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ABSTRACT 
In this paper we present an approach to planning sensing strategies in 

a robot work cell with multi-sensor capabilities. The system first forms an 
initial set of object hypotheses by using one of the sensors. Subsequently, 
the system reasons over different possibilities for selecting the next sensing 
operation, this being done in a manner so as to maximally disambiguate the 
initial set of hypotheses. The “next sensing operation“ is characterized by 
both the choice of the sensor and the viewpoint to be used. Aspect graph 
representation of objects plays a central role in the selection of the 
viewpoint, these representations being derived automatically by a solid 
modelling program. 

1. Introduction 
With current techniques in geometric modeling, it is possible to gen- 

erate object models with a large number of features and relationships 
between those features. Likewise, given the current state of computer 
vision (both 2D and 3D) and tactile sensing, it is possible to derive large 
feature sets from sensory data. Unfortunately, large feature sets can also 
require exponential computational resources unless one takes advantage of 
the fact that most objects can be recognized by a few landmarks. The prob- 
lem then becomes one of developing computer procedures capable of 
analyzing geomztric models to yield the most discriminating feature sets. 
In solving this problem, one has to bear in mind that in the robotic cells of 
today we have available to us a variety of sensors, each capable of measur- 
ing a different attribute of the object. 

For it to be useful to robotic assembly, we need to add another dimen- 
sion to the problem as stated above. Say, we have a robot trying to deter- 
mine the identities of the objects in its work area. The robot should only 
invoke those sensory operations that are most relevant to the disambigua- 
tion of whatever hypotheses the robot might entertain about the identities of 
those objects. Therefore, the most discriminating features invoked by the 
robot must be determined at run time and, of course, must make maximum 
advantage of all the sensors that are available. 

If we limited ourselves to just vision sensing and if the run-time capa- 
bility was not important, problems of this sort have recently been solved by 
a number of researchers, most notably Ikeuchi [8] and Hanson and Hender- 
son 161. Ikeuchi’s work is based on the automatic synthesis of interpreta- 
tion trees which are used to guide feature selection. In Ikeuchi’s approach, 
the higher level nodes in the interpretation tree yield the aspect of the 
object, and then the lower level nodes are used for computing the precise 
pose of the object. This scheme makes use of the fact that for most objects 
the set of features useful for discriminating between aspects differs from the 
set of features useful for determining the exact pose once the aspect has 
been determined. 

In the work reported by Hanson and Henderson, a set of filters is used 
to select the best identifying features (based on rarity, robustness, cost, etc.) 
for each aspect. These features and their associated aspects are compiled 
into a strategy tree which, in purpose, is similar to Ikeuchi’s interpretation 
tree. The strategy tree has two levels. Each node at the first level allows 
aspect hypotheses to be invoked on the basis of certain features and their 
values. For each hypothesis at a first level node, there exists a Corroborat- 
ing Evidence Subwee, which is used to guide the search for evidence that 
supports that hypothesis and for carrying out the computations for 
geometric data for determining the object’s pose. 

The work that we present in this paper extends the above cited work 
by giving the system the ability to use multiple aspects and different sensors 
for the identification of an object and the computation of its pose. The sen- 
sory types currently incorporated in the system include a 3D range scanner, 
2D overhead cameras, a manipulator held 2D camera, a Forcelrorque 
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wrist-mounted sensor, and also the manipulator fingers for estimating the 
grasp width. These sensors can be used to examine objects from arbitrary 
viewpoints. Also, the manipulator and F/r sensor can be used to measure 
other features such as weight, depth of occluded holes in the object, etc. 

It is important to realize that with these additional sensory inputs, we 
can discriminate between object identities, aspects and poses. that would 
otherwise appear indistinguishable to just a fixed viewpoint vision-based 
system. Our system is capable of dynamic viewpoint selection if that’s what 
is needed for optimum disambiguation between the currently held 
hypotheses. 

We attack the problem of viewpoint and sensor-type selection as fol- 
lows. After observing the object from an initial viewpoint with, say, a 
vision sensor, a set of hypotheses is formulated about the object identity and 
pose. We then search for a viewpoint that will enable the system to observe 
features which will best discriminate between the competing hypotheses. 
This is possible because, for any active hypothesis, we can predict the 
feature set which would be observed from a candidate viewpoint with a 
candidate sensor if that hypothesis was correct. By doing this for each 
active hypothesis, we can determine the amount of ambiguity that would be 
resolved using that viewpoint-sensor combination. This is the crux of our 
approach. 

In the remainder of the paper, we will present our technique in some 
detail. In the next section, we will describe how object hypotheses are 
developed, and present a measure of ambiguity in a set of object 
hypotheses. Section 3 describes the method we use to predict the features 
that can be observed from a particular viewpoint. In Section 4, we describe 
the types of features that our system uses, and give a brief overview of how 
these features are derived from sensory data. In Section 5,  we describe the 
algorithm that we have implemented to search through the space of 
viewpoints. The algorithm makes use of the object’s aspect graphs, the 
search space being comprised of the set of viewpoints corresponding to the 
nodes in the graph. In this section, we also discuss future work which will 
incorporate uncertainty into the algorithm. The paper concludes with a 
brief discussion of our experimental work. 

2. Approach 
In order to illustrate our problem and the approach that we will take, 

we begin this section with a two dimensional example. The problem in the 
example consists of making sensory measurements for distinguishing 
between the two 2D objects shown in Fig. 1. We will assume that a sensory 
measurement yields the edges that are visible from a particular viewpoint, 
the length and the orientation of the measured edges being subject to exper- 
imental error. For the purpose of facilitating the explanation here, we have 
used the integers, 1, 2, 3 and 4, to denote the sides of one object, and the 
letters, a, b, c, d, e and f, to denote the sides of the other. 

