
Extending the Classical AI Planning Paradigm
to Robotic Assembly Planning

*
S . A. Hutchinson and A. C. Kak

Robot Vision Laboratory
School of Electrical Engineering

Purdue University
W. Lafayette, IN 47907

ABSTRACT

This paper describes SPAR, a task planner that has been
implemented on a PUMA 762. SPAR is capable of formulating
manipulation plans to meet specified assembly goals; these mani-
pulation plans include grasping and regrasping operations if they
are deemed necessary for successful completion of assembly.
SPAR goes beyond the classical AI planners, in the sense that
SPAR is capable of solving geometric goals associated with
high-level symbolic goals. So if a high-level symbolic goal is
on(A,B), SPAR can also entertain the geometric conditions
associated with such a goal. Therefore, a simple goal such as
on(A,B) may or may not be found to be feasible depending on
the kinematic constraints implied b y the associated geometric
conditions. SPAR has available to it a user-defined repertoire of
actions for solving goals and associated with each action is an
uncertainty precondition that defines the mazimum uncertainty
in the world description that would guarantee the successful eze-
cution of that action. SPAR has been implemented as a non-
linear constraint posting planner.

1. INTRODUCTION
SPAR is a working planner that extends classical AI plan-

ning methods to create plans for automated assembly tasks to
be executed in uncertain environments. In its current imple-
mentation, when provided with a description of the initial state
of the world and a rudimentary motion planning algorithm,
SPAR is able to create plans a t a sufficiently detailed level to
allow their execution in an actual robotic work cell (a number
of the plans that have been created and executed using a
PUMA 762 robot arm are presented in Section 7). These plans
include the geometric specifications of assembly operations (e. .
the relative destination positions of objects to be assembled!,
geometric descriptions of grasping configurations (i.e. the posl-
tion and orientation of the robotic manipulator relative to the
object that is to be grasped), and geometric descriptions of how
objects must be placed in the world. SPAR also plans manipu-
lations to reposition objects if they are initially in positions
that are unsuitable for the assembly operations, and actions to
regrasp an object if the object's initial position does not allow
the planned grasping operation t o be performed (e.g. if one of
the object faces to be grasped is in contact with the table, the
object must be placed in an intermediate position from which
the grasp can be performed). Finally, SPAR uses its knowledge
about the uncertainty in the world description to assess the
possibility of run time errors. This information is used to add
sensing to the plan to reduce uncertainties, or, if the resulting
uncertainty is still to large, to post verification sensing opera-
tions and error recovery plans.

To create the type of plan described above, SPAR's
approach is to first create a plan containing high level opera-
tions (for example, "pickup part-1"), and then add constraints
on the way these operations are executed so that geometric

This work was supported by the National Science Foundation
under Grant CDR 8803017 to the Engineering Research Center
for Intelligent Manufacturing Systems.
*
Seth Hutchinson is now with the Deptartment of Electrical &

Computer Engineering, University of Illinois, Urbana IL 61801.

CJ32876-1/90/oooO/0182$01.~ 0 1990 IEEE

goals are satisfied. I t is also possible for additional operations
t o be added to the plan to satisfy geometric goals, for example,
if a work piece must be repositioned so that an insertion opera-
tion can be performed. In order to satisfy uncertainty-
reduction goals, SPAR evaluates the uncertainty in its world
description. If this uncertainty is too large to ensure successful
execution of an action in the plan, sensing or manipulations are
added to the plan in an attempt to reduce the uncertainty to
acceptable levels. If this fails, rather than abandon the plan,
SPAR adds sensing operations to verify the execution of the
action, and when possible, adds precompiled recovery plans.
By planning a t these three levels, SPAR is able to start with a
high level set of assembly goals and develop assembly task
plans that include geometric descriptions of the actions and
sensing operations to reduce uncertainty and verify actions that
might not succeed.

There are certain limitations to SPAR's planning abilities
in its current implementation. First, SPAR only considers the
endpoints of actions. Thus, if the plan calls for grasping an
object and moving i t to another place on the work table, SPAR
will determine a set of constraints on the configuration used to
grasp the object, and on the configuration used to place i t on
the table, but will not plan the motions required to move the
manipulator from the first position to the second. (In our
experiments, a rudimentary approach to motion planning has
been implemented, but this approach is not sufficient for plan-
ning motions in complex environments.) SPAR also lacks a fine
motion planner. As a result of this, in some situations where
compliant motion could be used to robustly perform an assem-
bly task, SPAR will pessimistically declare that uncertainties
are too great to guarantee successful assembly, and that error
detection sensing should be used a t execution time.**

A second limitation to SPAR is the method used to deal
efficiently with the geometric aspects of assembly planning.
Geometric configurations (e.g. grasping configurations) are
grouped into equivalence classes and these classes are assigned
labels. This allows SPAR's constraint manipulation system to
treat plan variable assignment as an instance of the consistent
labeling problem.

The limitations enumerated above might cause the reader
to ask why we should even attempt to use classical AI planning
techniques for robotic assembly planning. Would it not he
more effective, for example, to use a specialized module to
derive a high level task plan from a CAD model of the assem-
bly, and to then use another specialized module to construct
motion plans for these actions? Our answer to this question is
that, in order to deal effectively with a dynamic world, a plan-
ning system must be able to reason about goals and how the
actions in a plan work to achieve those goals. For example, if
certain goals are already satisfied in the world state, the
planner should capitalize on this and not plan for their achieve-
ment. Furthermore, plans derived off-line (using a CAD model
of the assembly) will not always be applicable in an arbitrary
world state. Finally, in order to respond to problems that
might arise during plan execution, the planner must posses

Work is in progress a t integrating SPAR with the fine motion
planner described by Gottschlich and Kak in "A Dynamic
Approach to High Precision Parts Mating," IEEE Trans. Sys-
tems, Man, and Cybernetics, Vol. 19, July/August 1989.

