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ABSTRACT 

This paper describes SPAR, a task planner that has been 
implemented on a PUMA 762. SPAR is capable of formulating 
manipulation plans to meet specified assembly goals; these mani- 
pulation plans include grasping and regrasping operations if they 
are deemed necessary for successful completion of assembly. 
SPAR goes beyond the classical AI planners, in the sense that 
SPAR is capable of solving geometric goals associated with 
high-level symbolic goals. So if a high-level symbolic goal is 
on(A,B), SPAR can also entertain the geometric conditions 
associated with such a goal. Therefore, a simple goal such as 
on(A,B) may or may not be found to be feasible depending on 
the kinematic constraints implied b y  the associated geometric 
conditions. SPAR has available to it a user-defined repertoire of 
actions for solving goals and associated with each action is an 
uncertainty precondition that defines the mazimum uncertainty 
in the world description that would guarantee the successful eze- 
cution of that action. SPAR has been implemented as a non- 
linear constraint posting planner. 

1. INTRODUCTION 
SPAR is a working planner that extends classical AI plan- 

ning methods to  create plans for automated assembly tasks to  
be executed in uncertain environments. In its current imple- 
mentation, when provided with a description of the initial state 
of the world and a rudimentary motion planning algorithm, 
SPAR is able to create plans a t  a sufficiently detailed level to 
allow their execution in an actual robotic work cell (a  number 
of the plans that have been created and executed using a 
PUMA 762 robot arm are presented in Section 7). These plans 
include the geometric specifications of assembly operations (e. . 
the relative destination positions of objects to  be assembled!, 
geometric descriptions of grasping configurations (i.e. the posl- 
tion and orientation of the robotic manipulator relative to  the 
object that is to  be grasped), and geometric descriptions of how 
objects must be placed in the world. SPAR also plans manipu- 
lations to  reposition objects if they are initially in positions 
that are unsuitable for the assembly operations, and actions to 
regrasp an object if the object's initial position does not allow 
the planned grasping operation t o  be performed (e.g. if one of 
the object faces to be grasped is in contact with the table, the 
object must be placed in an intermediate position from which 
the grasp can be performed). Finally, SPAR uses its knowledge 
about the uncertainty in the world description to  assess the 
possibility of run time errors. This information is used to add 
sensing to the plan to  reduce uncertainties, or, if the resulting 
uncertainty is still to  large, to  post verification sensing opera- 
tions and error recovery plans. 

To create the type of plan described above, SPAR's 
approach is to first create a plan containing high level opera- 
tions (for example, "pickup part-1"), and then add constraints 
on the way these operations are executed so that geometric 
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goals are satisfied. I t  is also possible for additional operations 
t o  be added to the plan to  satisfy geometric goals, for example, 
if a work piece must be repositioned so that an insertion opera- 
tion can be performed. In order to  satisfy uncertainty- 
reduction goals, SPAR evaluates the uncertainty in its world 
description. If this uncertainty is too large to  ensure successful 
execution of an action in the plan, sensing or manipulations are 
added to  the plan in an attempt to  reduce the uncertainty to 
acceptable levels. If this fails, rather than abandon the plan, 
SPAR adds sensing operations to  verify the execution of the 
action, and when possible, adds precompiled recovery plans. 
By planning a t  these three levels, SPAR is able to  start with a 
high level set of assembly goals and develop assembly task 
plans that include geometric descriptions of the actions and 
sensing operations to  reduce uncertainty and verify actions that 
might not succeed. 

There are certain limitations to SPAR's planning abilities 
in its current implementation. First, SPAR only considers the 
endpoints of actions. Thus, if the plan calls for grasping an 
object and moving i t  to  another place on the work table, SPAR 
will determine a set of constraints on the configuration used to 
grasp the object, and on the configuration used to place i t  on 
the table, but will not plan the motions required to move the 
manipulator from the first position to the second. (In our 
experiments, a rudimentary approach to motion planning has 
been implemented, but this approach is not sufficient for plan- 
ning motions in complex environments.) SPAR also lacks a fine 
motion planner. As a result of this, in some situations where 
compliant motion could be used to  robustly perform an assem- 
bly task, SPAR will pessimistically declare that uncertainties 
are too great to  guarantee successful assembly, and that error 
detection sensing should be used a t  execution time.** 

A second limitation to  SPAR is the method used to deal 
efficiently with the geometric aspects of assembly planning. 
Geometric configurations (e.g. grasping configurations) are 
grouped into equivalence classes and these classes are assigned 
labels. This allows SPAR's constraint manipulation system to 
treat plan variable assignment as an instance of the consistent 
labeling problem. 

The limitations enumerated above might cause the reader 
to  ask why we should even attempt to use classical AI planning 
techniques for robotic assembly planning. Would it not he 
more effective, for example, to  use a specialized module to 
derive a high level task plan from a CAD model of the assem- 
bly, and to  then use another specialized module to construct 
motion plans for these actions? Our answer to this question is 
that, in order to  deal effectively with a dynamic world, a plan- 
ning system must be able to  reason about goals and how the 
actions in a plan work to  achieve those goals. For example, if 
certain goals are already satisfied in the world state, the 
planner should capitalize on this and not plan for their achieve- 
ment. Furthermore, plans derived off-line (using a CAD model 
of the assembly) will not always be applicable in an arbitrary 
world state. Finally, in order to respond to problems that 
might arise during plan execution, the planner must posses 

Work is in progress a t  integrating SPAR with the fine motion 
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some knowledge of the purpose that the actions nerve - i.e. the 
goals that  they are to accomplish. For these r ea" ,  we have 
chosen to use a a domain independent planning approach at the 
top level, and add lower level e0mponent.s to ded  with domain 
specific issues relevant to robotic assembly planning. 