Suppose that the first sensor reading that we obtain is the straight line 
segment (denoted by the label SI) observed from the viewpoint V, as illus- 
trated in Fig. 2a. This line segment could correspond to a number of possi- 
ble edges. Note that since there is some uncertainty in the edge extraction 
process, the length of the sensed edge could not be assumed to be abso- 
lutely accurate. Therefore, it is possible to map a measured edge to any 
model edge whose length is within some tolerance of the length of the 
measured edge. The possible assignments of model edges to the measured 
edge are illustrated in Fig. 2b. Note that if the system was constrained to 

- -  - -  ~ 

Fig. 1:Two 2-dimensional Fig. 2: (a) shows a sensed edge BS observed 
objects with edge 
labels. matching model edges. 

from V. (b) indicates the possible 
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Fig. 3: (a) shows the two sensed edges, 8s 

observed from Vz . (b) shows the 
four possible object hypotheses for 

v2\ v2k? this pair of sensed edges. 
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view only one aspect of the object, this is as far as the recognition process 
would proceed, and the identifrcation would be ambiguous. 

Now we are faced with the question of where to apply the next sens- 
ing operation. Since the single edge that we have found has many possible 
intelpretations, and since no relational information can be obtained from a 
single 2D edge, we arbitrarily choose to apply the second sensing operation 
at one end of the first edge. From this new viewpoint, Vz, we observe SI 
and S2. as shown in Fig. 3a. Now, using the two model objects, and match- 
ing the sensed edges to the possible model edges, and using the relational 
constraints in the model to prune away impossible hypotheses (e.g. as in 
[5]),  we obtain the four possible matches shown in Fig. 3b. So, at this time, 
we have four possible hypotheses for the measured edges, SI and S2. To 
explain the notation used in Fig. 3b, the first of these hypotheses is denoted 
by (SJI, Sfl), meaning that SI is hypothesized to be the model edge 1, 
and S2 the model edge 2; both model edges belonging to the left object in 
Fig. la. 

We now have enough information to attempt to make some intelligent 
choices about where to apply the next sensing operation. Since a sensing 
operation is only allowed to consist of viewing the object from a chosen 
viewpoint, our problem is to choose an appropriate viewpoint to disambigu- 
ate between the four hypotheses shown in Fig. 3b. Fig. 4a-4~ show possible 
viewpoints, and the corresponding edges that would be observed for each of 
the four hypotheses. If we choose the viewpoint in Fig. 4a, it is clear from 
the figure that we will never be able to distinguish between the third and the 
fourth hypotheses because the new visible edge from this viewpoint makes 
the same angle with the previously measured edge Sz However, if we 
choose the viewpoint as shown in Fig. 4c, the visible edges will uniquely 
identify the object and its orientation, regardless of which hypothesis is 
actually correct Thus, the best viewpoint is the one shown in Fig. 4c. 

This approach can be extended to three dimensions. Consider Fig. 5,  
which shows a piston and a crankshaft. If range data processing finds a 

(b) 
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Fig. 4: In (a), the edges observed from the candidate viewpoint 
appear similar for the last two hypotheses. In (b), the 
observed edges appear similar for the first two 
hypotheses. In (c), the observed edges have a unique 
appearance for each of the four hypotheses. 

1.1 01 

Fig. 51 shows a piston, (a), and a crank shaft (b). 

Fig. 6 If a cylindrical surfiice is measured 
(a). the possible object hypotheses 

Fig. 7: A block with two 
holes of Werent 

are as in (b) and (c). depths. 
cylindrical surface, as shown in Fig. 6a, then the possible object hypotheses 
are as shown in Fig. 6b. If the next sensing operation is properly selected, 
we can guarantee that the object will be uniquely identified. It is also possi- 
ble to choose the next sensing operation in such a way that it will not 
remove any ambiguity. Fig. 7 shows another three dimensional example. 
Here the two holes in the block are of differing depths. Thus, the only 
measurement that will uniquely determine the orientation of the block is the 
measurement of the depth of the holes. Even if the system finds all of the 
planar surfaces, angles between adjacent surfaces, convex edges and edge 
junctions that there are to find, it will still not be able to determine the 
orientation of the block until it measures the depth of at least one of the 
holes. 

While these examples serve to illustrate the problem, they don't 
really show any clear approach to its solution. In the remainder of the 
paper, we will develop a technique for determining optimal sensing stra- 
tegies, given a set of sensory data which has been obtained. Our method 
hinges on the ability to predict the set of features which might be observed 
from different viewpoints given a set of competing hypotheses about the 
object's identity and position. We must also be able to use these predictions 
to determine how much ambiguity can be eliminated from a set of 
hypotheses by observing the object from a candidate viewpoint. For this 
purpose, we will introduce a formalism which can be used to express the 
ambiguity in a set of feature hypotheses. Our formalism will also allow us 
to quantify the possible reduction in this ambiguity by future sensing 
operations. 

Before introducing our measure of ambiguity, we first explain how 
hypothesis sets are generated in our system. The method we use is to form 
an initial set of hypotheses, and then refine this set using successive sensor 
readings. The algorithm we use to accomplish this is as follows. We are 
given a set of sensed features, S = [SI, S2 . . . Sk], a set of model features, 
M = {MI, M, . . . &I, and a function, f : S + 2M, which maps each 
sensed feature onto possible model features: 2M represents the power set of 
M. [To illustrate the function f, for the example discussed via Figs. 1 
through 4, f(S,) = (1,2,4a,b,cf).] We use the following algorithm to refine 
a hypothesis set, given a new sensor reading, Si. 

refine-hyp-set (hyp-set, Si ) 

form E f( Si> 

new-hyp-set e- nil 
for h E hyp-set 

if consistent(h,(Si/m)) then 
new-hyp-set t append(new-hypset, h (SJm)) 

return (new-hyp-set) 
A few things need to be said about hypothesis consistency at this 

point. First, we form the initial hypothesis set by calling refine-hyp-set with 
the null set as the first argument. By definition, all possible matches of 
sensed features to model features are consistent with the null set. Thus, the 
initial hypothesis set is trivially defined by 

H I = {  I S l / m )  I m e  f ( S , ) )  
Second, a match, (SJm], is consistent with a hypothesis h if for each 

E h. if a relation, R, holds between Sj and Si in the sensed data, then 
that relation also holds between pk and m in the object model. Relation- 
ships used by our system include surface adjacency, dot product of the nor- 
mals of two surfaces, and dot product of the vector connecting the centroids 
of two surfaces with the surface normal of one of the surfaces. It should be 
noted that the values of the dot products are never exact, so we have esta- 
blished tolerances on the allowable differences. It should also be noted that 
some types of surfaces are prone to error in these measurements, and are 
therefore exempted from these tests, (e.g. the measurement of the average 
surface normal of a cylindrical surface). 

