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AbsfracI-This paper addresses the problem of computing the 
motions of a robot observer in order to maintain visibility of 
a moving target at a fixed surveillance distance. In this paper, 
we deal specifically with the situation in which the observer has 
hounded velocity. We give necessary conditions for the existence 
of a surveillance strategy and give an algorithm that generates 
surveillauce strategies. 

I. INTRODUCTION 

In this paper, we consider the surveillance problem of 
maintaining visibility at a fixed distance of a mobile evader 
(the target) using a mobile robot equipped with sensors (the 
observer), in a workspace containing obstacles. 

A great deal of previous research exists in the area of pursuit 
and evasion, particularly in the area of dynamics and control. 
This past work typically does not take into account constraints 
imposed on observer motion due to the existence of obstacles 
in the workspace, nor visibility constraints that arise due to 
occlusion. In this paper, we focus on these often neglected 
geometric aspects of the problem. 

In t h i s  paper we consider the case for which the observer 
has bounded velocity, hut can react instantaneously to evader 
motion (i.e., there is no delay in either the sensing or the 
control system). In our previous research, we have considered 
variations in which there is neither delay nor velocity bounds 
for the observer [l l] ,  and in which there is delay, hut the 
observer velocity is not bounded [IZ]. In those cases, as well 
as in the case we consider here, we are able to express the 
constraints on the observer dynamics (i.e., delay and velocity 
bounds) geometrically, as a function of the geometry of the 
workspace and the surveillance distance. 

A. Previous Work 
Previous works have studied the motion planning problem 

for target tracking. Game theory [3] is proposed in [61 as a 
framework to formulate the tracking problem and an online 
algorithm is presented. 

In [4], a tracking algorithm is presented that operates by 
maximizing the probability of future visibility of the target. 
This algorithm is also studied with more formalism in [6]. 
The approach presented in [ 101 computes a motion strategy 
by maximizing the shonesr distance to escape -the shortest 
distance the target needs to move in order to escape the 
observer’s visibility region. This planner has been integrated 
and tested in a robot system that includes perceptual and 

control capabilities. The approach has also been extended to 
maintain visibility of two targets using two mobile OhserverS. 

The problem of planning observer’s motions to maintain 
visibility of a moving target has received a good deal of 
attention in the motion planning community over the last years. 
However, speeds of the observer and evader have never been 
considered to establish a motion strategy. This is one of the 
goals of this paper. 

11. PROBLEM DEFINITION 

The target and the observer are represented as points. 
The environment where they are moving is modeled as a 
polygon. The visibility between the target and the observer 
is represented as a line segment and it is called the rod. This 
rod is emulating the visual sensor capabilities of the Observer. 

It is assumed that the delay between the target’s motion and 
the Observer’s is zero. This means that the observer can react 
immediately to a target motion. 

The target moves continuously, its global trajectory is un- 
known but its maximal speed is known and bounded. We 
are assuming a feedback control scheme where the target 
velocity is measured (or reported) without delay. The observer 
is limited to move with bounded speed. Other than this, no 
kinematic nor dynamic constraints are imposed on the observer 
or the target motions. 

The target can defeat the observer by hiding behind an 
obstacle (breaking the rod with a vertex), by making the 
observer collide with and obstacle (a segment or a vertex) 
or by preventing the observer from being at the required fixed 
distance. 

This paper focus on computing the motions of a robot 
observer in order to maintain visibility at a fixed distance of a 
moving target. This problem is analogous to the path planning 
problem of a moving rod in the plane [15]. The end points of 
the rod represent the observer and evader. The rod represents 
the visibility constraints. Violation of the visibility constraint 
corresponds to collision of the rod with an obstacle in the 
environment. The target controls the rod origin (x, y)  and the 
observer controls the rod’s orientation 0 and must compensate 
to maintain a fixed rod length Lss. 