**

I82

some knowledge of the purpose that the actions nerve - i.e. the
goals that they are to accomplish. For these r ea" , we have
chosen to use a a domain independent planning approach at the
top level, and add lower level e0mponent.s to ded with domain
specific issues relevant to robotic assembly planning.

2. RELATED RESFARCH
Research applicable to robotic assembly planning can be

broadly divided into two groups: research on problems that
are specifically related to robotic assembly and research in
domain independent planning. The former class includes
planners that generate task sequences [10,11], planners that
automatically derive geometric speci6cations of assemblies
1,141, motion planners [8,13,19], and error recovery planners
4,9,17]. The latter group contains the classical AI planners,

where the emphasis is placed on the domain independent
aspects of the reasoning process used to develop plans [5,18,22.
Neither of these approaches has yet produced a planner capab e
of creating complete assembly plans from high level
specifications of assembly goals. The domain independent
planners lack the ability to reason about geometric concerns
and uncertainties in the work cell, while the task specific
planners typically have a narrow focus, and deal only with lim-
ited aspects of assembly planning without any understanding of
assembly goals or the effects of actions.

There are two systems, of which we are aware, with a
somewhat larger scope than those listed above: TWAIN 15
and Handey (181. Each of these planners begins with a kigk
level task plan and then adds motion plans for the individual
actions in that plan. TWAIN is a constraint posting planner
which can also add sensory operations to the plan to reduce
uncertainties. Handey is an integrated system which includes a
sensory system to determine the initial world state. One of
Handey's main strengths is its ability to plan grasping opera-
tions when the objects are in cluttered environments (this is
discussed further in 21) . It should be noted, however, that
neither TWAIN or $and , is capable of reasoning about the
effects of actions and how they might be used to achieve goals
(this not being necessary since both start with an initial task
plan).

SPAR combines domain independent planning techniques
with a number of modules containing task specific knowledge.
SPAR uses a nonlinear constraint posting algorithm for its top
level control structure, while domain specific knowledge is used
by the constraint manipulation system (CMS) to evaluate lower
level constraints during planning. Using a constraint posting
approach, SPAR seeks to satisfy a goal by first examining all of
the actions and constraints previously generated to see if the
goal can be satisfied merely by adding a new constraint (where
a constraint may be viewed as a specification or a restriction on
an action). If this strategy fails, a new action is added to the
plan. Nonlinear planning allows actions to be added to the
plan without imposing a strict ordering on the set of actions.

One of the primary drawbacks of traditional domain
independent planners (e.g. SIPE 221 and TWEAK [5]) is that
the representations used must be !3 omain independent. Because
of this, these planners use high level symbolic constructs to
represent the world, and the effects of actions. For example,
both SIPE and TWEAK use well formed formulas (WIT'S) from
predicate calculus to represent the effects of actions. In a com-
plex domain, such as robotic assembly, this type of high level
representation is not sufficient to represent all relevant aspects
of the world. For example, while i t is pwible to represent a
number of s atial relationships with wffs (e.g.
on(block1,blockZ)f: there would be no way to describe the
reachable configurations of the robot arm with such a high level
representation, since the reachable configurations are defined by
a subset of an N-dimensional continuous space for a robot with
N joints). Therefore, while SIPE easily solves 6igh level blocks
world problems (such as, put some blue block on the top of
some green block), i t is not capable of solving the lower level
details of these problems (e.g. determining the joint angles
which muet be used to position the robot arm to perform the
stacking operation).

3. PLANNINGINSPAR
Spar extends traditional constraint posting planners, such

as those described in [5,22], to include both geometric planning
and uncertainty-reduction planning. By geometric planning,
we mean the planning that determines the actual geometric
configurations that will be used during the assembly process.
These configurations include the configurations of the manipu-
lator, the positions in which parts are placed, and the grasping
configurations which are used to manipulate objects.
Uncertainty-reduction planning consists of fist determining
whether or not the uncertainty in the planner's description of
the world (e.g. the possible error in part locations) is
sufficiently small to allow plan execution to succeed. If the
uncertainties are too large, then either sensing operations or
manipulations are added to the plan in an attempt to reduce
the uncertainty to an acceptable level. If this fails, verification
sensing and local recovery plans are added to the plan. These
can be used during plan execution to monitor the robot's suc-
cess and recover from possible run time errors.

When designing a nonlinear constraint posting planner,
the degree to which constraint posting is used is an issue that
must be considered. A pure constraint posting planner would
make no unnecessary variable instantiations until all of its
goals had been satisfied, at which time the CMS would deter-
mine the variable instantiations that simultaneously satisfied
all of the constraints. The advantage to this approach is a
decrease in the the amount of backtracking by avoiding arbi-
trary choices that could lead to failure. The disadvantage to a
pure constraint posting approach is that maintaining the con-
straints can become more expensive than backtracking during
planning. Therefore, in many cases a combination of con-
straint posting and backtracking is appropriate, the exact com-
bination being determined by the complexities of the con-
straints and the cost of backtracking.

In SPAR, due to the complexities involved with the
representation and evaluation of uncertainty-reduction goals,
only the operational and geometric goals are satisfied using the
constraint posting method. Therefore, SPAR performs its
planning in two phases. In the first phase constraint posting is
used to construct a family of plans that satisfy all operational
and geometric goals. In the second phase, specific plan
instances (generated by instantiating the plan variables so that
the constraints are satisfied) are used as input for the
uncertainty-reduction planning. We should note that the con-
straint posting paradigm is conceptually able to handle all
three goal types, however, for the reasons of complexity that
we have just mentioned, i t is not expedient to force
uncertainty-reduction planning into the constraint posting
mold. Furthermore, i t would not be advantageous to abandon
constraint posting for the operational and geometric planning,
since the cost of maintaining the constraints associated with
these two types of goals is significantly less than the cost of a
backtracking search algorithm.