For computational purposes, the shucture of each hypothesis is more 
complex than what is exemplified by HI above. Each hypothesis is given a 
frame like representation in which the slots correspond to items such a pose 
transformation, certainty value, and the name of the object corresponding to 
the hypothesis, etc. By pose transformation, we mean a homogeneous 
transformation matrix Tobj that maps the model object into the hypothesized 
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object. All the model objects are generated by a solid modeler, which deter- 
mines their initial placement in the 3-space representing the robot work 
area. Note that, in general, it may not be possible to generate the pose 
transformation, Tobj, after the first sensory measurement (e.g., in Fig. 2, the 
information available is not sufficient for the computation of the pose 
transformation after only the measurement of SI). However, usually after 
two or three measurements have been taken, the pose transformation can be 
established for each active hypothesis. 

In addition to the relational constraints between the matches, if a pose 
transformation has already been established for an active hypothesis, then 
the location of a feature (as measured, for example, by its center of mass) 
must be within some tolerance of the location predicted for the matching 
model feature using the pose transformation. The predicted location of a 
model feature in each hypothesis is computed by performing the lransfor- 
mation Tobj * C, where C is the location of the model feature in the 3-space 
used by the solid modeler. 

In our previous example, given S = {SI, Sz). our algorithm would 
find: 

HI = refine-hyp-set( { 1, SI ) 
= ( (  S,/1 I ,  ( SIR), ( S1/4 I ,  { S,/al, t S , / b ) ,  ( S,/c I .  ( S,/f 1) 

= ([ S,/L S i 2  1. { S1/4,Sd1 1, ( S,/a,Sdb 1. ( S,/f,S&i I I 
H, = refine-hypset( HI, S2) 

In terms of complexity, for each i, the time complexity is 
O( IH,-, I If(Si)I i). where 1 - 1  denotes the cardinality. The pairwise con- 
sistency check of Si/m with each element of h gives rise to the i factor. 
Note that I H, I S I H,-, I I f(SJ I ,  which provides a wont case upper bound on 
the time complexity. That is, if we cannot prune the number of hypotheses 
using relational constraints, lH,l grows exponentially with i. Fortunately, 
it is generally the case that enforcing relational constraints substantially 
reduces the number of hypotheses from this upper bound. 

At this point we can define a measure of ambiguity in a set of 
hypotheses to be the number of hypotheses contained in that set, A, = I Hi I .  
This definition can be extended to define reduction in ambiguity by the 
measurement of additional sensed features by Mi = A, - A,-,. Building on 
this, given a set of hypotheses, e, obtained from a set of sensor data which 
has been taken, it is possible to anticipate the maximum ambiguity in the 
next set of hypotheses, H,+,, if we know the type of sensing operation which 
will be performed and where it will be applied. 

Consider the four hypotheses in Fig. 4a. If the first hypothesis, 
corresponding to the leftmost rendition in the figure, is correct, no new 
edges will be viewed. Thus, if no new edges appear in the sensed data, the 
hypothesis set will be reduced to the element, namely. [SI/l, SP), which 
in words means that both both the sensed edges SI and S, belong to object 1 
and correspond to the edges 1 and 2. On the other hand, if the second 
hypothesis is correct, one new edge will appear, and it will be oriented at 
approximately 45 degrees from the vertical. Therefore, if such an edge is 
observed in the sensed data, the new hypothesis set, H3, will again be 
reduced to a single element, namely, (Sl/a, Sfi, S&]. If either of the last 
two hypotheses is correct, S3 will correspond to an edge aligned with the 
vertical axis. Therefore, if either of these is correct, SI, Sz and S3 will have 
the Same appearance, making these two hypotheses indistinguishable based 
on the three measurements, SI, Sz and S3. Because of this, if an edge 
aligned with the vertical axis is measured, H3 will contain two hypotheses, 
corresponding to the two rightmost renditions in Fig. 4a. Thus, the max- 
imum possible ambiguity corresponding to this viewpoint is two. 

In contrast, in Fig. 4c, the maximum possible ambiguity is 1, due to 
the fact that for each hypothesis, a unique set of sensed edges will be 
observed from the proposed viewpoint. We will use the symbol A',,,,, to 
denote the maximum ambiguity in i* refinement of a hypothesis set for a 
proposed sensing operation. Given this formalism, the task of our system is 
to find the sensing operation which will minimize AImx. 

Automatically determining what type of sensing to use, and where to 
apply it so that A',,,,, is minimized, is a complex task. Many considerations 
must be taken into account, including the cost of the sensing operation, how 
to go about searching the model space for the best location at which to 
apply the sensing operation, and how to take into account possible 
uncertainties in the sensory data when predicting the possible hypotheses at 
the next sensing application. Ultimately though, the choice will be only as 
good as our ability to predict the possible outcomes of the sensing opera- 
tions which we can choose to apply. This will be the topic of the next sec- 
tion. 

3. Predicting Sensor Readings 
In order to determine which sensing strategy will minimize A&, we 

must be able to predict the possible results of candidate sensing operations. 
Consider Fig. 4 again. The ability to determine which viewpoint to try 
depended on the ability to predict the set of possible sensor readings that 
would be obtained from the various viewpoints. In the example of Fig. 4, 
this amounted to being able to predict the geometry of the line segments 
that would be observed from various viewpoints relative to the edges in the 
four object hypotheses. In the general case, predicting sensor readings 
depends on the ability to determine the features which will be observed by a 
particular sensor from a particular viewpoint if the object under examina- 
tion is the hypothesized object in the hypothesized position. In general, 
there will be several active hypotheses, so we must be able to enumerate the 
features which would be observed for each of these hypotheses. using the 
candidate sensing strategy. 

In order to have this predictive power. the system most be abIe to for- 
mulate position hypotheses which correspond to the feature hypotheses. 
This can be done once we have completely determined the position (loca- 
tion in 3-space and orientation) of any of the hypothesized features. If we 
have only observed one feature, this is usualIy not possible. For example. if 
we observe a planar surface, we are able to determine the normal to the sur- 
face, but not necessarily the rotation about the normal. Furthermore, edge 
locations tend to be noisy, so it is also unlikely that we will be able to obtain 
an accurate position of the centroid of the surface. If we have observed two 
features, our chances are much better. For example, once we have found 
two adjacent planar faces, we are able to measure two sets of surface nor- 
mals, which fixes the object's orientation. 