111. PROBLEM MODELING 
We represent the Observer and evader as points in the plane. 

In order to maintain surveillance at a fixed distance, it is 
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necessary that the line segment connecting the pursuer and 
evader be maintained at a fixed length, and that this line 
segment not intersect any obstacle in the environment (this 
would result in occlusion of the evader). In this form, the 
surveillance problem shares many features with the traditional 
robot motion planning problem of of moving a rod in the 
plane. To solve this problem, Schwartz and Sharir represent 
the robot's configuration space, C, by a cellular decomposi- 
tion that can be constructed directly from the combinatoric 
representation of the workspace [15]. Here, we extend this 
representation to solve our surveillance problem. 

For a rod moving in the plane, the configuration space can 
be represented as C = RZ x S', and the workspace can be 
represented by R*. The representation introduced in [151 and 
further developed in [Z] i s  defined implicitly, in terms of a 
set of critical curves. These critical curves comprise the set 
of points at which the structure of the configuration space 
obstacle region above the xy-plane undergoes a qualitative 
change. Indeed, when such a curve is crossed, either the set of 
configuration space obstacle faces that are intersected by a lime 
perpendicular to the xy-plane at the current position'cbanges, 
or the number of intersection points changes [7]. 

The critical curves partition the plane into a set of noncrit- 
ical regions, and this partition induces a cylindrical decom- 
position on C. In particular, above any noncritical region in 
the plane, there will be a set of simply cynected cells, each 
of which ties'either entirely in the free configuration space or 
entirely within the configuration space obstacle region. This 
cellular decomposition can be 'represented by a connectivity 
graph, G, whose vertices correspond to free cells. such that 
two vertices are connected by an edge when the corresponding 
cells are adjacent. 

IV. CONDITIONS FOR SOLVING THE ESTABLISHED 
PROBLEM 

In this section, we describe three necessary conditions for 
the existence of a surveillance strategy. 

Central to our approach is the notion of an escapable cell 
in the decomposition of the free configuration space described 

Definition 1: For cell K c C above region R c R2, if 3 
R' adjacent to R such that there is not a K' adjacent to K 
projecting onto R' then cell K is an escapable cell. 

If the configuration of the rod 'lies in an escapable cell, 
then the evader can escape by merely moving into the region 
R' in the definition above. Since there is no free cell that 
projects onto R', there is no admissible position from which 
the observer can view the evader at the desired surveillance 
distance. 

To determine the existence of a surveillance strategy, 'we 
recursively eliminate escapable cells from the connectivity 
graph, G, until either no cell K is eliminated (the.condition is 
satisfied) or all the cells Ki corresponding to a single region 
R are eliminated (the condition is not satisfied). This is the 
first condition to the existence of a solution. 

- above. 

Proposition 1: If 3 R such that all its corresponding cells Ki 
are escapable, then there does not exist a surveillance strategy 
for the given environment. 
The proof for this proposition is given in [ I l l .  

The second condition for the existence of a solution is 
related to the bounded observer velocity. We first define an 
escape point: 
Definition 2: An escape point is a point on a critical curve 
associated to an escapable cell in G, or a point in a critical 
curve bounding an obstacle region (see figure 5 ) .  

An interesting, especial case of escape points correspond to 
reflex vertices (those with interior angle larger than T) of the 
polygonal workspace. 

Merely reaching an escape point does not guarantee that the 
evader can escape the surveillance. An escape point is a point 
from which the evader may escape for some set of observer 
positions (i.e., for same set of configurations, (x, y, 8) of the 
rod). Thus, when the evader nears an escape point, the observer 
must take action to ensure future visibility of the evader. Since 
the ohserver has bounded velocity, it must react before the 
escape point is reached by the evader. 

We denote by.L*(z,y,B) the minimal distance from an 
escape point such that, if the evader is further than La (x, y, 8) 
from the escape point, the observer will have sufficient time 
to react and prevent escape. Thus, it is only when the evader 
is nearer than L'(x, y,B) to an escape point that the observer 
must take special care. 
Proposition 2: If there exists an escape point, p ,  such that 
the distance from evader to p is less than L'(z,y,O), the 
evader can escape the surveillance. The proposition follows 
immediately from the definition of L*(z, y, 6'). If the target 
is exactly at L'(z,y,O) distance from the an escape point, 
it signals the observer to start the rotation around the target 
before it is t m  late. 