In the first phase of planning, SPAR iteratively refines a
partial plan t o satisfy some pending goal. This is done by
either constraining the execution of an action that is already in
the plan, or by introducing a new action into the plan. In the
latter case, SPAR adds the new action's preconditions to
appropriate goal stacks, and also checks each currently satisfied
goal, noting those which are possibly undone by the new action
and placing them on the appropriate goal stack. The first
phase of planning terminates when there are no more pending
operational or geometric goals.

In the second phase of planning, the uncertainty-reduction
preconditions are considered for specific plan instances. In
order to create these plan instances, SPAR invokes its CMS to
find consistent solutions for the plan's constraints. These solu-
tions are then used to instantiate the variables in the plan
actions. Specific plan instances are examined until one is found
in which all uncertainty-reduction goals can be satisfied. If no
such instance can be found, the instance that contained the
fewest unsatisfied uncertainty-reduction goals is selected. This
plan instance is augmented with sensing verification actions
and potential recovery plans for anticipated possible errors.

183

Fig. 1 shows a block diagram of SPAR. To the left are
the goal stacks and satisfied goals, used to keep track of plan-
ning progress. The dashed box a t the top of the figure
represents SPAR'S knowledge about actions. This includes
templates that represent actions, a set of rules for instantiating
those templates, a set of actions that reduce uncertainty in the
world, and a set of procedures used to construct the
uncertainty-reduction preconditions for actions. To the right,
enclosed by a dashed box, is the constraint system. This
includes the CMS and a number of domain dependent modules
used to evaluate constraints. These modules include routines
to find upper and lower bounds on symbolic expressions
(SUP/INF), an algebraic simplifier (SMP , and routines to solve
the inverse kinematics of the robot (IKS)). The constraint sys-
tem also includes a constraint network, used to organize the
plan's constraints. Finally, the bottom of the figure depicts the
output of the planner: the verification sensory operations and
local recovery plans (used when uncertainty-reduction goals
cannot be satisfied), and the set of actions in the plan.

Action lnlornvtlan --_________

Templates

C"r.lnl Sysl"

Li C-Net j

I

Fig. 1: Architecture of SPAR.

4. REPRESENTATIONAL ISSUES IN SPAR

One of the issues that must be addressed when designing a
planning system is the choice of representation schemes. These
representations determine the power that the planner will have,
in terms of its ability t o adequately model the world and the
possible actions that can be performed to alter the world. In
this section, we will describe how SPAR represents actions,
uncertainty, and goals.

4.1. Representation of Actions

down and assemble.
templates, each of which has the following components.

Action id:

Currently, SPqR plans with three actions: pickup, pyt-
These actions are represented by action

An identifier t o reference a particular instance of
the action.

The name of the action, and its arguments.

reduction preconditions of the action.

Action:

Preconditions: The operational geometric, and uncertainty-

There is only a limited repertoire of actions that can be carried out by a
single robot arm and the three listed here represent those that are used most
often. Actions like threading and fixturing could be considered to be more
specialized forms of the assemble action presented here, the specialized forms
being obtained by the addition of more geometric and uncertainty-reduction
constraints.

Add list:

Delete list:

A list of conditions true in the world after the
execution of the action.

A list of conditions no longer true in the world
after the execution of the action.

action-id: ActionId,

action: pickup(Object,Grasp),

preconditions:

operational:

op(G 1 ,ActionId. gripper(open))
op(G2,ActionId. pan_location(Object.Pos))

geomenic:

geo(G3,ActionId.
reachable(Grasp,Pos),
pan-location(0bject.Pos))

uncertainty-reduction:

add-list:

holding(0bjecfGrasp)
partlocation_unc(Object.NewUnc)
grippcr(closed)

delete-list:

par-location(0bject.Pos)
par_location-unc(Object,OldUnc)
gripper(open)

Fig. 2:

As an example, Fig. 2 shows the action template for the
pickup action.

When SPAR adds an action to the plan, i t instantiates the
template for that action to accomplish the particular goal that
caused the action's addition. This consists of first instantiating
the various identifiers in the action to unique labels (e.g. the
ActionId the Gi's), and then either instantiating or constraining
the plan variables in the action so that i t achieves the goal.
SPAR uses a set of rules t o determine the proper variable
instantiations for an action template, given the goal which the
action is t o achieve. By using this approach to instantiating
action templates, SPAR is able to use a small set of generic
robot operations and instantiate these to specific actions based
on the objects t o be manipulated by those actions.

4.2. The Representation of Uncertainty

In order t o create assembly plans to be executed in an
uncertain environment, SPAR requires a representation for the
uncertainty in its world description, an understanding of how
much uncertainty in that description can be tolerated before an
action can no longer be guaranteed to succeed, and a knowledge
of how the various assembly actions affect the uncertainty in
the world description. In this section, we will address each of
these three issues.

4.2.1. Representing Uncertain Quantities

In our current implementation of SPAR, we have chosen
to limit the number of quantities considered uncertain. For an
object resting on the work table, the X,Y,Z location of the
object (i.e. the object's displacement) and the rotation about an
axis through the origin of the object's local frame and perpen-
dicular to the table are considered uncertain. This choice
reflects our assumption that objects resting on the work table
will be in a stable pose, which fixes two rotational degrees of
freedom of the object. For the manipulator, we consider the
X,Y,Z location of the tool center, and the rotation about the Z

Action template for the pickup action.