We can establish a position hypothesis once we have established a 
correspondence between two sensed surfaces and two model surfaces, pro- 
vided the two are planar. We do this as follows. Let Sn, and Sn, be the 
surface normals for the t m  sensed surfaces, and Mnt and Mn2 the surface 
normals for the corresponding surfaces in the object model. Also, let Cs be 
the centroid of either of the sensed surfaces and Cm the centroid of the 
corresponding model surface. We can now define two coordinate frames in 
terms of cSn,, Sn,l, CO and cMn,, Mn, and Cm>. Our method is to find 
the transformations, T, and T,, which map each of these frames into a stan- 
dard frame, and then compose these to find TA,. The standard frame is with 
Cs and Cm at the origin, Mn, and Sn, lying along the negative 2 axis and 
Mn, and Sn, lying in the positive half of the Y-Z plane. We find T, as fd-  
lows: 

-Sn, Sn xSn2 
I Sn, I I Sn, x Sn,l 

&=- R,= 1 R, = R,xR, 

We compute T, in a similar fashion. A derivation for these equations 
can be found in [4]. Finally, we compute TobJ using the equation: 

TAJ = T;' T,,, 
While it is occasionally useful to be able to predict the location of a 

hypothesized feature, more generally we wish to solve the inverse problem, 
i.e. given a location and an object hypothesis, which feature should we 
expect to find there? The soiution to this inverse problem is not as simple 
as just performing a transformation. Instead, we must rely on a geometric 
modeling system to aid us in performing this task. In particular, we want to 
give the modeling system a viewpoint, and ask it what features we should 
expect to observe (for a particular object in a particular position) using a 
particular sensor. Obviously this is an oversimplification, since the 
geometric modeling system has no notion of sensing, and the features we 
should expect to observe depend on the type of sensing we plan to use. For 
example, 2D vision will not be able to distinguish between curved and 
planar surfaces, while 3D vision will not be able to find small holes in the 
object. Therefore, we must augment the geometric model, so that we can 
determine the set of features which will be observed by the different sen- 
sors. 

The augmented geometric model contains a great deal of information 
in tabular form. This information includes the surface areas, the surface 
normals, adjacent surfaces, surface types, and location of centroids for each 
of the model surfaces. There is also a set of information concerning the 
actual geometric model (e.g. name of file containing a CSG description of 
the object). The augmented model also includes a table of model features 
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which can be observed by each type of sensor. These tables are used so that 
the system will not have to invoke the full power of the geometric modeling 
system unless absolutely necessary. 

The augmented model also contains an aspect graph for the object. 
The aspect graph specifies which model features can be observed from each 
-el on a viewing sphere centered at the world origin. Using the aspect 
graph, determining a set of visible features is relatively straight forward. 
First, Tobj is used to determine the tessel on the sphere from which the 
object is being observed. The center of the viewing tessel is computed by 
normalizing the vector, T.$ V, where V is the viewpoint in world coordi- 
nates. The set of features vlsible from this tessel is then intersected with the 
set of features which can be observed by the particular sensor to determine 
the set of features which is visible to the Sensor from the specified 
viewpoint (providing the object hypothesis is correct). 

Having described how the set of observable features is determined for 
a given object hypothesis and a particular sensing strategy, we now turn our 
attention to the features themselves. In particular, we will now describe 
what features are used by the system for each of the sensing modalities, 
how those features are derived from sensory data and how the feature infor- 
mation about the object models is stored. 

4. Observable Features 
In this section of the paper, we describe the features which can be 

observed by each of the sensors that our system uses. Our system currently 
uses a structured light scanner to obtain 3D information about the scene, 
overhead and a manipulator held cameras to obtain 2D information about 
the scene, a forcdtorque sensor mounted on the robot’s wrist, and a mani- 
pulator which can be queried to find the distance between its fingers. 

4.1. 3D Features 
The richest set of features available to the system comes from range 

data. Range data is gathered for a set of points in the scene, using a range 
scanner which the robot manipulates. This initial data is converted to xy,z 
data. Subsequent processing of the range data yields the desired attributes 
and relations, which are used to formulate the feature hypotheses. This sec- 
tion also describes how the model features and relationships are stored and 
accessed during hypothesis formulation. 

4.1.1. Surface Segmentation 
The input range data is in the form of R(u,v), that is, a value relating 

to the range is given over the grid defined by the sampling variables U and 
v. For our range scanning, these values are converted to a range map of the 
following form through use of a transform described in [2]. 

X(U.V) = (x(u.v), Y(U,V), z(u,v)) 
Using algorithms described in [15,16] surface normal vectors as well as 
mean and Gaussian curvature values are determined for each point with 
adequate neighbors for the window convolutions involved. This provides 
three more local property maps: 

N(u.v) = (Nx(u,v), N,(u,v), N,(u,v)) 

L ( U . V )  

Gcm(u,v) 
These local surface features are used in the segmentation and surface 

characterization steps. The label map Label(u,v) is initialized at this time, 
where each point is given a label of valid if valid range data existed for that 
point, or invalid if not. 

For each point labeled as valid, the local surface features are exam- 
ined to detect edge points. We have explored three methods of edge detec- 
tion. While no single one of these finds adequate edge points to fully seg- 
ment all surfaces in most scenes, using all three provides accurate surface 
Segmentation at the expense of additional computation and occasional edge 
artifacts. 

A label of jump edge is placed in Label(u.v) if the 3-D distance from 
the corresponding range point X(u,v) to one of its neighbors is greater than 
some threshold. A greater degree of sophistication can be added by also 
requiring that the range discontinuity to the neighbor on the opposite side of 
the point in question be significantly less or of opposite sign. The allows 
the later segmentation of a surface that is nearly parallel to the light stripe 
without labeling every point on its surface as an edge, just those at the front 
and rear boundaries. 

The next most obvious type of boundary between surfaces is formed 
by points where the surface curvature is at some maximum value. A thres- 
hold corresponding to some minimum allowable radius of curvature is set. 
If the magnitude of the mean or Gaussian curvature exceeds the respective 
threshold, the point is given a label of curvature edge. 