The distance L*(x, y, 8) has to be computed based on: the 
geometry of the environment, the initial location of the evader, 
x,y. and on the relative configurations of the observer and 
evader 8, the final rod configuration that avoid the evader to 
escape and, the maximal observer and evader speeds. An upper 
bound of L*(x,y,B), that we call L(x,y,8), is explained in 
detail in section V-B. 
Corollary: Because of the bounded velocity the existence of 
a solution will always depend on the initial rod configuration 
(position and orientation), even in an environment without 
escapable cells. 

Because of the bounded velocity, there are situations when 
the observer is not able to determine a motion that guarantees 
to have the target in sight, this is another condition for the 
existence of a solution. We call this condition no determinable 
motion for a single pursuer. 
Proposition 3: If there are two or more escape points at 
L'(x, y,B) distance from the evader a solution does not exist. 
Proof of proposition 3: The evader can move to any of the 
escapable points at L*(x,y,B) distance from it. The observer 
however can only choose one of them, therefore planning a 



motion that ensures target visibility is not possible. 
An example of this situation is shown in figure 1. 
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Fig. 2. The Tractrix curve 

Fig. 1 .  No determinable motion far a single pursuer 
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In these situations more than a single observer is required 
to guarantee target visibility. Note, that this condition can also 
happen because of escape points that are on critical curves 
associated to escapable cells. 

V. THE MOTION STRATEGY 

The target controls the rod origin (x, y) and the observer 
controls the rod's orientation 6' and must compensate to 
maintain a fixed rod length Lss.  

There are 3 types of motion strategies: (1) the reactive mo- 
tion rm used when the target is farther away from L(x:  y? 8 )  
distance of an escape point, (2) the observer rotational motion 
used when the evader is at L ( x ,  y, 6') distance or closer from 
any escape point, (3) the compliant motion, used when the rod 
is in contact with an obstacle. 

Fig. 3. Observer mfational motion around the 1;ugel 

fixed distance, 2) the Observer must travel with bounded speed 
at all times, 3) it also must move with saturated speed and 4) 
the observer motion must minimize the time to complete the 
bar configuration change. Our proposed strategy has properties 
1 tbmugh 3 but not necessarly 4. This means that it defines 
an upper hound on the computation of L' (x ,  y, 8) that we call 
L ( ~ .  e). 

\ ,..~, 
The motion strategy in this caSe consists in applying the 

same velocity vector to the observer as the one that the target 
applies and an additional vector to get a observer rotation 

A. Observer reactive motion 
At all times the observer must move to a Position that 

respects the fixed sensor range. In the free space, there may be 
many positions that satisfy such a constraint. For instance. to 
move the observer with exactly the same velocity vector that 

the target, 
m i s  motion can be expressed in a Ut, ug basis. 

the target is using. We call this movement the reactive motion 
rm. 

Other motion strategy consists in moving the observer in 
the direction of the target. This moves the observer as little as 
possible. If the evader is moving in straight l i e  the observer 
motion can be expressed by the Tractrix curve 191, [SI (also 
called hound curve, see figure 2). Its parametric equations, 
which determine the observer position, are: 

1 
%(t)  = t - tanht ;  y.(t) = - cosh t 

B. Observer mtational morion to avoid evader escaping 
When the target is at P ( x ,  y, 8 )  distance or closer to an 

escape point the observer must do a rotational motion around 
the target in order to reach a position that satisfies visibility 
constraints. 

The computation of L*(x,y ,6')  requieres an optimal ob- 
server motion. This observer motion strategy needs to have 
some propenies: 1) it must maintain the target at the requiered 

e = V,& + (wLss)LG 

The vector applied to the observer can be expressed also 
in the x-y basis by defining the x axes as the one where the 
target is moving along (see figure 3). 

= (V, + L s s w c o s 6 ' ) x ' + ~ L s s s i n 8 ~  

If the target is at L ( x ,  y, 8) distance from the any escape 
point and the target is antagonist then an observer motion 
requires to saturate the ohseN.3 speed. The observer is con- 
strained to be at a constant distance from the target (Lss  must 
be constant), therefore to saturate the total observer speed its 
angular speed must vary. 