184

.-

axis of the manipulator’s local frame (i.e. the approach axis of
the manipulator) t o be uncertain.

All uncertainties in SPAR are expressed in terms of uncer-
tainty variables. The possible values for an uncertainty vari-
able are defined using bounded sets. We represent the uncer-
tainty in the position of an object by a homogeneous transfor-
mation matrix whose entries are expressed in terms of uncer-
tainty variables. By combining the ideal position of an object
(i.e. the position of the object if all uncertainty is eliminated)
with the uncertainty in that position, we obtain the possible
position of an object. This possible position will be a homo-
geneous transformation matrix, with some or all of its entries
expressed in terms of uncertainty variables. A matrix obtained
by substituting valid values for the uncertainty variables will
represent one possible position of the object.

As an example, we define the transformation which
represents the uncertainty in the position of the manipulator
relative t o the mani lator’s local frame to be:

%os(Ab’,) -sin(Ab’.) 0 AX,]

0 0 1-1

Again, note that the values AX AY AZ and Ab’, are
bounded symbolic variables. flereforpk, thy matrix TAM
represents all of the transformations that could be obtained by
substituting valid numerical values into the matrix in place of
the symbolic variables. The bounds on these variables are
stored in SPAR’s database, and retrieved as needed.

4.2.2. Derivation of Uncertainty-Reduction Goals

The uncertainty-reduction preconditions of an action are
symbolic expressions that define the maximum uncertainty in
the world description under which the action can still be reli-
ably executed. As an example, consider the uncertainty-
reduction preconditions for the pickup action. In order for the
manipulator to grasp an object, the two contact points on the
object must lie between the fingers of the manipulator, even
when worst case uncertainties occur. This is illustrated in Fig.
3. The possible locations of the manipulator fingers are given
by

= Tu+A trans(0, f%W,,O) (2)
where TM+a represents the combination of the ideal position of
the manipulator with the error transformation (shown in EQ.
I), trans(x,y,z) represents a pure translation, and W, is the
width of the manipulator opening. The possible positions of
the contact points of the object are given by:

C,,Z = Tro T A 0 Ro T G trans(0, +%W,,O)[O,O,O,l]t (3)
where Tro is the x,y,z position of the origin of the block’s local
frame, T A 0 is represents the uncertainty in the position of that
frame, Ro is the orientation of the block’s frame, Tc
represents the position of the manipulator relative to the posl-
tion of the block’s frame (i.e. T G is the grasping transforma-
tion), and W, is the width of the block a t the grasp points.

Y

Fig. 3: Possible locations of fingers and contact points.

To test whether the contact points lie between the fingers,
we transform the locations of C1 and Cz to be defined in terms
of the coordinate frames Pl and Pz , and check to see that the
Y-components of these locations are on the positive Y axis for
P1 and on the negative Y-axis for Pz, for all possible values of
the uncertainty variables. Therefore, the four uncertainty-
reduction preconditions for the pickup action are:

Again, note that all of the matrix multiplications shown
above must be performed symbolically, since many of the
entries in the matrices will be expressed in terms of uncertainty
variables. More detailed descriptions of SPAR’s uncertainty-
reduction preconditions can be found in [12].

4.2.3. The Propagat ion of Uncertainty by Actions

Actions propagate uncertainties in distinct ways. For
example, the pickup action has the effect of transforming an
object’s displacement uncertainty into the manipulator coordi-
nate frame, and then reducing the Y component of this uncer-
tainty to the uncertainty in the Y component of the manipula-
tor. The pickup action also reduces the uncertainty in the
object’s orientation to be equal to the uncertainty in the orien-
tation of the manipulator (this assumes that the uncertainty in
the position of the object was initially greater than the uncer-
tainty in the position of the manipulator). The uncertainty in
the position of the block while it is in the grasp of the manipu-
lator is represented by:

[cos(AO,) sin(A8,) 0 Dx +AX,]

TA0 = I sin(AO,) 0 COS(A<) 0 0 1 D z + A Z g AY, I (5)

0 0 1 1 l o
where Dx and Dz represent the initial uncertainty in the x and
z positions of the block, AX,, AY, and AZ, represent uncer-
tainty in the position of the manipulator and A@ represents
the uncertainty in the orientation of the manipufator. Note
that the uncertainty in the Y component of the displacement
uncertainty has been limited to the uncertainty in the Y com-
ponent of the location of the manipulator’s tool center.
Further, note that the rotational uncertainty is the same as the
rotational uncertainty in the orientation of the manipulator.

A more detailed description of how SPAR’s actions pro-
pagate uncertainty can be found in [12]

4.3. Operational and Geometr ic Goals

a type
(either operational, geometric or uncertainty-reduction) a con-
dition that must be satisfied (i.e. the actual goal) and an action
identifier. The action identifier is used to indicate when the
goal must be satisfied, in particular, that i t must be satisfied
prior to the execution of the action specified by the action
identifier. We will use the terms goal and precondition to refer
to either the condition part of the goal or to the entire struc-
ture. Which of these is meant should be evident from the con-
text.

SPAR’s operational goals are similar to the high level
goals used in traditional domain independent planners (e.g.
STRIPS or TWEAK). One difference is our inclusion of plan
variables that can be used to link operational and geometric
goals. For example, one operational precondition of the assem-
ble action is:

op(G1, ActionId, holding(Obj1, Grasp))
The plan variable Grasp is not used in the operational plan-
ning, but serves the purpose of linking operational and
geometric planning. The variable ActionId is used to indicate
the time a t which the goal must be satisfied. In particular, it
must be satisfied prior to the execution of the action whose
action identifier is ActionId.