2. RELATED RESFARCH 
Research applicable to robotic assembly planning can be 

broadly divided into two groups: research on problems that 
are specifically related to robotic assembly and research in 
domain independent planning. The former class includes 
planners that  generate task sequences [10,11], planners that 
automatically derive geometric speci6cations of assemblies 
1,141, motion planners [8,13,19], and error recovery planners 
4,9,17]. The latter group contains the classical AI planners, 

where the emphasis is placed on the domain independent 
aspects of the reasoning process used to develop plans [5,18,22. 
Neither of these approaches has yet produced a planner capab e 
of creating complete assembly plans from high level 
specifications of assembly goals. The domain independent 
planners lack the ability to reason about geometric concerns 
and uncertainties in the work cell, while the task specific 
planners typically have a narrow focus, and deal only with lim- 
ited aspects of assembly planning without any understanding of 
assembly goals or the effects of actions. 

There are two systems, of which we are aware, with a 
somewhat larger scope than those listed above: TWAIN 15 
and Handey (181. Each of these planners begins with a kigk 
level task plan and then adds motion plans for the individual 
actions in that plan. TWAIN is a constraint posting planner 
which can also add sensory operations to the plan to reduce 
uncertainties. Handey is an integrated system which includes a 
sensory system to determine the initial world state. One of 
Handey's main strengths is its ability to plan grasping opera- 
tions when the objects are in cluttered environments (this is 
discussed further in 21) . It should be noted, however, that 
neither TWAIN or $and ,  is capable of reasoning about the 
effects of actions and how they might be used to achieve goals 
(this not being necessary since both start with an initial task 
plan). 

SPAR combines domain independent planning techniques 
with a number of modules containing task specific knowledge. 
SPAR uses a nonlinear constraint posting algorithm for its top 
level control structure, while domain specific knowledge is used 
by the constraint manipulation system (CMS) to evaluate lower 
level constraints during planning. Using a constraint posting 
approach, SPAR seeks to satisfy a goal by first examining all of 
the actions and constraints previously generated to see if the 
goal can be satisfied merely by adding a new constraint (where 
a constraint may be viewed as a specification or a restriction on 
an action). If this strategy fails, a new action is added to the 
plan. Nonlinear planning allows actions to be added to the 
plan without imposing a strict ordering on the set of actions. 

One of the primary drawbacks of traditional domain 
independent planners (e.g. SIPE 221 and TWEAK [5]) is that 
the representations used must be !3 omain independent. Because 
of this, these planners use high level symbolic constructs to 
represent the world, and the effects of actions. For example, 
both SIPE and TWEAK use well formed formulas (WIT'S) from 
predicate calculus to represent the effects of actions. In a com- 
plex domain, such as robotic assembly, this type of high level 
representation is not sufficient to represent all relevant aspects 
of the world. For example, while i t  is pwible  to  represent a 
number of s atial relationships with wffs (e.g. 
on(block1,blockZ)f: there would be no way to describe the 
reachable configurations of the robot arm with such a high level 
representation, since the reachable configurations are defined by 
a subset of an N-dimensional continuous space for a robot with 
N joints). Therefore, while SIPE easily solves 6igh level blocks 
world problems (such as, put some blue block on the top of 
some green block), i t  is not capable of solving the lower level 
details of these problems (e.g. determining the joint angles 
which muet be used to  position the robot arm to  perform the 
stacking operation). 

3. PLANNINGINSPAR 
Spar extends traditional constraint posting planners, such 

as those described in [5,22], to include both geometric planning 
and uncertainty-reduction planning. By geometric planning, 
we mean the planning that determines the actual geometric 
configurations that will be used during the assembly process. 
These configurations include the configurations of the manipu- 
lator, the positions in which parts are placed, and the grasping 
configurations which are used to manipulate objects. 
Uncertainty-reduction planning consists of fist determining 
whether or not the uncertainty in the planner's description of 
the world (e.g. the possible error in part locations) is 
sufficiently small to allow plan execution to succeed. If the 
uncertainties are too large, then either sensing operations or 
manipulations are added to the plan in an attempt to  reduce 
the uncertainty to  an acceptable level. If this fails, verification 
sensing and local recovery plans are added to the plan. These 
can be used during plan execution to monitor the robot's suc- 
cess and recover from possible run time errors. 

When designing a nonlinear constraint posting planner, 
the degree to which constraint posting is used is an issue that 
must be considered. A pure constraint posting planner would 
make no unnecessary variable instantiations until all of its 
goals had been satisfied, at which time the CMS would deter- 
mine the variable instantiations that simultaneously satisfied 
all of the constraints. The advantage to this approach is a 
decrease in the the amount of backtracking by avoiding arbi- 
trary choices that could lead to failure. The disadvantage to  a 
pure constraint posting approach is that maintaining the con- 
straints can become more expensive than backtracking during 
planning. Therefore, in many cases a combination of con- 
straint posting and backtracking is appropriate, the exact com- 
bination being determined by the complexities of the con- 
straints and the cost of backtracking. 