This observer motion is tracing a curve similar to a cycloid. 
The cycloid is the locus of a point on the rim of a circle 
of constant radius rolling along a straight line. However, the 
cycloid is traced by a wheel (or rod) that is turning to uniform 
angular speed. In our case the angular speed of the turning rod 
varies. 



The ma nitude of V ,  is obtained by using LZ norm. LZ = is used to defined a form solution denoted by E[$(m] [I] .  
Where rn = IC2 is called the parameter [l]. This solution 
E[dlm] is implemented in Mathematica [9]. 

Thus, the time required by the observer to make the rota- 
tional motion is defined by: 

& q T & T x .  
IlV,ll = d(% +wLsscos8)2 +(wLsssin8)2 

Squaring in both sizes: 

sin812 t t  - LSSVO LSSVC 
E[dlml+ vo2 - &Z 

1/02  - &2 
v,' = vt2 + a & w ~ s s c o s ~  + Lss2w2(sin2 o + cos2 e) t l o  - 

Rearranging the equation: In order to maintain target visibility, the time taken for the 

Lss2w2 + 2V,wLssc0s0 + v t 2  - voz = 0 
target to reach the escape point cannot be smaller than 
t = w, therefore. 

"I 

bx + c = 0 is given by: x = -b*F, thus: L(GY,Q) = Lss% [ ~ o ~ [ ~ l m ]  + ~ s i n ~ / % ]  
Solution to an algebraic equation of second order ax2 + 

1 / 0 2  - K'tz 
-ZV,LsscosB * \/414'Lss2 cos2 6' - 4LssZ(&' - VO2) This type of motion will be finished either when the 

observer brings the rod to a configuration that avoids an 
escapable cell (see figure 8), when the observer reaches 
and aspect graph line [141 (also curve type 3 of the cell 
decomposition for ladder motion planning [15]) associated to 
a reflex vertex (see figure 7) or, when the observer is able to 

W =  
2LssZ 

Rearranging the equation: 

*Jvo2 - l / t2sin2e-&cose 
W =  T A <  - _ _  

The variation of the observer angular speed (angular accel- move the rod in 'Ontact with an 
Note that the observer can perform a rotational motion 

around the target and maintain the fixed distance form it, only 
if its speed is strictly greater that the target speed. 

eration) can be expressed using the chain rule. 

_ -  dw -- dwde where - d0 = 0 . = w = f (e)  
dt dOdt dt 

C. Observer compliant motion 

If a reactive motion Tm would cause the rod to collide, 
the obseNer must rotate the minimum angle that makes the 
rod be in a collision free configuration (while keeping the rod 
configuration in a non escapable cell). 

dw dw dB 
dt  dB 

d t = f ( e )  

It is necessary to solve the next integral to obtain the time 
required to make the observer rotational motion. 

This time is function of the given target and observer speeds, 
the initial and final rod configuration So, Of and the Constant 
length of the rod Lss. 

_ - _  - f(Q 

There are two general cases for the previous condition . The observer is forced onto an obstacle. In this case it 
must move along the boundary of the obstacle region (this 
is the minimal rotation that keeps the rod at Lss). The 
velocity vector that the observer must applied to stay in 
contact with the line segment is (see figure 4): 

d8 
dt = Lss 

Multiplying by the conjugate: 

C do 
Jv~ '  - &'sinz 0 - vt cas 0 

6' dt = Lss loa' 

Rearranging the equation: 

Where 1," d m d 0  is the incomplete elliptic integral 
of second kind, with k = 8, corresponding to a sector of the 
arc length of an ellipse. Where $ is called the amplitude and 
k is the elliptic module. 

A solution to the incomolete ellintic inteeral of the second 

where 

I Fig. 4. Motion in contacl with R segment kind cannot be expressed by elementary functions', actually it 

'There is a controversy about whether 01 not a function expressed as an 
integral is a closed form solution. 