Geometric goals are slightly more complex, with two main
components. The first is a geometric constraint and the second

Goals in SPAR have three relevant attributes:

185

is a set of operational goals. The meaning of this pair is that
the planner is to establish the operational goals in such a way
that the geometric constraint is satisfied. For example, one
geometric precondition of the putdown action is:

geo(G2, ActionId,
reachable Grasp, Pos),
holding(0 6 j, Grasp))

where holding(Obj,Grasp) is the single operational goal, and
reachable(Grasp,Pos) is the geometric constraint. This goal
indicates that the grasp used to achieve the holding goal must
also permit the manipulator to reach the destination position.

5. GOAL SATISFACTION

In this section, we will individually discuss the methods
used to satisfy operational, geometric and uncertainty-
reduction goals. In the course of this discussion, we will fre-
quently allude to the CMS’s role in the process of goal satisfac-
tion, however, we will leave a discussion of the CMS for Section
6. For the purposes of this section, i t is sufficient to assume
that the CMS is capable of determining if a new constraint is
consistent with the current constraint set.

5.1. Satisfying Operational Goals

Ensuring the satisfaction of an operational goal proceeds
in two steps, as described in [5]: finding an action that estab-
lishes the goal and then dealing with actions that could violate
(or undo) the goal.

In order to find an action that establishes an operational
goal, SPAR first looks a t the add lists of the actions already in
the partially developed plan. If any element of the add list of
such an action can be unified with the operational goal, then
that unification is performed, and the action is declared to have
established the goal. If such an action is found, it is con-
strained to take place prior to the time a t which the goal must
be satisfied. If the CMS determines that this new ordering con-
straint is not consistent with the current ordering constraints,
the constraint addition fails and SPAR backtracks in an
attempt to find another action in the plan to establish the goal.

If no action in the plan is found to establish the goal,
SPAR adds a new action. This consists of instantiating an
action template, adding the action to the plan, and constrain-
ing the new action to occur prior to the time a t which the goal
must be satisfied. Any time SPAR adds an action to the plan,
it is possible that the new action may violate goals that have
already been satisfied. For this reason, when a new actipn is
added to the plan, SPAR examines the list of satisfied goals and
transfers any of these that could be violated by the new action
to the appropriate pending goal stack.

Once an operational goal has been established, SPAR
examines each action in the current partial plan to see if it
could possibly violate the goal. An action can violate an opera-
tional goal if any element in the action’s delete list can be
unified with the goal. There are two ways SPAR deals with a
potential goal violation: the violating action can be con-
strained to occur after the time a t which the goal must be
satisfied (promotion of the goal); an action can be used to re-
establish the goal. A re-establishing action can either be an
action already in the plan, or it can be a new action which is
added specifically for the purpose of re-establishing the violated
goal.

5.2. Satisfying Geometric Goals

Geometric goals are satisfied by constraining the way plan
actions are performed. For example, if a geometric goal
specifies that the manipulator should be holding an object in a
particular grasping configuration, the way to satisfy that goal
is to place a constraint on how the manipulator performs the
grasping action. In order to do this, SPAR needs to link
together the operational and geometric levels of planning. For
this purpose, when planning to satisfy operational goals, plan
variables are introduced that can be constrained by the
geometric level of planning to determine how an action is exe-

cuted. The geometric preconditions are expressed in terms of
those variables. For example, a traditional STRIPS type
action is pickup(0bject). SPAR’S equivalent action is
pickup(Object,Grasp). The variable Grasp is used to define the
geometric configuration that will be used by the manipulator to
grasp the object. At the operational level, the variable Grasp is
primarily ignored, but its presence gives SPAR a method of
constraining how the pickup operation is actually performed,
thus linking distinct levels of planning.

As was discussed earlier, geometric goals consists of a set
of operational goals and a geometric constraint to be applied to
the actions that achieve the operational goals. Each opera-
tional goal that is associated with a geometric precondition of
an action is also listed separately as an operational precondi-
tion of the action. Therefore, since SPAR only considers
geometric goals when the operational goal stack is empty, the
operational goals associated with a geometric goal are
guaranteed t o be satisfied by the current partial plan. There-
fore, in order t o satisfy a geometric goal, SPAR first finds the
actions that establish its associated operational goals, and
attempts to constrain the execution of those actions so that the
geometric constraint is satisfied. This is done by instructing
the CMS to add the geometric constraint to the plan. If this
succeeds, the goal is satisfied and moved to the list of satisfied
goals.

If the CMS determines that the geometric constraint is
not consistent with the current constraints, then one or more
new actions must be added to the plan. These new actions are
chosen based on the operational goals associated with the
geometric goal. Once the actions have been added, the
appropriate geometric constraint is also added. This constraint
will be consistent with the constraints currently in the plan,
since the new action will contain new plan variables that have
not yet been constrained. Note that the addition of actions to
the plan will introduce new operational goals, and therefore
effectively transfer control back to operational planning.

There is no need for SPAR to check for actions that might
violate geometric constraints. The reason for this is that the
set of constraints has no sense of temporal ordering. All con-
straints must be consistent a t all times. Therefore, if any con-
straint had the effect of violating the new geometric constraint,
this would have been detected by the CMS when attempting
the constraint addition.

5.3. Satisfying Uncertainty-&duction Goals

When there are no remaining operational or geometric
goals, SPAR begins planning to satisfy uncertainty-reduction
goals. As mentioned earlier, uncertainty-reduction planning
does not use a constraint posting approach. Instead, specific
plan instances are generated and tested for satisfaction of the
uncertainty-reduction goals.