In SPAR, due to the complexities involved with the 
representation and evaluation of uncertainty-reduction goals, 
only the operational and geometric goals are satisfied using the 
constraint posting method. Therefore, SPAR performs its 
planning in two phases. In the first phase constraint posting is 
used to  construct a family of plans that satisfy all operational 
and geometric goals. In the second phase, specific plan 
instances (generated by instantiating the plan variables so that 
the constraints are satisfied) are used as input for the 
uncertainty-reduction planning. We should note that the con- 
straint posting paradigm is conceptually able to handle all 
three goal types, however, for the reasons of complexity that 
we have just mentioned, i t  is not expedient to force 
uncertainty-reduction planning into the constraint posting 
mold. Furthermore, i t  would not be advantageous to abandon 
constraint posting for the operational and geometric planning, 
since the cost of maintaining the constraints associated with 
these two types of goals is significantly less than the cost of a 
backtracking search algorithm. 

In the first phase of planning, SPAR iteratively refines a 
partial plan t o  satisfy some pending goal. This is done by 
either constraining the execution of an action that is already in 
the plan, or by introducing a new action into the plan. In the 
latter case, SPAR adds the new action's preconditions to 
appropriate goal stacks, and also checks each currently satisfied 
goal, noting those which are possibly undone by the new action 
and placing them on the appropriate goal stack. The first 
phase of planning terminates when there are no more pending 
operational or geometric goals. 

In the second phase of planning, the uncertainty-reduction 
preconditions are considered for specific plan instances. In 
order to create these plan instances, SPAR invokes its CMS to 
find consistent solutions for the plan's constraints. These solu- 
tions are then used to instantiate the variables in the plan 
actions. Specific plan instances are examined until one is found 
in which all uncertainty-reduction goals can be satisfied. If no 
such instance can be found, the instance that contained the 
fewest unsatisfied uncertainty-reduction goals is selected. This 
plan instance is augmented with sensing verification actions 
and potential recovery plans for anticipated possible errors. 
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Fig. 1 shows a block diagram of SPAR. To the left are 
the goal stacks and satisfied goals, used to  keep track of plan- 
ning progress. The dashed box a t  the top of the figure 
represents SPAR'S knowledge about actions. This includes 
templates that  represent actions, a set of rules for instantiating 
those templates, a set of actions that reduce uncertainty in the 
world, and a set of procedures used to  construct the 
uncertainty-reduction preconditions for actions. To  the right, 
enclosed by a dashed box, is the constraint system. This 
includes the CMS and a number of domain dependent modules 
used to  evaluate constraints. These modules include routines 
to find upper and lower bounds on symbolic expressions 
(SUP/INF), an algebraic simplifier (SMP , and routines to  solve 
the inverse kinematics of the robot (IKS)). The constraint sys- 
tem also includes a constraint network, used to  organize the 
plan's constraints. Finally, the bottom of the figure depicts the 
output of the planner: the verification sensory operations and 
local recovery plans (used when uncertainty-reduction goals 
cannot be satisfied), and the set of actions in the plan. 

Action lnlornvtlan --_________ 

Templates 

C"r.lnl Sysl" 

Li C-Net j 

I 

Fig. 1: Architecture of SPAR. 

4. REPRESENTATIONAL ISSUES IN SPAR 

One of the issues that  must be addressed when designing a 
planning system is the choice of representation schemes. These 
representations determine the power that  the planner will have, 
in terms of its ability t o  adequately model the world and the 
possible actions that can be performed to  alter the world. In 
this section, we will describe how SPAR represents actions, 
uncertainty, and goals. 

4.1. Representation of Actions 

down and assemble. 
templates, each of which has the following components. 

Action id: 

Currently, SPqR plans with three actions: pickup, pyt- 
These actions are represented by action 

An identifier t o  reference a particular instance of 
the action. 

The name of the action, and its arguments. 

reduction preconditions of the action. 

Action: 

Preconditions: The operational geometric, and uncertainty- 

There is only a limited repertoire of actions that can be carried out by a 
single robot arm and the three listed here represent those that are used most 
often. Actions like threading and fixturing could be considered to be more 
specialized forms of the assemble action presented here, the specialized forms 
being obtained by the addition of more geometric and uncertainty-reduction 
constraints. 

Add list: 

Delete list: 

A list of conditions true in the world after the 
execution of the action. 

A list of conditions no longer true in the world 
after the execution of the action. 

action-id: ActionId, 

action: pickup(Object,Grasp), 

preconditions: 

operational: 

op(G 1 ,ActionId. gripper(open)) 
op(G2,ActionId. pan_location(Object.Pos)) 

geomenic: 

geo(G3,ActionId. 
reachable(Grasp,Pos), 
pan-location( 0bject.Pos)) 

uncertainty-reduction: 

add-list: 

holding(0bjecfGrasp) 
partlocation_unc(Object.NewUnc) 
grippcr(closed) 

delete-list: 

par-location(0bject.Pos) 
par_location-unc(Object,OldUnc) 
gripper(open) 

Fig. 2: 

As an example, Fig. 2 shows the action template for the 
pickup action. 

When SPAR adds an action to the plan, i t  instantiates the 
template for that  action to accomplish the particular goal that  
caused the action's addition. This consists of first instantiating 
the various identifiers in the action to unique labels (e.g. the 
ActionId the Gi's), and then either instantiating or constraining 
the plan variables in the action so that  i t  achieves the goal. 
SPAR uses a set of rules t o  determine the proper variable 
instantiations for an action template, given the goal which the 
action is t o  achieve. By using this approach to  instantiating 
action templates, SPAR is able to use a small set of generic 
robot operations and instantiate these to  specific actions based 
on the objects t o  be manipulated by those actions. 

