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Abstract— This paper presents a passage potential based bias-
ing scheme for PRMs to specifically address the narrow passage
problem. The biasing strategy fulfills minimum requirements for
an efficient biasing, considering not only location issues, but also
intensity, sparseness and applicability of the biasing criterion.
Conforming to these features a particular family of passage
potential functions has been defined and integrated within a basic
PRM to achieve biasing. Simulations have demonstrated the reli-
able and successful implementation of the proposed architecture
under several experimental settings and robot configurations.

I. INTRODUCTION

Several difficult path planning problems have been solved
using probabilistic roadmap mehods (PRMs) [1], [2]. The
probabilistic completeness property of PRMs guarantees that
nearly any sampling scheme will provide good results. In fact,
any given problem can be solved considering a sufficiently
large number of initial samples or enhancement steps [3].
However, for certain problem cases, the choice of sampling
strategy can play a significant role in the performance of a
sampling-based planner.

The key idea of the basic PRM is to create a roadmap in
Qfree by uniformly distributing nodes in the robot’s configu-
ration space [3]. The roadmap’s nodes are free configurations
and its edges are paths between configurations. After the
roadmap has been generated, planning queries can be answered
by connecting user-defined initial and goal configurations to
the roadmap. If the roadmap is successful in capturing the
connectivity of Qfree, path planning may be reduced to a
graph search.

However, the uniform sampling scheme used in the basic
PRM does not work well in “difficult” planning settings in
terms of efficiency. If a narrow passage exists in Qfree and
it is absolutely necessary to go through that passage to solve
a query, a uniform sampling planner must select a sample
from a potentially very small set in order to answer the query.
The sampling scheme tries to distribute nodes with constant
density in Qfree and the volume spanned by the narrow
regions of Qfree makes up only a small fraction of the total
volume of Qfree. A number of different sampling methods
have been designed to solve this problem [4], generally biasing
the sampling in order to provide increased node density in
narrow regions.

This paper proposes a PRM that uses biasing to improve
the sampling distribution in narrow regions. The biasing is

achieved by means of a particular family of passage potential
functions specifically designed for this problem. Section 2
presents advantages of biasing schemes within PRMs and
briefly introduces the work related to our chosen strategy
for biasing. We then identify minimum requirements for an
efficient biasing scheme, and consequently define particular
passage potentials that fulfill these conditions. In Section 3
some implementation issues are commented, and experimental
results confirming the validity of the proposed model and
its performance are exposed. Some conclusions and possible
improvements are finally discussed in Section 4.

II. BIASING PRMS

Due to the probabilistic completeness property of PRMs [3],
any given problem can be solved considering a sufficiently
large number of initial samples or enhancement steps. There-
fore, it seems that a biased sampling scheme might not be
necessary. However, we would prefer to use a biased sampling
scheme for several practical reasons.

First, graph search time can be reduced [5]. If the planner
is less likely to perform the enhancement step, or a smaller
initial number of nodes is needed to capture the connectivity of
the free configuration space Qfree, then roadmap connection
and search time could be reduced. Another issue appears when
there are various ways to reach the target and the shortest one
contains a narrow passage. Given a large number of initial
nodes, a classical PRM planner will probably find the long
way. This behavior might be sometimes acceptable, however
it will be usually preferable to find the shortest path.

Many different PRMs attempt to solve the narrow passage
problem. Obstacle-based sampling methods consider that nar-
row passages are like thin corridors in Qfree surrounded by
obstacles, and sample near the boundary of configuration-
space obstacles [6], [7], [8]. Other biased planners sample
directly inside narrow passages [9], [10], [11], [12].