Finally, all points with valid surface normal values are examined. If 
a point in the neighborhood has a surface normal which differs sufficiently 
from the local surface normal, the points between these two are given the 
label of swface normal disparity edge. Typically the neighborhood is con- 
sidered to be those points within two pixel locations of the point under con- 
sideration. This allows accurate labeling of edges without labeling the 
entirety of a small cylindrical surface as an edge. 

At the completion of this step, the label map contains the following 
labels: invalid. valid edge, and valid non-edge. (Where valid edge is the 
union of jump edge, curvature edge, and surface normal disparity edge) 
The valid non-edge points are then grouped into contiguous regions in 
Label(u,v). Each region is given a surface label, and the points in the 
region are given labels indicating the surface they belong to. 
4.1.2. Determination of Surface Attributes and Relations 

Our purpose for analyzing range data, a fairly expensive computa- 
tional undertaking, is to find surface attributes that are useful at a higher 
level. If a given surface exists, what is desired is not a list of points belong- 
ing to it, but rather a description of that surface in terms of its location, 
orientation, surface area, etc. We also want to know the geometric relation- 
ships between the surfaces. This section briefly describes the information 
that is derived. Details of how the attributes and relations are found are 
contained in [3]. 

Probably the most important feature of a surface is its 3-D shape. 
Surface types are classified as planar, cylindrical, elliptically cylindrical, 
spherical, or unknown. The term cylindrical is used in place of the more 
correct but unwieldy circularly cylindrical, but denotes cylinders whose 
cross section is approximately circular rather than elliptical. Also, we are 
dealing with generalized cylinders and spheroids, so an ellipsoid would be 
classified as spherical and a cone would be classified as cylindrical. 

If the surface is cylindrical or spherical, the radius of curvature is 
found. Two radii are found for elliptical cylindrical surfaces. The cylindri- 
cal axis is found for cylindrical or ellipiically cylindrical surfaces, and the 
major axis is found for spherical surfaces. 

- 

- 

- 

The following attributes are found for all surfaces: 
Location - The surface location is found as the average x,y,z location 
of all points belonging to the surface. 
Orientation - Similarly, the surface orientation is the average surface 
normal of the points belonging to the surface. 
Area - The area is found by a series of cross products, as described in 
[3]. A similar attribute is the area found by a similar operation car- 
ried out only on the four comers of the surface. 
2-D Shape - The 2-D shape is found by first finding the comers of the 
surface, as described in [31. The relative locations of the comer 
points allow the 2-D shape to be classified as one of the following: 
irregular, trapezoid, parallelogram, rectangle, or square. Searching 
out in a number of directions from the point in the label map 
corresponding to the range point closest to the surface’s centroid 
finds approximations to the average and variance of the 2-D radius of 
the surface. If the ratio of the average over the variance is above 
some threshold, the 2-D shape classification is changed to round. 
The relative distances between adjacent comers are examined to find 
the major and minor axes of the surface, which may be expressed in 
vector form. 
Texture - The texture of surfaces includes important information. 
This is captured in two attributes, the variance of location and the 
variance of orientation. The variance of location for each surface is 
the average 3-D distance between a point belonging to the surface 
and the average of the point’s neighbors. The variance of orientation 
is the average angle between the individual surface normals of the 
points on the surface and the average normal for the surface. 
Once the above attributes have been found, a number of relationships 

are found for pairs of surfaces. The most important relationship between 
two surfaces is their adjacency, if it exists. An analysis of the surface nor- 
mals and center locations of a given adjacent pair of surfaces indicates the 
type of adjacency, either convex or concave. A description of the methods 
used for finding adjacency relations is given in [IO] and [3]. 

A second relationship output is the angle between two surfaces. As 
the average surface normal for each surface is known, the dot product of 
these vectors determines the angles between any pair of surfaces. 

At times a single surface may be oversegmented, resulting in two or 
more components. Noise in the range data gathered could be responsible 
for this, as could occlusion by another surface. To hypothesize that two 
planar surfaces could be components of the Same surface, it is adequate to 
find a coplanar relationship between them. Two surfaces are coplanar if 
their surface normals are parallel, and the surface normal of either one and 
the vector joining the two centroids form a right angle. To make the same 
hypothesis about two cylindrical surfaces, their axes must also be parallel. 

- 

- 
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4.2. 2D Features 
The features which are visible to the 2D camera are not nearly as 

robust as those visible to the range scanner. In particular, surface types 
cannot be determined from 2D data, edge detection is not as good (since 
only gray level edge detecting can be used), and relationships between sur- 
faces cannot be measured (except for adjacency). The primary advantage 
of 2D vision is that it is computationally less expensive than 3D vision. 
Also, since our range scanner is held by the robot. and one robot move is 
required for each projected stripe, using 2D vision reduces the number of 
required manipulations from the large number required to scan a scene to 
the much smaller number required to grasp the hand held camera and posi- 
tion it at the appropriate viewpoint 

In addition to using the hand held 2D camera to derive 2D features, 
our system also uses an overhead camera to guide the initial application of 
the range scanner. In particular, the overhead camera is used to obtain an 
estimate of the positions and orientations of the objects in the work space. 
This initial application of the 2D camera can also measure certain global 
features about the objects, for example: aspect ratio, moments of inertia, 
and object size. In the remainder of this section we will discuss both this 
preprocessing, and the types of features that we use from 2D vision. 

4.2.1. Preprocessing 
The supervisory camera is used in the preprocessing as follows. 

First, an image of the work cell is digitized. This image is subtracted from 
a reference image of the work cell, and the result is thresholded. This 
binary image is then subjected to a component labeling process. Then, the 
center of mass and principal axis of each of the components is computed. 
The center of mass is used as input to an inverse perspective transformation, 
which gives an approximate world location of the center of mass of the 
object. The inverse perspective transform is performed using the two-plane 
method of camera calibration [l]. Each of these operations is fairly com- 
mon in the field of computer vision, therefore, we will not describe them 
here. The interested reader can find the details in a variety of references. 
including [9,11,13]. 