4.2. The Representation of Uncertainty 

In order t o  create assembly plans to be executed in an 
uncertain environment, SPAR requires a representation for the 
uncertainty in its world description, an understanding of how 
much uncertainty in that description can be tolerated before an 
action can no longer be guaranteed to succeed, and a knowledge 
of how the various assembly actions affect the uncertainty in 
the world description. In this section, we will address each of 
these three issues. 

4.2.1. Representing Uncertain Quantities 

In our current implementation of SPAR, we have chosen 
to limit the number of quantities considered uncertain. For an 
object resting on the work table, the X,Y,Z location of the 
object (i.e. the object's displacement) and the rotation about an 
axis through the origin of the object's local frame and perpen- 
dicular to the table are considered uncertain. This choice 
reflects our assumption that objects resting on the work table 
will be in a stable pose, which fixes two rotational degrees of 
freedom of the object. For the manipulator, we consider the 
X,Y,Z location of the tool center, and the rotation about the Z 

Action template for the pickup action. 
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axis of the manipulator’s local frame (i.e. the approach axis of 
the manipulator) t o  be uncertain. 

All uncertainties in SPAR are expressed in terms of uncer- 
tainty variables. The possible values for an uncertainty vari- 
able are defined using bounded sets. We represent the uncer- 
tainty in the position of an object by a homogeneous transfor- 
mation matrix whose entries are expressed in terms of uncer- 
tainty variables. By combining the ideal position of an object 
(i.e. the position of the object if all uncertainty is eliminated) 
with the uncertainty in that  position, we obtain the possible 
position of an object. This possible position will be a homo- 
geneous transformation matrix, with some or all of its entries 
expressed in terms of uncertainty variables. A matrix obtained 
by substituting valid values for the uncertainty variables will 
represent one possible position of the object. 

As an example, we define the transformation which 
represents the uncertainty in the position of the manipulator 
relative t o  the mani lator’s local frame to  be: 

%os(Ab’,) -sin(Ab’.) 0 AX,] 

0 0 1-1 

Again, note that the values AX AY AZ and Ab’, are 
bounded symbolic variables. flereforpk, thy matrix TAM 
represents all of the transformations that  could be obtained by 
substituting valid numerical values into the matrix in place of 
the symbolic variables. The bounds on these variables are 
stored in SPAR’s database, and retrieved as needed. 

4.2.2. Derivation of Uncertainty-Reduction Goals 

The uncertainty-reduction preconditions of an action are 
symbolic expressions that define the maximum uncertainty in 
the world description under which the action can still be reli- 
ably executed. As an example, consider the uncertainty- 
reduction preconditions for the pickup action. In order for the 
manipulator to grasp an object, the two contact points on the 
object must lie between the fingers of the manipulator, even 
when worst case uncertainties occur. This is illustrated in Fig. 
3. The possible locations of the manipulator fingers are given 
by 

= Tu+A trans(0, f%W,,O) (2) 
where TM+a represents the combination of the ideal position of 
the manipulator with the error transformation (shown in EQ. 
I), trans(x,y,z) represents a pure translation, and W, is the 
width of the manipulator opening. The possible positions of 
the contact points of the object are given by: 

C,,Z = Tro T A 0  Ro T G  trans(0, +%W,,O)[O,O,O,l]t (3) 
where Tro is the x,y,z position of the origin of the block’s local 
frame, T A 0  is represents the uncertainty in the position of that 
frame, Ro is the orientation of the block’s frame, Tc 
represents the position of the manipulator relative to  the posl- 
tion of the block’s frame (i.e. T G  is the grasping transforma- 
tion), and W, is the width of the block a t  the grasp points. 

Y 

Fig. 3: Possible locations of fingers and contact points. 

To test whether the contact points lie between the fingers, 
we transform the locations of C1 and Cz to  be defined in terms 
of the coordinate frames Pl and Pz ,  and check to see that the 
Y-components of these locations are on the positive Y axis for 
P1 and on the negative Y-axis for Pz, for all possible values of 
the uncertainty variables. Therefore, the four uncertainty- 
reduction preconditions for the pickup action are: 

Again, note that all of the matrix multiplications shown 
above must be performed symbolically, since many of the 
entries in the matrices will be expressed in terms of uncertainty 
variables. More detailed descriptions of SPAR’s uncertainty- 
reduction preconditions can be found in [12]. 

4.2.3. The Propagat ion  of Uncertainty by Actions 

Actions propagate uncertainties in distinct ways. For 
example, the pickup action has the effect of transforming an 
object’s displacement uncertainty into the manipulator coordi- 
nate frame, and then reducing the Y component of this uncer- 
tainty to the uncertainty in the Y component of the manipula- 
tor. The pickup action also reduces the uncertainty in the 
object’s orientation to be equal to  the uncertainty in the orien- 
tation of the manipulator (this assumes that the uncertainty in 
the position of the object was initially greater than the uncer- 
tainty in the position of the manipulator). The uncertainty in 
the position of the block while it is in the grasp of the manipu- 
lator is represented by: 

[cos(AO,) sin(A8,) 0 Dx +AX,] 

TA0 = I  sin(AO,) 0 COS(A<) 0 0 1 D z + A Z g  AY, I (5) 

0 0  1 1  l o  
where Dx and Dz represent the initial uncertainty in the x and 
z positions of the block, AX,, AY, and AZ, represent uncer- 
tainty in the position of the manipulator and A@ represents 
the uncertainty in the orientation of the manipufator. Note 
that the uncertainty in the Y component of the displacement 
uncertainty has been limited to the uncertainty in the Y com- 
ponent of the location of the manipulator’s tool center. 
Further, note that the rotational uncertainty is the same as the 
rotational uncertainty in the orientation of the manipulator. 