The biased PRM (ABPRM) presented in [5] increases the
node density along obstacle surfaces, and specially in narrow
regions, using artificial potential fields [13]. The artificial
potential field is computed from a partial solution of Laplace’s
equation in the workspace of the robot. Since in general
Laplace’s equation can be used to describe a potential of a
particle in free space acted on only by gravitational forces,
then a function φ(q) that satisfies Laplace’s equation can be
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used to solve the path planning problem [14]. Specifically, the
authors solved Laplace’s equation numerically in the region of
interest. They used the fact that, while solving for the potential
φ, iterative methods cause in general the potential to rise more
rapidly in grid points surrounded by boundary points, such as
grid points in narrow regions. So they first compute a set of
“unbiased” nodes uniformly distributed in Qfree, and then add
some nodes biased by this potential function φ. This biasing
scheme improves the sampling distribution. However, it seems
that an ad-hoc, specially designed artificial potential field can
be considered to better overcome the narrow passage problem
in PRMs. In other words, we claim that within the same
biasing framework, a specific family of potential functions
with particular characteristics –aimed to fulfill requirements
of the narrow passage problem– can be constructed.

A. Characteristics of an Efficient Biasing Scheme

We will enumerate in this section some characteristics that
appear as ideal for any biasing scheme pointed to solve the
narrow passage problem in an effective manner.

1) The first requirement indicates where to increase sam-
pling by means of a stronger biasing. An efficient
solution would generate samples inside narrow passages,
but as far away as possible from the obstacle. This
property is meant to avoid the robot to “crawl” near the
edges of obstacles. While this is not an issue during
planning for a point robots in a completely known
environment, it is so when planning motions for real
physical robots in an approximation of the real world
[5]. In the real world, it is desirable for the robot to
have some minimum clearance to the obstacles. The
Generalized Voronoi Diagram (GVD) has this property
[3]. The sampler can place points as close to the GVD as
possible with the hope of aligning the whole robot with
narrow passages. Although exact computation of the
GVD is impractical for high-dimensional configuration
spaces, it is possible to find samples on the GVD or
close to it without computing it explicitly.

2) The second property qualitatively defines how the struc-
ture of the narrow passage should affect the distribution
of the biasing. In fact, the expected biasing should have
density and variance behaviors according to the closest
surrounding obstacles. Due to the difficulty of placing
samples in confined spaces, we pretend the biasing
scheme to provide denser biasing in narrow and clutter
regions. Specifically, if the passage is narrower, we want
a stronger biasing –in fact, in the limit, if we let the
passage to shrink to zero width the biasing must tend
to “infinite.” Moreover, the sparseness of the samples
also needs to be controlled. A wider passage does not
need the samples to be condensed necessarily near the
GVD, some tolerance can exist and may be desirable
for a better coverage of the passage. On the other hand,
a narrower passage may oblige to compress the biasing
near the GVD.

3) The third property simply restricts the applicability of
the prior two concepts. We do not want to incorporate
unnecessary computational overhead biasing points in
regions where a classical uniform sampling can do it. It
is clear that this issue is strongly related to the clearance
given by the closest obstacles, i.e., it will be a measure
determined by the width of the passages.

B. Definition of Passage Potentials for Efficient Biasing

Our criterion for biasing not only focuses on increasing the
density in cluttered regions of the environment, but also on
fulfulling certain requirements in the way this is done. We
construct a passage potential function φ(q) associated with a
given configuration according to the properties presented in
Sec. II-A. As in [5], the idea to generate “biased” samples is
to consider uniformly distributed samples first, and then keep
only those q ∈ Qfree with probability:

P (q is kept) = φ(q), for 0 ≤ φ(q) ≤ 1. (1)

It is clear then that the probability of keeping a node q is
given by the passage potential φ(q): if a denser sampling is
sought in a certain region, the corresponding potential must
be intense.