There are several aspects of this approach that lead to error. First, 
note that we use an inverse perspective transformation to determine the 
world coordinates of the center of mass of the object. This operation 
requires three input parameters, the I and J image coordinates of the point, 
as well as the Z world coordinate of the point. Since the supervisory cam- 
era is incapable of determining the Z coordinate, it is estimated based on the 
average heights of the work pieces at their possible stable orientations. 
Additional error results because the binary image which is used in calculat- 
ing the center of mass of an object may not correspond exactly to the top 
surface of a work piece. More often, it will be a composite of the top sur- 
face along with one or more of the sides, depending on the orientation of 
the object. Thus, the center of mass rarely corresponds to the center of the 
top surface of the object. In spite of these inaccuracies, this method does 
provide information adequate to limit the application of our 3D rage scan- 
ning to interesting areas of the work cell. 

In addition to these duties, the supervisory camera is also used to dis- 
cern certain global features of the work pieces. Using aspect ratios, 
elongated parts may be recognized. Often, holes in parts can be recognized 
using binary vision. Finally, the overall size of an object gives some clue to 
its possible identity. Each of these measurable 2D global features can be 
used to determine a set of initial object hypotheses. In some cases, this can 
reduce the amount of hypothesis formulation and verification that is 
required using local features. 

4.2.2. Local Features 
The local features (i.e. features that are confined to local areas of the 

object, such as a single surface or edge) that we can obtain from 2D image 
processing include holes in the object, surface texture and intensity edge 
information. In our current experiments, the object surfaces are all smooth, 
containing little or no surface .texture information. Therefore, the primary 
2D features that we use are holes and grey level edges. 

Although gray level edge detection is not as robust as the 3D edge 
detection, it is generally much faster computationally. Furthermore, using 
object hypotheses to guide the application of the edge detector, the problem 
is reduced from edge detection to edge verification. In particular, once we 
have an object hypothesis which includes a position hypothesis, we can 
predict the set of edges visible to the 2D camera. If we know the camera 
transform, we can predict where these edges will be found in the image 
plane. The image obtained from the camera can then be used to verify the 
presence of the edge. This edge verification is done using the Dempster- 
Schafer formalism applied to a binary frame of discernment (i.e. edge- 
presentledge-not-present) [ 121. 

43. Using the Manipulator to Measure Features 
The last type of sensing that our system can perform is active sensing 

of the environment using the robot manipulator. The manipulator can be 
used in either of two ways. Its fingers can be closed on an object to meas- 
ure its width, or, a guarded move toward an object surface can be executed 
to precisely measure the height of that surface. Using these techniques, we 
can precisely (to within the known error of the manipulator position) meas- 
ure features on the objects in the world. Like range scanning, using this 
type of sensing requires the active participation of the robot, thus incurring 
the additional overhead of planning and executing robot motions. 

The utility of measuring object widths becomes evident when we 
have competing object hypotheses, and the difference in sizes of visible 
features of the two objects is less than what can be perceived by the 3D or 
2D vision systems. Of course 2D vision is very imprecise, as discussed 
above, due to the use of the inverse perspective transform using an estimate 
for the world Z coordinate. Inaccuracies in the 3D vision system are caused 
by the intershipe distance of the structured light scanning technique. 
Differences smaller than the distance between stripes CaMOt be accurately 
measured. Rather than always use dense scanning, the manipulator can be 
used to perform the more precise measurements, only when they are 
required. 

Measuring the height of object surfaces becomes particularly useful 
when those surfaces are obscured from the view of the vision systems. A 
good example of this is the piece with the two holes of differing depths 
shown in Fig. 7. When cases like this arise, the vision systems are unable to 
observe the distinguishing features of the object. In such cases, the manipu- 
lator is used as a probe to resolve the ambiguities. Manipulator probing can 
also be used to determine the existence of protrusions from object surfaces, 
especially when these protrusions are obscured from the view of the vision 
sensors (e.g. when the work piece is positioned such that it occludes the sur- 
face which has the protrusion). 

Features which can be detected using the manipulator as a sensor are 
also stored in tables for rapid access. Each surface has a corresponding list 
of holes and protrusions. Thus, once a surface hypothesis has been made, it 
is a simple matter to consult a table to obtain a list of holes and protrusions 
which are a part of that surface. When such features are sufficient to distin- 
guish between the hypothesized surfaces, the manipulator is used to meas- 
ure them. 

Determining when to use the manipulator to resolve ambiguities that 
are too subtle to be observed by the vision systems is more difficult, since 
the degree of difference required to be measurable by the vision systems is 
dependent on the implementation, and run time parameters of those sys- 
tems. Thus, the system must examine the current set of hypotheses and 
determine if any of them can be eliminated if precise manipulator measure- 
ments are made. This consists of comparing the sizes of the hypothesesized 
surfaces and noting whether the difference in size can be measured reliably 
by the vision system. and if it cannot, whether or not the precision of a 
manipulator measurement is sufficient to distinguish between the two. An 
alternative to this approach is to fix a priori the accuracy of the vision sys- 
tems, and then construct a table of pairs of features which can be dis- 
tinguished using manipulator measurements. We have opted for the latter 
approach. 

5. Choosing the Best Sensing Strategy 
In this section of the paper, we will describe the algorithm that our 

system uses to choose a sensing strategy. In essence, this is simply a search 
problem. The search space consists of the possible sensing operations from 
the possible viewpoints. Goal states are recognized using G,x. Since the 
space of locations can be very large (consider that the manipulator can be 
used anywhere in the robot’s work envelope), we must devise some heuris- 
tic to guide the search lhrough the space of possible sensor applications. In 
order to accomplish an efficient search of this space, we use the concept of 
the aspect graph. An aspect graph characterizes the possible viewpoints 
from which an object can be observed by grouping viewpoints that see the 
same features into equivalence classes. A node in the aspect graph 
corresponds to the set of viewpoints from which a unique set of object 
features can be observed. Arcs in the graph connect nodes which contain 
adjacent viewpoints. Fig. 8 shows the aspect graph, and regions which 
view each aspect, for the object in Fig. Ib. Also, with each node in the 
aspect graph, we will associate a principle viewpoint. This viewpoint is 
chosen by using the average location of the viewpoints which view the 
aspect. 

Aspect graphs for objects can be generated analytically or by an 
exhaustive examination of the object. We generate our aspect graphs 
exhaustively. This is done by creating a CAD model of the object, centered 
within a tesselated viewing sphere (we currently use 60 tessellations [ 141). 
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Fig. 8: (a) shows the aspect graph for the object in Fig. lb, and 
(b) illustrates the regions which view the different 
aspects. 