A more detailed description of how SPAR’s actions pro- 
pagate uncertainty can be found in [12] 

4.3. Operational and Geometr ic  Goals  

a type 
(either operational, geometric or uncertainty-reduction) a con- 
dition that  must be satisfied (i.e. the actual goal) and an action 
identifier. The action identifier is used to  indicate when the 
goal must be satisfied, in particular, that i t  must be satisfied 
prior to  the execution of the action specified by the action 
identifier. We will use the terms goal and precondition to refer 
to  either the condition part of the goal or to the entire struc- 
ture. Which of these is meant should be evident from the con- 
text. 

SPAR’s operational goals are similar to the high level 
goals used in traditional domain independent planners (e.g. 
STRIPS or TWEAK). One difference is our inclusion of plan 
variables that can be used to  link operational and geometric 
goals. For example, one operational precondition of the assem- 
ble action is: 

op(G1, ActionId, holding(Obj1, Grasp)) 
The plan variable Grasp is not used in the operational plan- 
ning, but serves the purpose of linking operational and 
geometric planning. The variable ActionId is used to indicate 
the time a t  which the goal must be satisfied. In particular, it 
must be satisfied prior to  the execution of the action whose 
action identifier is ActionId. 

Geometric goals are slightly more complex, with two main 
components. The first is a geometric constraint and the second 

Goals in SPAR have three relevant attributes: 
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is a set of operational goals. The meaning of this pair is that 
the planner is to  establish the operational goals in such a way 
that the geometric constraint is satisfied. For example, one 
geometric precondition of the putdown action is: 

geo(G2, ActionId, 
reachable Grasp, Pos), 
holding(0 6 j, Grasp)) 

where holding(Obj,Grasp) is the single operational goal, and 
reachable(Grasp,Pos) is the geometric constraint. This goal 
indicates that the grasp used to achieve the holding goal must 
also permit the manipulator to  reach the destination position. 

5. GOAL SATISFACTION 

In this section, we will individually discuss the methods 
used to satisfy operational, geometric and uncertainty- 
reduction goals. In the course of this discussion, we will fre- 
quently allude to the CMS’s role in the process of goal satisfac- 
tion, however, we will leave a discussion of the CMS for Section 
6. For the purposes of this section, i t  is sufficient to assume 
that the CMS is capable of determining if a new constraint is 
consistent with the current constraint set. 

5.1. Satisfying Operational Goals 

Ensuring the satisfaction of an operational goal proceeds 
in two steps, as described in [5]: finding an action that estab- 
lishes the goal and then dealing with actions that could violate 
(or undo) the goal. 

In order to  find an action that  establishes an operational 
goal, SPAR first looks a t  the add lists of the actions already in 
the partially developed plan. If any element of the add list of 
such an action can be unified with the operational goal, then 
that unification is performed, and the action is declared to have 
established the goal. If such an action is found, it is con- 
strained to  take place prior to  the time a t  which the goal must 
be satisfied. If the CMS determines that this new ordering con- 
straint is not consistent with the current ordering constraints, 
the constraint addition fails and SPAR backtracks in an 
attempt to  find another action in the plan to  establish the goal. 

If no action in the plan is found to establish the goal, 
SPAR adds a new action. This consists of instantiating an 
action template, adding the action to  the plan, and constrain- 
ing the new action to  occur prior to  the time a t  which the goal 
must be satisfied. Any time SPAR adds an action to the plan, 
it is possible that the new action may violate goals that have 
already been satisfied. For this reason, when a new actipn is 
added to  the plan, SPAR examines the list of satisfied goals and 
transfers any of these that could be violated by the new action 
to the appropriate pending goal stack. 

Once an operational goal has been established, SPAR 
examines each action in the current partial plan to see if it 
could possibly violate the goal. An action can violate an opera- 
tional goal if any element in the action’s delete list can be 
unified with the goal. There are two ways SPAR deals with a 
potential goal violation: the violating action can be con- 
strained to  occur after the time a t  which the goal must be 
satisfied (promotion of the goal); an action can be used to re- 
establish the goal. A re-establishing action can either be an 
action already in the plan, or it can be a new action which is 
added specifically for the purpose of re-establishing the violated 
goal. 

5.2. Satisfying Geometric Goals 

Geometric goals are satisfied by constraining the way plan 
actions are performed. For example, if a geometric goal 
specifies that  the manipulator should be holding an object in a 
particular grasping configuration, the way to satisfy that goal 
is to  place a constraint on how the manipulator performs the 
grasping action. In order to do this, SPAR needs to link 
together the operational and geometric levels of planning. For 
this purpose, when planning to  satisfy operational goals, plan 
variables are introduced that can be constrained by the 
geometric level of planning to  determine how an action is exe- 

cuted. The geometric preconditions are expressed in terms of 
those variables. For example, a traditional STRIPS type 
action is pickup(0bject). SPAR’S equivalent action is 
pickup(Object,Grasp). The variable Grasp is used to  define the 
geometric configuration that  will be used by the manipulator to  
grasp the object. At  the operational level, the variable Grasp is 
primarily ignored, but its presence gives SPAR a method of 
constraining how the pickup operation is actually performed, 
thus linking distinct levels of planning. 