A natural initial approach would consider some information
about the location of the GVD, in order to assign a high
potential to samples that are close to it. The advantage of
workspace GVD sampling is that the GVD captures well
narrow passages in the workspace that typically lead to narrow
passages in Qfree [3]. Fortunately, we do not need to calculate
the entire GVD but only the “local GVD,” the point in the
GVD closest to a sample q. Let’s name this point of the GVD
μ(q), and define it as:

μ(q) = (d1(q) + d2(q))/2,

where d1(q) and d2(q) correspond to the vectors to the two
closest obstacles for the configuration q. Now that we know
where the local GVD is, we can quantify how dense and how
sparse the biasing should be. We do this defining the passage
potential φ(q) as a Gaussian distribution with mean μ(q):

φ(q) =
1√

2πσ(q)
e
− (q−μ(q))T (q−μ(q))

2σ(q)2 , (2)

with standard deviation σ(q):

σ(q) = K||d1(q) − d2(q)||,
and K an arbitrary gain constant. We finally scope the applica-
bility of the passage potential of (2) to regions with sufficiently
narrow passages. This is done redefining the passage potential
as follows:

φ(q) =

{
1√

2πσ(q)
e
− (q−μ(q))T (q−μ(q))

2σ(q)2 , ||d1(q) − d2(q)|| ≤ D

0, ||d1(q) − d2(q)|| > D,
(3)

with D the scope threshold for applicability.
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Fig. 1. Validation of the biasing scheme: experimental obstacle layout in (a) and the corresponding passage potential function in (b).

It is clear then that a function φ(q) as defined in (3) will
produce the desired biasing with all the sought properties:

• It will bias strongly near the GVD due to the fact that
the passage potential φ(q) is defined as a Gaussian
distribution with a mean that is indeed the closest point
of the GVD.

• Since the standard deviation is proportional to the width
of passages, the passage potential will distribute the
biasing accordingly: it will intensify and concentrate the
biasing when the width of the passage is small and reduce
both intensity and concentration if the width is larger.

• The application of the scheme is constrained to those
passages that are narrow enough, eliminating unnecessary
computation.

III. IMPLEMENTATION

We have implemented a PRM that uses the biasing scheme
presented in the previous section for a point robot and a
multi-link planar robot moving among polygonal obstacles.
The passage potential presented in Sec. II-B was for a robot
represented as a single point, then we need to extend the
approach for the case of an articulated multi-link manipulator.
We do this as described in [3], selecting a subset of control
points {ri} on the i links of the robot, and then using
forward kinematics to obtain the position of these points in
the workspace. The potential for each of the points in the
workspace is calculated evaluating (3), then the total potential
for the manipulator at a given configuration q is obtained
adding the individual potentials for each of the control points
and normalizing the sum with respect to the total number of
control points:

φ(q) =
1
n

n∑
i=1

φi(ri(q)).

Our planner first generates a set of nodes uniformly dis-
tributed throughout Q, keeping only those nodes q ∈ Qfree
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Fig. 3. Experimental setting: environment containing a narrow passage and
a point robot moving through it.

until M free-collision unbiased nodes are found. Then more
nodes are uniformly distributed in the same way, keeping only
those nodes q ∈ Qfree with probability given by (1). This is
repeated until N free-collision biased nodes are obtained.

A. Experimental Validation of the Biasing Scheme

The early experiments were meant to validate the correct be-
havior of the implemented biasing scheme. We first evaluated
the passage potential for the case of a point robot moving in
an experimental layout of polygonal obstacles. Fig. 1 shows
this obstacle setting in (a) with the corresponding complete
passage potential function in (b). Additionally, several other
simulations were done for the multi-link robot. For instance,
we considered a 1-link robot, at zero unbiased samples and an
arbitrary number of biased samples. Some of these results are
included in Fig. 2. For different obstacle settings the figures
show the robot at all the biased sampled configurations.

From the experiments we can verify that the biasing scheme
works as expected, distributing the sampling density accord-
ingly to the biasing criteria defined in Sec. II. The sampling
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Fig. 2. Experimental validation of the biasing scheme: images showing different obstacle settings together with the robot at all the biased sampled configurations
(no unbiased samples in these simulations). The behavior of the biasing scheme is as expected.