The geometric modeler is then used to view the object from the center point 
of each tessellation, and the set of visible features is recorded. Using this 
information, it is a simple matter to generate the aspect graph. Tessels that 
see the same feature set are grouped together into nodes. The arcs between 
nodes are genemted using tessel adjacency. Finally, each aspect is assigned 
a principle viewpoint. 

Using an aspect graph representation, when we make object 
hypotheses, we implicitly make hypotheses about which aspect of the object 
we are observing. Thus, we can redefine our search space to be the space of 
sensing operations applied from the principle viewpoints of the various 
aspects. The algorithm that we use first determines the transformation from 
the current viewpoint to the principle viewpoint of an aspect in the aspect 
graph corresponding to that hypothesis. We then apply this viewpoint 
transformation to each aspect hypothesis and see if we can eliminate the 
ambiguity in the predicted sensor reading. This is done for each type of 
sensing that can be used. When we find a viewpoint that eliminates the 
ambiguity in the predicted measurement, the algorithm terminates. 

There are three basic components to the algorithm. First, there is a 
function that computes the predicted ambiguity for a specified view point, 
hypothesis set, sensor and set of predicted feature values. The algorithm 
used to do this prediction is shown in Fig. Al. The first step in the algo- 

p r e d i c t - a m b i F i t y ( v P b ~ ~ S ~ n s o r )  
HI t refine-hyp-set-mult(hypset,S) 
H t n i l  
foreachhe H1 

M-features c object features matched in h 
L-features c visible landmark features from VP 
if &-features c M-features) then 

H t append@&) 
retum(leneth(H)) 

Fig, Al: Algorithm for predict-ambiguity. 

rithm is to use refine-hyp-set-mult (a version of refine-hyp-set which allows 
multiple sensed values) to reEne the hypothesis set using the predicted 
sensed values. The second step eliminates hypotheses from this set which 
do not contain matches for visible landmark features. Landmark features 
are features which are guaranteed to be found by the sensor if they are visi- 
ble from the aspect. The time complexity of this algorithm is dominated by 
the complexity of the call to refine-hyp-set-mult, and is therefore upper 
bounded by O( I hypset I I f(S) I i). if the set of predicted sensor readings 
contains a single element, and there are i matches in each hypothesis in 
hyp-set. Note that since a position hypothesis has already been established 
at this time, we can assume that the hypothesis set will not grow, since each 
sensed feature will be able to match at most one model feature, due to the 
location constraint discussed in section 2. Furthermore, using this same 
reasoning, we can assume that If(S)l 5 1. Therefore, the complexity of this 
algorithm is, O( I hypset I i). 

The function max-ambiguity uses predict-ambiguity to find the max- 
imum possible ambiguity for a candidate sensing operation. This is done by 
calling predict-ambiguity with S set to the set of features visible for succes- 
sive hypotheses. The maximum of these values is then returned as the max- 
imum ambiguity. This algorithm is shown in Fig. A2. The time complexity 
for this algorithm is O( I hypset I I hyp-set I i). Note that the latter terms in 
this expression are due to the call to predict-ambiguity. 

Finally, the top level function used to determine the next sensing 
operation is choose-next-view, shown in Fig. A3. This function merely 
iterates over each possible node in the aspect graphs for each object 
hypothesis for each possible sensor. Thus, since a call to max-ambiguity is 
nested in the heart of this iteration, the overall time complexity is 

max-ambipity(hypset,VP,sensor) 
maXC0 
foreach h E H1 

S t predicted sensed values for h, VP and sensor 
A t predict-ambiguity(vPbypset,S,sensor) 
if (A > max) then 

m a X t A  
retum(A) 

Fig. A2: Algorithm for max-ambiguity. 

choose-next-view(hypset) 
A m a x t  loo 
foreach h E hypset 

T t h.transform 
Node-list t h.aspect-graph.nodes 
foreach S E sensors 

foreach node E Node-list 
VP t node.princple-view 

NAmax t max-ambiguity0lypset.W-VP,S) 
if (valid-vp(W-VP) and NAmax < Amax) then 

W-VP t T * VP 

Amax c NAmax 
Sensor t S 
v t w-VP 

retum(Amax,V,Sensor) 
if (Amax = 1) then 

retum(Amax,V,Sensor) 

Fig. A3: Algorithm for choose-next-view. 

O( I hyp-set I I Sensors I N I hyp-set I I hyp-set I i), where N is the average 
number of nodes in an aspect graph, Sensors is the set of sensors which can 
be applied, and hyp-set and i are defined as above. Thus, the overall time 
complexity of our algorithm is O( I hypset I I Sensors I N i), 

Finally, note the use of the predicate valid-vp. This predicate is used 
to insure that candidate viewpoints can actually be achieved using the robot 
(e.g. viewpoints which lie below the work table are eliminated from con- 
sideration). 

To illustrate our algorithm, consider again the two dimensional object 
shown in Fig. lb. As an example, suppose that the system's first view 
observes a single face. Call this observed feature SI. Since the system can 
see only one face, we conclude that we must be viewing the object from 
one of the aspects in the set (A,C,F,M) and thus, SI could be any of faces 
a,b,c or f. The corresponding hypothesized viewpoints are shown in Fig. 9. 
To choose the second viewpoint, we apply the algorithm. For the first 
hypothesized aspect, A, we pick an adjacent node in the aspect graph, first 
node B. We now compute the transformation from the current 
hypothesized viewpoint to the principle viewpoint for aspect B. This 
transformation is now performed on each of the four hypothesized 
viewpoints, and the set of features which will be observed for each of these 
is determined. This is illustrated in Fig. 10. Notice that this new viewpoint 
will not be able to. distinguish between the hypotheses A and D, since if 
either of these is correct, we will view a similar set of features 

The second node the algorithm tries is node P, also adjacent to A. 
The transformation from the hypothesized viewpoint the principle 
viewpoint of P is computed and applied to each hypothesized aspect, as 
above. The new viewpoints are shown in Fig. 11. From these new 
viewpoints, it is possible to determine which hypothesis is correct, since 
each of the four viewpoints will allow observation of a uniquely identifiable 
set of features (given the previous set of hypotheses). Thus, the algorithm 
terminates, and this viewpoint is returned. 