As was discussed earlier, geometric goals consists of a set 
of operational goals and a geometric constraint to be applied to 
the actions that achieve the operational goals. Each opera- 
tional goal that is associated with a geometric precondition of 
an action is also listed separately as an operational precondi- 
tion of the action. Therefore, since SPAR only considers 
geometric goals when the operational goal stack is empty, the 
operational goals associated with a geometric goal are 
guaranteed t o  be satisfied by the current partial plan. There- 
fore, in order t o  satisfy a geometric goal, SPAR first finds the 
actions that  establish its associated operational goals, and 
attempts to  constrain the execution of those actions so that  the 
geometric constraint is satisfied. This is done by instructing 
the CMS to add the geometric constraint to  the plan. If this 
succeeds, the goal is satisfied and moved to  the list of satisfied 
goals. 

If the CMS determines that  the geometric constraint is 
not consistent with the current constraints, then one or more 
new actions must be added to  the plan. These new actions are 
chosen based on the operational goals associated with the 
geometric goal. Once the actions have been added, the 
appropriate geometric constraint is also added. This constraint 
will be consistent with the constraints currently in the plan, 
since the new action will contain new plan variables that have 
not yet been constrained. Note that  the addition of actions to  
the plan will introduce new operational goals, and therefore 
effectively transfer control back to  operational planning. 

There is no need for SPAR to check for actions that  might 
violate geometric constraints. The reason for this is that the 
set of constraints has no sense of temporal ordering. All con- 
straints must be consistent a t  all times. Therefore, if any con- 
straint had the effect of violating the new geometric constraint, 
this would have been detected by the CMS when attempting 
the constraint addition. 

5.3. Satisfying Uncertainty-&duction Goals 

When there are no remaining operational or geometric 
goals, SPAR begins planning to  satisfy uncertainty-reduction 
goals. As mentioned earlier, uncertainty-reduction planning 
does not use a constraint posting approach. Instead, specific 
plan instances are generated and tested for satisfaction of the 
uncertainty-reduction goals. 

To test a particular plan instance, SPAR creates an aug- 
mented plan instance consisting of four components: the 
instantiated list of plan actions (obtained by instantiating the 
actions from the partial plan that was developed in the first 
phase of planning so that all constraints are satisfied), an error 
count initially set to  zero , a list of sensory verification actions 

plans (also initially set to  the empty list). SPAR then sequen- 
tially examines each individual action in the instantiated action 
list and attempts to  satisfy its uncertainty-reduction precondi- 
tions After an action has been considered, its add and delete 
lists are used to  update the world state to reflect the effects of 
the action. The uncertainty in the world descriptio? is also 
propagated forward, thereby defining the uncertainty in the 
world when the next action in the sequence will be executed. 

There are three ways to  satisfy an uncertainty-reduction 
goal for an individual action: the goal may be satisfied by the 
current set of constraints on the uncertainty in the world 
description; sensing actions can be added to the plan to  reduce 
uncertainties; manipulations can be added to  the plan to  reduce 
uncertainties. If SPAR fails to  satisfy the goal, i t  prepares for 
possible execution errors. The error count for the augmented 

(initial c y set to  the empty 1 ist), and a list of local error recovery 
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plan instance is incremented and sensing verification actions 
and local recovery plans are added to  their respective lists in 
the augmented plan instance. 

6. CONSTRAINT MANIPULATION 
In SPAR, the bulk of the domain knowledge resides in the 

constraint manipulation system. This allows the planning algo- 
rithm to proceed without any need t o  "understand" the domain 
of robotic assembly. The action descriptions include precondi- 
tions on geometric configurations and the tolerable uncertain- 
ties in the world description, but in order to  satisfy these 
preconditions, the top level planner merely requests that  the 
CMS add constraints to  the constraint database. It is the task 
of the CMS to determine whether or not these new constraints 
are consistent with the current constraints in the plan, which in 
turn, requires a certain amount of domain specific knowledge. 

SPAR currently uses three constraint types. In opera- 
tional planning, ordering constraints are used to  ensure that 
actions are performed in the proper sequence (and that goals 
are satisfied a t  the appropriate times). In geometric planning, 
binary constraints between object positions and manipulator 
configurations are used to  ensure that  the robot will be able to  
perform the required manipulations. Finally, a t  the 
uncertainty-reduction level, symbolic algebraic inequalities are 
used to  express the maximum uncertainty that  can exist in the 
world description prior to  the execution of an action. A 
directed graph is used to  represent ordering constraints, a 
binary constraint network for the geometric constraints, and 
algebraic inequalities (expressed in terms of bounded symbolic 
variables) for the uncertainty-reduction constraints. 

Using a directed graph to  represent ordering constraints, 
an arc directed from a node, A, to  another node, B, implies 
that  action A must precede action B in the plan. Ordering con- 
straints are added t o  the plan by adding appropriate arcs to  
the ordering graph. A cycle in the ordering graph indicates an 
inconsistent set of ordering constraints. 