TABLE I

PERFORMANCE COMPARISON FOR THE EXPERIMENTAL SETTING OF FIG. 3

# Samples % Success

100 Unbiased 2

50/50 Unb/Biased 100

200 Unbiased 35

100/100 Unb/Biased 100

300 Unbiased 50

150/150 Unb/Biased 100

400 Unbiased 80

200/200 Unb/Biased 100

500 Unbiased 84

250/250 Unb/Biased 100

600 Unbiased 92

300/300 Unb/Biased 100

700 Unbiased 95

350/350 Unb/Biased 100

density is large in narrow passages and the concentration is
tuned by the passages’ width, with a distribution response
centered at the corresponding GVD location. Moreover, if
passages are too wide, the biasing scheme does not act at
all in those areas.

B. More Experiments

Several other experiments were executed in order to com-
pare the performance of the planner using the biasing scheme
and the planner without biasing. Fig. 3 shows the image
of an experimental setting containing a narrow passage and
a point robot that moves through it. For this experimental
setting, we have compared the basic unbiased PRM with the
implemented biased PRM. We have computed the rate of
success (the number of times the robot gets to the desired
position from the initial one, over the total) for both the
unbiased and the proposed biased PRM. We have run the
experiment 100 times for an increasing number of total initial
samples (100, 200, 300, 400, 500, 600, 700) without consider-

ing enhancement in neither of the planners. Table I shows the
results of this experiment.

The images in Fig. 4 show the performance of the biasing
scheme for more complicated settings and multi-link robots.
Each of the three rows corresponds to different experiments.
The left column presents images of the robot at unbiased
sampled configurations, the central column shows the robot
at both unbiased and biased sampled configurations and the
right column displays the robot path found using the combined
sampling in the PRM . The upper row corresponds to an
experiment that considers a 4-link robot, 150 unbiased sampled
configurations and 100–50 for the combined unbiased-biased
sampling. The central row considers a 5-link robot, 410
unbiased sampled configurations and 90–320 for the combined
unbiased-biased sampling. Finally, the lower row considers a
7-link robot, 750 unbiased sampled configurations and 250–
500 for the combined unbiased-biased sampling. In all of these
cases, the unbiased sampling fails to capture the connectivity
of Qfree, especially in those difficult regions corresponding to
narrow passages. When the biasing scheme is included in the
sampling procedure, the PRM notably improves its behavior,
being capable of solving difficult path planning problems for
robots with many degrees of freedom and among extremely
confined passages.

IV. CONCLUSIONS

In this work we have developed a passage potential based
biasing scheme for PRMs to specifically address the narrow
passage problem. We have first identified certain desired char-
acteristics for efficient biasing, considering not only location
issues, but also intensity, sparseness and applicability of the
biasing criterion. Conforming to these features a particular
family of passage potential functions has been defined to
achieve biasing. Experiments have demonstrated that the pro-
posed approach works as expected, increasing the coverage of
the Qfree specially in the presence of narrow passages.

The biasing scheme is of easy implementation, so it can be
included as a particular component in other biasing scheme
within a PRM. Since the formulated passage potential is
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Fig. 4. Experiments considering robots with many links: 4-link robot at 150 unbiased sampled configurations (upper left), 100–50 for the combined unbiased-
biased sampling (upper center) and path found using combined sampling (upper right); 90–320 for the combined unbiased-biased sampling (central) and path
found using combined sampling (central right) and 7-link robot at 750 unbiased sampled configurations (lower left), 250–500 for the combined unbiased-biased
sampling (lower center) and path found using combined sampling (lower right). (The number of neighbors used in the simulations is 75.)

defined in terms of distances to obstacles in the workspace,
it can be used for 3D path planning problems. Moreover, the
framework can be easily extended to grid-based implementa-
tions if the environment is populated with complex, irregular

obstacles for which a polygonal representation might not be
adequate.

Another major improvement of the system would be to
extract all samples directly from a cumulative distribution
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generated from the passage potential function. This would
greatly improve the planner performance, reducing the time
consumed in the generation of samples.
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