A problem with this approach is the possibility of uncertainty in the 
position hypotheses. In order to deal with this possibility, we must revise 
the algorithm slightly. Since we use a tessellated sphere as a basis for creat- 
ing aspect graphs, our system is capable of dealing with uncertainties in the 
three degrees of freedom associated with the viewing configuration. Two 
degrees of freedom exist in the location of the viewpoint on the sphere, and 
one degree of freedom exists due to the viewing rotation. In order to deal 
with these uncertainties, we represent the viewpoint as an error ball pro- 
jected onto the surface of the sphere, Fig. 12. Since viewing rotation is 
important only when we are considering transformations to other 
viewpoints, we represent the transformational error in terms of an error 
cone which is projected onto the sphere, Fig. 13. Thus, when the algorithm 
chooses a new viewpoint, that viewpoint can lie anywhere within the error 
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Fig. 9 Principle viewpoints of aspects 
which could view a single edge of 
the object in Fig. lb. 

Fig. 1 0  A candidate viewpoint, shown Fig. 1 1 : A candidate viewpoint, shown 
applied to al four object hypotheses. 
Circled viewpoints "see" a similar 
set of edges. auniqueappeamce. 

applied to all four object hypotheses. 
from which observed edges will have 

n 
Fig. 12 An error ball pmjected 

onto the viewing sphere 

Fig. 13: An emlr cone pjected 
onto the viewing sphere. 

Fig. 14: Error region which defmes the 
set of possible viewpoints 
when position and orientation 
emxsareincluded. 

region corresponding to the initial position error compounded with the 
transformational error, Fig. 14. Thus, when the object is viewed from a 
new viewpoint, it could actually be viewed from any viewpoint within the 
error region. Thus, the algorithm must view the object from each aspect 
which overlaps the error region. Note that determining these aspects 
amounts to determining which tessels overlap the error region, and then 
simply looking up these tessels in the aspect graph. These additions to the 
algorithm are the subject of future work. 

6.  Experimental Results 
We verified our approach experimentally using the object shown in 

Fig. 15. Notice that the orientation of this object can be determined only if 
the location of the hole is known. 

First, as discussed in Section 3, an augmented geometric model was 
created for the part starting from a regular CSG based solid model. This 
model was constructed using the PADL2 system (71, a CSG based modeler, 
which we have modified so that it can be interfaced with a LISP environ- 
ment. The aspect graph was constructed by using PADL2 to automatically 
view the object from each of the 60 tessels on the viewing sphere. Tessels 
which viewed the m e  set of surfaces were grouped together into aspects, 

Fig. 1 5  Experimental object with a hole in one end, as rendered 
by PADL2. 

(surface1 (surface-type . planar) 
(surface-shape . rectangle) 
(aspect-ration . 1.526054) 
(surface-area . 8.591922) 
(perimeter . 11.38) 
(centroid 29.864 7.85 -13.429) 
(surface-normal -0.046 -0.032 0.998)) 

(surface2 (adjacent-surfaces 3) 
(surface-type . cylindrical) 
(surface-shape . rectangle) 

(surface-area .2.539117) 
(perimeter .7.142) 
(cylindrical-radius .0.784) 
(centroid 31.778 10.887 -14.104) 
(surface-normal -0.322 -0.468 0.823) 
(apparent-axis 0.855 -0.517 0.041)) 

(apeCt-ratiO. 2.065735) 

(surface3 (adjacent-surfaces 2) 
(surface-type . planar) 
(surface-shape . rectangle) 

(surface-area .9.1964919) 
(perimeter . 11.821) 
(centroid 33.193 13.033 -13.295) 
(surface-normal -0.046 -0.006 0.999)) 

(aspect-ratio . 1.592844) 

Fig. 1 6  A portion of the output which is obtained from the range 
processing software 

and aspects containing adjacent tessels were linked by arcs. Finally, a table 
of feature attributes for each surface on the object was created. 

Once the model was created, the part was placed in the robot's work 
space. Range scanning was done (using the structured light scanner), and 
three surfaces were found. Using these surfaces, and their attributes, the 
system was able to develop two competing hypotheses. A portion of the 
output of the range processing software is shown in Fig. 16, and the two 
hypotheses are shown in Fig. 17. Given theses hypotheses, our algorithm 
chose the next sensing opcration to be viewing the object with the hand held 
2D camera as shown in Fig. 18. As can be seen in the figure, this sensing 
operation allows the end surface of the object to be viewed, and thus the 
presence or absence of the hole in that surface will determine the object's 
orientation. 

7. Conclusions 
In this paper we have addressed the issue of planning sensing stra- 

tegies dynamically, based on an active set of hypotheses. Our algorithm 
uses the aspect graphs of the hypothesized objects to propose candidate 
sensing operations. Then, using the pose transformation and augmented 
object model which are associated with each hypothesis we predict the 
feature sets which would be observed upon application of the candidate 
sensing operation. Given these predictions, we are also able to predict the 
resulting set of hypotheses which could remain active. By repeating this 
process for different viewpoints and sensing operations, we are able to 
choose the sensing operation which minimizes the size of the largest of 
these sets, thereby minimizing the amount of ambiguity which can remain 
after the next sensing operation is applied. 
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(hyp (confidence. 1.0) 
(partname . part) 
(transform 

(0.5399 0.841 1 0.0299) 
(-0.0359 -0.0059 0.9989) 
(0.8404 -0.5407 0.0354) 
(27.7738 7.1356 -17.0837)) 

(matches 
(surface3 (part. 8) 1.0) 
(surface2 (part . 3) 1 .O) 
(surface1 (part. 18al) 1.0))) 

(hyp (confidence. 1.0) 
(partname. part) 
(transform 

(-0.5399 -0.841 1 -0.0299) 
(-0.0459 -0.0059 0.9989) 

(35.6945 13.9252 -16.6782)) 

(surface3 (part. 18al) 1.0) 
(surface2 (part. 3) 1.0) 
(surface1 (part . 8) 1 .O))) 

(-0.8404 0.5407 -0.0354) 

(matches 

Fig. 17: The two object hypotheses for the object as shown in 
Fig. 18. 

Fig. 18: The selected sensing operation is the use of the 2D hand 
held camera as shown. 
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