All of the geometric constraints in SPAR are either binary 
constraints between plan variables representing object positions 
and manipulator positions, or unary constraints on plan vari- 
ables. Furthermore, both object poses (i.e. possible orienta- 
tions of objects, not including displacement information) and 
grasping configurations have been quantized, and assigned 
labels, so that  each of these can be represented by a single, 
symbolic variable rather than a continuous variable in six 
dimensional space. Because of these qualities, i t  is straightfor- 
ward to  represent the geometric constrair?ts using a binary con- 
straint network. By using a binary constraint network, when 
the CMS is instructed to  add a new constraint, the consistency 
of that constraint with the current set of constraints can be 
determined by adding an arc to  the constraint network and 
then checking the new network for consistency. Because of 
space limitations, we will not give an introduction to constraint 
networks here. A thorough introduction can be found in either 
of [6,7]. 

In order to  represent SPAR'S geometric constraints using 
a binary constraint network, each geometric plan variable (e.g. 
grasp configurations, positions is represented by a node in the 

node is added to  the network and assigned an initial label set. 
This label set is merely the set of values which may be assigned 
to  that variable. For example, if the variable represents a 
grasping configuration for a particular object, then the initial 
label set for its node in the constraint network will contain the 
labels of all of the grasping configurations for that  object. 

Unary constraints on plan variables are achieved by limit- 
ing the label set for the corresponding node in the constraint 
network. In this way, the set of values that  a particular 
geometric parameter may be given can be restricted (e.g. cer- 
tain grasping configurations can be excluded 
straints between plan variables are represented y arcs between 
the corresponding nodes in the network (these arcs are not 
directed). Each arc in the network contains a set of pairs of 
values which indicate the valid pairs of labels for the connected 

network. When a new variab 1 e is introduced into the plan, a 

1; Binary con- 

nodes. Determining the valid pairs of labels requires a seman- 
tic understanding of the domain, but once the pairs have been 
assigned, no domain knowledge is required to  check for network 
consistency. 

When the CMS is instructed to  add a unary constraint to  
the network, it first updates the label set of the appropriate 
node, and then updates each arc connected to  that  node by 
deleting pairs that are no longer valid given the node's new 
label set. Finally, the new network is checked for consistency. 
When the CMS is instructed to  add a new binary constraint to  
the network, i t  adds an arc between the appropriate nodes 
(creating the nodes if they do not already exist in the network), 
and then checks for network consistency. 

When the planner inserts a manipulation action into the 
plan, it must ensure that  all of the configurations required to  
perform that manipulation will be physically realizable. In 
order to  do this, SPAR uses reachability constraints. The two 
conditions that must be met to  satisfy reachability are that the 
manipulation be within the physical capabilities of the robot 
(this is verified using the inverse kinematic solutions for the 
particular robot), and that  grasps used in the course of the 
manipulation do not obscure mating features (those features 
that must come into contact with other objects during the 
course of the operation). A description of these how these con- 
straints are derived can be found in [12]. When a reachability 
constraint is added to  the geometric binary constraint network, 
all pairs of grasps/positions that satisfy the constraint are 
placed on an arc between nodes representing the planning vari- 
ables for the grasp configuration and the position. A network 
consistency check is then performed. 

When the planner considers the uncertainty-reduction 
goals, it  does so for a particular instantiated plan instance. AS 
a consequence of this, a t  the time of their evaluation, the 
uncertainty-reduction goals (expressed as symbolic algebraic 
inequalities) will be expressed in terms of specific bounded sym- 
bolic variables. Therefore, determining if an uncertainty- 
reduction goal is satisfied consists of a single evaluation (rather 
than a series of evaluations as is required for geometric con- 
straints). In particular, since the uncertainty-reduction goals 
are expressed as inequalities of the form exprl < expr2, and 
since a t  least one of these expressions is always a single con- 
stant, if we find the maximum value for exprl and the 
minimum value for exprz (under the constraints contained in 
the world description), we can determine whether the 
uncertaint -reduction goals are met simply be checking to  see if 
max(exprljl< min(expr2). 

In. order to  find upper and lower bounds on symbolic 
expressions, we have implemented a system similar to  the 
SUP/INF system which was introduced by Bledsoe [2], and 
then refined b Shostak [20], and later Brooks for his ACRO- 
NYM system [3]. The functions SUP and INF each take two 
arguments, a symbolic expression and a set of variables, and 
return upper/lower bounds on the expression in terms of the 
variables in the variable set. The method SUP/INF employs is 
to recursively break down expressions into subexpressions, find 
bounds on these subexpressions, and then combine the bounds 
using rules from interval arithmetic. Obviously this works for 
linear expressions where superposition holds. When expressions 
are nonlinear, however, it  is quite possible that  the bounds on 
the individual subexpressions will be looser than the bounds on 
the subexpressions when considered in the context of the whole 
expression. Because of this, it  is possible that  SUP/INF will 
sometimes find inexact bounds. 

In spite of this, the policy of recursively finding bounds on 
subexpressions and then combining those bounds guarantees 
that the algorithms will terminate. This has been shown by 
Shostak for his version of SUP/INF, and later by Brooks for 
his modified versions. Furthermore, even though i t  is possible 
that SUP/INF will not return exact bounds, it  has been shown 
(again, by Shostak and later by Brooks) that they are conserva- 
tive, in that SUP always returns a value greater than or equal 
to the maximum, and INF always returns a value less than or 
equal to  the minimum. The fact that SUP INF sometime only 
approximates solutions is not a severe prob i em for SPAR, since 
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failure to  satisfy uncertainty constraints has a worst case result 
of the addition of sensing actions to  the plan. That  is, if the 
CMS determines that the uncertainty constraints cannot be 
satisfied, it  does not backtrack. It merely prepares for the pos- 
sibility of failure. 