To test a particular plan instance, SPAR creates an aug-
mented plan instance consisting of four components: the
instantiated list of plan actions (obtained by instantiating the
actions from the partial plan that was developed in the first
phase of planning so that all constraints are satisfied), an error
count initially set to zero , a list of sensory verification actions

plans (also initially set to the empty list). SPAR then sequen-
tially examines each individual action in the instantiated action
list and attempts to satisfy its uncertainty-reduction precondi-
tions After an action has been considered, its add and delete
lists are used to update the world state to reflect the effects of
the action. The uncertainty in the world descriptio? is also
propagated forward, thereby defining the uncertainty in the
world when the next action in the sequence will be executed.

There are three ways to satisfy an uncertainty-reduction
goal for an individual action: the goal may be satisfied by the
current set of constraints on the uncertainty in the world
description; sensing actions can be added to the plan to reduce
uncertainties; manipulations can be added to the plan to reduce
uncertainties. If SPAR fails to satisfy the goal, i t prepares for
possible execution errors. The error count for the augmented

(initial c y set to the empty 1 ist), and a list of local error recovery

186

plan instance is incremented and sensing verification actions
and local recovery plans are added to their respective lists in
the augmented plan instance.

6. CONSTRAINT MANIPULATION
In SPAR, the bulk of the domain knowledge resides in the

constraint manipulation system. This allows the planning algo-
rithm to proceed without any need t o "understand" the domain
of robotic assembly. The action descriptions include precondi-
tions on geometric configurations and the tolerable uncertain-
ties in the world description, but in order to satisfy these
preconditions, the top level planner merely requests that the
CMS add constraints to the constraint database. It is the task
of the CMS to determine whether or not these new constraints
are consistent with the current constraints in the plan, which in
turn, requires a certain amount of domain specific knowledge.

SPAR currently uses three constraint types. In opera-
tional planning, ordering constraints are used to ensure that
actions are performed in the proper sequence (and that goals
are satisfied a t the appropriate times). In geometric planning,
binary constraints between object positions and manipulator
configurations are used to ensure that the robot will be able to
perform the required manipulations. Finally, a t the
uncertainty-reduction level, symbolic algebraic inequalities are
used to express the maximum uncertainty that can exist in the
world description prior to the execution of an action. A
directed graph is used to represent ordering constraints, a
binary constraint network for the geometric constraints, and
algebraic inequalities (expressed in terms of bounded symbolic
variables) for the uncertainty-reduction constraints.

Using a directed graph to represent ordering constraints,
an arc directed from a node, A, to another node, B, implies
that action A must precede action B in the plan. Ordering con-
straints are added t o the plan by adding appropriate arcs to
the ordering graph. A cycle in the ordering graph indicates an
inconsistent set of ordering constraints.

All of the geometric constraints in SPAR are either binary
constraints between plan variables representing object positions
and manipulator positions, or unary constraints on plan vari-
ables. Furthermore, both object poses (i.e. possible orienta-
tions of objects, not including displacement information) and
grasping configurations have been quantized, and assigned
labels, so that each of these can be represented by a single,
symbolic variable rather than a continuous variable in six
dimensional space. Because of these qualities, i t is straightfor-
ward to represent the geometric constrair?ts using a binary con-
straint network. By using a binary constraint network, when
the CMS is instructed to add a new constraint, the consistency
of that constraint with the current set of constraints can be
determined by adding an arc to the constraint network and
then checking the new network for consistency. Because of
space limitations, we will not give an introduction to constraint
networks here. A thorough introduction can be found in either
of [6,7].

In order to represent SPAR'S geometric constraints using
a binary constraint network, each geometric plan variable (e.g.
grasp configurations, positions is represented by a node in the

node is added to the network and assigned an initial label set.
This label set is merely the set of values which may be assigned
to that variable. For example, if the variable represents a
grasping configuration for a particular object, then the initial
label set for its node in the constraint network will contain the
labels of all of the grasping configurations for that object.

Unary constraints on plan variables are achieved by limit-
ing the label set for the corresponding node in the constraint
network. In this way, the set of values that a particular
geometric parameter may be given can be restricted (e.g. cer-
tain grasping configurations can be excluded
straints between plan variables are represented y arcs between
the corresponding nodes in the network (these arcs are not
directed). Each arc in the network contains a set of pairs of
values which indicate the valid pairs of labels for the connected

network. When a new variab 1 e is introduced into the plan, a

1; Binary con-

nodes. Determining the valid pairs of labels requires a seman-
tic understanding of the domain, but once the pairs have been
assigned, no domain knowledge is required to check for network
consistency.

When the CMS is instructed to add a unary constraint to
the network, it first updates the label set of the appropriate
node, and then updates each arc connected to that node by
deleting pairs that are no longer valid given the node's new
label set. Finally, the new network is checked for consistency.
When the CMS is instructed to add a new binary constraint to
the network, i t adds an arc between the appropriate nodes
(creating the nodes if they do not already exist in the network),
and then checks for network consistency.

When the planner inserts a manipulation action into the
plan, it must ensure that all of the configurations required to
perform that manipulation will be physically realizable. In
order to do this, SPAR uses reachability constraints. The two
conditions that must be met to satisfy reachability are that the
manipulation be within the physical capabilities of the robot
(this is verified using the inverse kinematic solutions for the
particular robot), and that grasps used in the course of the
manipulation do not obscure mating features (those features
that must come into contact with other objects during the
course of the operation). A description of these how these con-
straints are derived can be found in [12]. When a reachability
constraint is added to the geometric binary constraint network,
all pairs of grasps/positions that satisfy the constraint are
placed on an arc between nodes representing the planning vari-
ables for the grasp configuration and the position. A network
consistency check is then performed.

