achievable at plan time; instead it 
monitors such actions at run-time to take advantage of the 
current situation. Furthermore, the analysis is at the quali- 
tativelevel. 
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Related machine learning research includes sys- 5. RESULTS AND DISCUSSION 
An experiment was carried out to shed light on the 

ment, arobot with twdegrees of freedom was set to wan- 
der randomly. Pictured below are the configuration space 

tems which combine empirical with analytical learning 

emphasize the use of domain theories to constrain general- 
ization of planning traces. 

[Dany1uk89, P ~ z a n i 8 8 ~  Rajamoney871. These systems nature and direction of this research. In this first experi- 
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collision points when the 
robot is moving to the right. 
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partitions corresponding to the x-position scnsor and the 
move-rightaction for the first 200 time steps of the cxperi- 
ment. The outermost rectangle shown depicts the sensor 
extremes as known to the robot. The actual regions extend 
into infinity at the edges of this rectangle. 

The sequence illustrates the basic functioning of 
GINKO as it confronts novel configurations. One of the in- 
teresting results of this experiment, which ran for more 
than 20,000 time steps, was that the frequcncy of reparti- 
tioning, and hence misclassification rate, appeared to be 
exponentially decreasing. At the same time, the number of 
characteristic regions grew considerably. 

Note that planning with faulty partitions leads toer- 
rors but, more fundamentally, the planner cannot guaran- 
tee that travel through an OQB can be maintained. This in- 
herent ambiguity arises from thequalitative analysis of the 
data. Reincorporating some quantitative information 
might rcmedy this small drawback. 

Our aim has been to acquaint the reader with our 
learning architecture and indicate some of the many areas 
for future research. Among these include more intelligent 
control over the splitting criterion inPLS, and hybrid strat- 
egies to control when and how repartitioning occurs. 
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