7. EXPERIMENTAL RESULTS 
We have used SPAR to plan a number of assembly tasks. 

The resulting assembly plans were then executed in a robot 
work cell vequipped with a PUMA 762 robot. The assembly 
goal in each experiment was to  mate a block with a peg to a 
block containing a hole. By varying the initial positions of the 
objects, SPAR was forced to  develop distinct plans for the indi- 
vidual tests, even though the assembly goals were the same. 

Figs. 4 and 5 illustrate experiments that have been per- 
formed. Each figure includes a photograph of the initial world 
situation and a listing of the plan that  is output by SPAR. In 
Fig. 4, the block is initially face down and the peg is resting on 
its side. In order to  perform the assembly, the robot must first 
reposition the block so that the face containing the hole is 
accessible. This requires two manipulations: one to place the 
block on its side (an intermediate position) and one to  then 
place the block on its back. Once the block 1s repositioned, the 
peg is picked up and the assemble action is performed. Fig. 6 
shows the robot executing the steps in the plan shown in Fig. 4. 

We should note that, although the uncertainty-reduction 
planner is fully implemented, i t  is not yet integrated with the 
execution system. There are two reasons for this. First, we 
have not yet fully and accurately characterized the uncertain- 
ties in the sensors and robotic manipulator. Second, the 
current set of recovery plans lacks robustness and generality. 
These two areas are subject of ongoing research. 

((1 (pickupobjecl block 
((0.707107 0.0 -0.707107) 

(0.707107 0.0 0.707107) 
(1.0 1.375 1.625)))) 

(2 (putdown-object block 
((- 1 0 0) 
(0 1 0) 
(00-1) 
(-10 30 -18.05)))) 

((-0.707107 8.659%-17 -0.707107) 
(-1.2246e-16 -1.00.0) 
(-0.707107 8.6593~-17 0.707107) 
(1.0 1.375 1.625)))) 

(-0.0 1.0 0.0) 

(3 (pickupobject block 

(4 (pidom-objecl block 
((0 0 1) 
(0 1 0) 
(-1 00) 
(-10 U) -21.3)))) 

(5 (pickupobject g 
((-0.7071g -0.707107 4.123~-17) 
(8.6593~-17 6.163~-33 -1.0) 
(0.707107 -0.707107 6.123~-17) 
(0.5 1.375 1.625)))) 

((-1 0 0) io 1 0) 

(6 (assemble-objects peg block 

Fig. 4: SPAR generated plan to  assemble the two objects 
shown. In the initial state, the block faces down and 
the peg points sideways. 

.. ~ - 
(0 1 oy 
(0 0 -1) 
(-10 30 -18.05)))) 

(5 (pickup-object block 
((-0.707107 8.659%-I7 -0.707107) 
(-1.2246~-16 -1.0 0.0) 
(-0.707107 8.6593~-17 0.707107) 
(1.0 1.375 1.625)))) 

((0 0 I )  
(6 (ptdown-object block 

fY02) 
(-10 20 -21.3)))) 

((-0.7071g 8.659%-I7 -0.707107) 
(-1.2246~-16 -1.0 0.0) 
(-0.707107 8.6593e-17 0.707107) 
(1.0 1.375 1.625)))) 

(I@ickupobjec~ g 

(2 @uldom-objecl peg 
((-1 0 0) 
$3) 
(-10 -21.3)))) 

(7 @ic%?!~O?%O -0.707107l 
(-0.0 1.0 0.0) 
(0.707107 0.0 0.707107) 
(0.5 1.375 1.625)))) 

(8 (assemble-obects peg block 
((-1 od, 

Fig. 5: Same as Fig. 4, except now the peg initially points 
UP. 

8. CONCLUSIONS 
This paper represents a step toward a planning system 

which can create assembly plans given as input a high level 
description of assembly goals, geometric models of the com- 
ponents of the assembly, and a description of the capabilities of 
the work cell including the robot and the sensory system). 

tion: the operational level where high level operations are 
planned), the geometric level where geometric configurations of 

(where world uncertainties are taken into account). 

At the first two levels of planning, we have extended the 
constraint posting approach to domain independent planning 
by adding geometric preconditions to the actions, linking these 
to  operational goals via plan variables, and expanding the CMS 
to be able to  deal with geometric constraints. At the 
uncertainty-reduction level of planning, we have expressed 
uncertainties in the world in terms of homogeneous transforma- 
tions whose elements are defined in terms of symbolic uncer- 
tainty variables. We then expressed limits on tolerable uncer- 
tainties in terms of operations on transformations. When the 
uncertainty-reduction goals cannot be satisfied, rather than 
abandon the plan, our system augments the plan with sensing 
operations for verification, and when possible, with local error 
recovery plans. 

The resulting p \ anner, SPAR, reasons a t  three levels of abstrac- 

the actions are planned) an a the uncertainty-reduction level 
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At this point, there are a number of areas in our system 
which are either ad hoc, or require input from the user. For 
example, the local error recovery plans must be entered by the 
user, and associated with the uncertainty-reduction goals a 
priori. One goal of our future work will be to automate this 
process by employing geometric reasoning about possible errors 
and error recovery. A further shortcoming of SPAR is the lack 
of a motion planning module. Incorporating a motion planner 
with the current system is another goal of our future work. 
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