When the planner considers the uncertainty-reduction
goals, it does so for a particular instantiated plan instance. AS
a consequence of this, a t the time of their evaluation, the
uncertainty-reduction goals (expressed as symbolic algebraic
inequalities) will be expressed in terms of specific bounded sym-
bolic variables. Therefore, determining if an uncertainty-
reduction goal is satisfied consists of a single evaluation (rather
than a series of evaluations as is required for geometric con-
straints). In particular, since the uncertainty-reduction goals
are expressed as inequalities of the form exprl < expr2, and
since a t least one of these expressions is always a single con-
stant, if we find the maximum value for exprl and the
minimum value for exprz (under the constraints contained in
the world description), we can determine whether the
uncertaint -reduction goals are met simply be checking to see if
max(exprljl< min(expr2).

In. order to find upper and lower bounds on symbolic
expressions, we have implemented a system similar to the
SUP/INF system which was introduced by Bledsoe [2], and
then refined b Shostak [20], and later Brooks for his ACRO-
NYM system [3]. The functions SUP and INF each take two
arguments, a symbolic expression and a set of variables, and
return upper/lower bounds on the expression in terms of the
variables in the variable set. The method SUP/INF employs is
to recursively break down expressions into subexpressions, find
bounds on these subexpressions, and then combine the bounds
using rules from interval arithmetic. Obviously this works for
linear expressions where superposition holds. When expressions
are nonlinear, however, it is quite possible that the bounds on
the individual subexpressions will be looser than the bounds on
the subexpressions when considered in the context of the whole
expression. Because of this, it is possible that SUP/INF will
sometimes find inexact bounds.

In spite of this, the policy of recursively finding bounds on
subexpressions and then combining those bounds guarantees
that the algorithms will terminate. This has been shown by
Shostak for his version of SUP/INF, and later by Brooks for
his modified versions. Furthermore, even though i t is possible
that SUP/INF will not return exact bounds, it has been shown
(again, by Shostak and later by Brooks) that they are conserva-
tive, in that SUP always returns a value greater than or equal
to the maximum, and INF always returns a value less than or
equal to the minimum. The fact that SUP INF sometime only
approximates solutions is not a severe prob i em for SPAR, since

187

failure to satisfy uncertainty constraints has a worst case result
of the addition of sensing actions to the plan. That is, if the
CMS determines that the uncertainty constraints cannot be
satisfied, it does not backtrack. It merely prepares for the pos-
sibility of failure.

7. EXPERIMENTAL RESULTS
We have used SPAR to plan a number of assembly tasks.

The resulting assembly plans were then executed in a robot
work cell vequipped with a PUMA 762 robot. The assembly
goal in each experiment was to mate a block with a peg to a
block containing a hole. By varying the initial positions of the
objects, SPAR was forced to develop distinct plans for the indi-
vidual tests, even though the assembly goals were the same.

Figs. 4 and 5 illustrate experiments that have been per-
formed. Each figure includes a photograph of the initial world
situation and a listing of the plan that is output by SPAR. In
Fig. 4, the block is initially face down and the peg is resting on
its side. In order to perform the assembly, the robot must first
reposition the block so that the face containing the hole is
accessible. This requires two manipulations: one to place the
block on its side (an intermediate position) and one to then
place the block on its back. Once the block 1s repositioned, the
peg is picked up and the assemble action is performed. Fig. 6
shows the robot executing the steps in the plan shown in Fig. 4.

We should note that, although the uncertainty-reduction
planner is fully implemented, i t is not yet integrated with the
execution system. There are two reasons for this. First, we
have not yet fully and accurately characterized the uncertain-
ties in the sensors and robotic manipulator. Second, the
current set of recovery plans lacks robustness and generality.
These two areas are subject of ongoing research.

((1 (pickupobjecl block
((0.707107 0.0 -0.707107)

(0.707107 0.0 0.707107)
(1.0 1.375 1.625))))

(2 (putdown-object block
((- 1 0 0)
(0 1 0)
(00-1)
(-10 30 -18.05))))

((-0.707107 8.659%-17 -0.707107)
(-1.2246e-16 -1.00.0)
(-0.707107 8.6593~-17 0.707107)
(1.0 1.375 1.625))))

(-0.0 1.0 0.0)

(3 (pickupobject block

(4 (pidom-objecl block
((0 0 1)
(0 1 0)
(-1 00)
(-10 U) -21.3))))

(5 (pickupobject g
((-0.7071g -0.707107 4.123~-17)
(8.6593~-17 6.163~-33 -1.0)
(0.707107 -0.707107 6.123~-17)
(0.5 1.375 1.625))))

((-1 0 0) io 1 0)

(6 (assemble-objects peg block

Fig. 4: SPAR generated plan to assemble the two objects
shown. In the initial state, the block faces down and
the peg points sideways.

.. ~ -
(0 1 oy
(0 0 -1)
(-10 30 -18.05))))

(5 (pickup-object block
((-0.707107 8.659%-I7 -0.707107)
(-1.2246~-16 -1.0 0.0)
(-0.707107 8.6593~-17 0.707107)
(1.0 1.375 1.625))))

((0 0 I)
(6 (ptdown-object block

fY02)
(-10 20 -21.3))))

((-0.7071g 8.659%-I7 -0.707107)
(-1.2246~-16 -1.0 0.0)
(-0.707107 8.6593e-17 0.707107)
(1.0 1.375 1.625))))

(I@ickupobjec~ g

(2 @uldom-objecl peg
((-1 0 0)
$3)
(-10 -21.3))))

(7 @ic%?!~O?%O -0.707107l
(-0.0 1.0 0.0)
(0.707107 0.0 0.707107)
(0.5 1.375 1.625))))

(8 (assemble-obects peg block
((-1 od,

Fig. 5: Same as Fig. 4, except now the peg initially points
UP.

8. CONCLUSIONS
This paper represents a step toward a planning system

which can create assembly plans given as input a high level
description of assembly goals, geometric models of the com-
ponents of the assembly, and a description of the capabilities of
the work cell including the robot and the sensory system).

tion: the operational level where high level operations are
planned), the geometric level where geometric configurations of

(where world uncertainties are taken into account).

At the first two levels of planning, we have extended the
constraint posting approach to domain independent planning
by adding geometric preconditions to the actions, linking these
to operational goals via plan variables, and expanding the CMS
to be able to deal with geometric constraints. At the
uncertainty-reduction level of planning, we have expressed
uncertainties in the world in terms of homogeneous transforma-
tions whose elements are defined in terms of symbolic uncer-
tainty variables. We then expressed limits on tolerable uncer-
tainties in terms of operations on transformations. When the
uncertainty-reduction goals cannot be satisfied, rather than
abandon the plan, our system augments the plan with sensing
operations for verification, and when possible, with local error
recovery plans.

The resulting p \ anner, SPAR, reasons a t three levels of abstrac-

the actions are planned) an a the uncertainty-reduction level

188

At this point, there are a number of areas in our system
which are either ad hoc, or require input from the user. For
example, the local error recovery plans must be entered by the
user, and associated with the uncertainty-reduction goals a
priori. One goal of our future work will be to automate this
process by employing geometric reasoning about possible errors
and error recovery. A further shortcoming of SPAR is the lack
of a motion planning module. Incorporating a motion planner
with the current system is another goal of our future work.

a b REFERENCES

C d

111

131

[41

e

Fig. 6: Robot executing the plan shown in Fig. 4.

A. P. Ambler and R. J. Poppiestone, "Inferring the Positions
of Bodies from Specified Spatial Relationships," Artificial
Intelligence, Vol. 6 , 1975, pp. 157-174.
W. W. Bledsoe, "The SUP-INF method in Presburger Arith-
metic," U. of Texas at Austin Math. Dept. Memo ATP-18,
Dec. 1974.
R. A. Brooks, "Symbolic Reasoning Among 3D Models and
2D Images," Artificial Intelligence, Vol. 17, 1981, pp, 285-348.
R. A. Brooks, "Symbolic Error Analysis and Robot Plan-
ning," The Int? Journal of Robotics Research, Vol. 1, No. 4,
Winter 1982.
D. Chapman, "Planning for Conjunctive Goals," Artificial
Intelligence, Vol. 32, No. 3, July 1987, pp. 333-378.
E. Davis, "Constraint Propagation with Interval Labels,"
Artificial Intelligence, Vol. 32, No. 3, July 1987, pp. 281-331.
R. Dechter and J. Pearl, "Network-Based Heuristics for
Constraint-Satisfaction Problems," Artificial Intelligence, Vol.
34, No. 1, Dec. 1987, pp. 1-38.
B. R. Donald, "A Search Algorithm for Motion Planning with
Six Degrees of Freedom," Artificial Intelligence, Vol. 31, No.
3, March 1987, pp. 295-353.
S. N. Gottschlich and A. C. *f(ak, "A Dynamic Approach to
High Precision Parts Mating IEEE Trans. on Systems, Man
and Cybernetics Vol. 19, NO.'^, July/Aug. 1989, pp. 797-810.
L S. Homem de Mello and A. C. Sanderson, "A Correct and
Complete Algorithm for the Generation of Mechanical Assem-
bly Sequences," Proc. of the IEEE Int4 Conf. on Robotics and
Automation, 1989, pp. 56-61.
Y. F. Huang and C. S. G. Lee, "Precedence Knowledge in
Feature Mating Operation Assembly Planning," Proc. of the
IEEE Int '1 Conf. on Robotics and Automation, 1989, pp. 216-
221.
S. A. Hutchinson and A. C. Kak, "A Task Planner for Simul-
taneous Fulfillment of Operational, Geometric and
Uncertainty-Reduction Goals, Purdue University Technical
Report, TR-EE 88-46, Sept. 1988.
Y. K. Hwang and N. Ahuja, "Path Planning Using a Poten-
tial Field Representation," University of Illinois at Urbana-
Champaign Tech. Report, UICU-ENG-88-2251,1988.
Y. Liu and R. J. Popplestone, "Planning for Assembly from
Solid Models," Proc. of the IEEE Int'l Conf. on Robotics and
Automation, 1989, pp. 222-227.
T. Lozano-Perez and R. A. Brooks, "An Approach to
Automatic Robot Programming," MIT AI Lab, AIM 842,
1985.
T. Loeano-Perez, J. L. Jones, E. Mazer, P. A. O'Donnell, W.
E. L. Grimson, P. Tournassound and A. Lanusse, "Handey: A
Robot System that Recognizes, Plans and Manipulates,"
Proc. of the IEEE Int'l Conf. on Robotics and Automation,
1987.
J. Pertin-Troccae and P. Puget, "Dealing with Uncertainties
in Robot Planning Using Program Proving Techniques,"
Proc. of the Fourth Int'l Symposium of Robotic Research,
Aug. 1987.
E. D. Sacerdoti, A Structure for Plans and Behavior, Elsevier
North-Holland, Inc., New York, 1977.
J. T. Schwarts and M. Sharir, "A Survey of Motion Planning
and Related Geometric Algorithms," Artificial Intelligence,

R. E. Shostak, "On the SUP-INF Method for Proving Pres-
burger Formulas". Journal of the ACM, Vol. 24, No. 4, Oct.

Vol. 37, 1988, pp. 157-169.

1977, pp. 529-543.'
P. Tournassound and T. Lozano-Perez, "Regrasping," Proc.
of the IEEE Int? Conf. on Robotics and Automation, 1987,
pp. 1924-1928.
D. E. Wilkins, "Representation in a Domain-Independent
Planner," Proc. Eighth Int'l Joint Conf. Artificial Intelligence,
1983, pp. 733-740.

[22]

189