The rod is in contact with a vertex. Note that if the evader 
is farther away from L * ( x ,  U, 8) distance of the escapable 
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point then this motion is possible, the strategy to achieve 
this motion is as follows. The observer must rotate away 
form the vertex to keep sight of the target. To get a 
minimal observer motion the rod must stay in contact 
with the vertex. The velocity vectors that the target must 

Pig. 5.  Motion in contact with J. reflex vertex 

applied to stay in contact with the vertex are: Pig. 6 .  Rectangle 

Vo I/= Vi cos 8; V, i= I/, sin 8 

Where The first example consists in a polygon (rectangle) having 
two parallel segments smaller than the rod length, as show in 
figure 6. 

The rectangle has two parallel segments smaller that 2 times 11K/,11= J-; / /K/l= x , / l +  ($ - 1 )  sin20 
y ,. I 

In these two cases the rod will show a compliant motion 

VI. A WORST CASE SOLUTION 

The solution is based on two sets of critical curves, the first 
one at Lss distance (the fixed distance) is used to determine 
the escapable cells. 

The second set of curves must be defined at L*(s,y,B) 
distance from the escape point which corresponds to the worst 
case and determines the last moment when the observer must 
start the rotational motion to avoid that the target escapes 
through the escape point. Remember that, from definition 2, 
an escape point can be either a point on a critical curve 
that bounds an escapable cell or a point on a critical curve 
bounding a obstacle region. Since L * ( x ,  y, 0) is a function 
of the rod configuration, this second set of curves will be 
dynamic, that is, it will get closer or farther form the defining 
first set of critical curves or obstacles as the rod configuration 
changes. Note that target escaping means that it is about to 
hide behind an obstacle or about to confine the observer onto 
the obstacle region (brining the rod in an escapable cell) or 
breaking the rod with an obstacle region. 

The existence of a solution depends on the initial rod 
configuration. Given this configuration, a first L'(z, y, 6') 
can be computed and it can be determined if the target is 
closer or farther than L*(x, g, B )  from the escape point which 
corresponds to the worst case. 

VII. EXAMPLES 

In all the examples, the edges are denoted by E, and the 
vertices by K. The red rectangle indicates the escapable cells. 
The set of critical curves defined at Lss distance from the 
obstacles are in red. The second set of critical curves are in 
purple. 

the rod length. There are 18 regions in the xy-plane and 32 
cells in the configuration space. The rule used to detect non 
escapable cells is recursively applied to all the cells until all 
the cells colresponding to a single region are eliminated. Red 
rectangles indicate the escapable cells. The graph in the figure 
only contains the cells after elimination of escapable cells. 
The region 8 is not in the graph. If the target is in region 8, 
it can leave the region and bring the rod toward an adjacent 
region (;.e region 9) that does not have a cell adjacent to the 
rod configuration in region 8. Therefore, a solution does not 
exist. 

The second example shows a convex comer (see figure 7). 
This example is used to illustrate a pursuit when the target 
tries to escape around convex corners and how the observer 
avoids loosing sight in these cases. It is assumed that the target 
will be antagonist, therefore, it will move along the boundary 
of the obstacle region. There are 6 regions on the xy-plane 
and also 6 cells in the configuration space. In this case, the 
graph representing the polygon contains all the regions on 
the xy-plane.. Therefore, a solution exists for some initial rod 
configuration. 

Let us assume that the target is antagonist and is moving 
on the boundary of the obstacle. Let us also assume that the 
target and observer start moving in R5. 

When the target is at L*(s, g, 0) distance from the reflex 
vertex (escape point) the observer must do a rotation (instead 
of just a simple reactive motion). The observer could choose 
to go to anywhere in 233. The shorter rotation in this case is 
moving to just to the border of R3. 

Figure 8 shows the example of a non-convex corner. This 
example illustrates a compliant motion and how the observer 
keeps the rod configuration outside an escapable cell. 

After elimination of the escapable cell, there are 5 regions 
on the xy-plane and 6 cells in the configuration space. The 
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Fig. 7. Convex Corner 

graph representing the polygon contains all the regions on the 
xy-plane, then a solution exists for certain initial configura- 
tions. 

Let us assume that the target moves along the following 
path: The target starts in RO while the observer is in R1; then 
the target moves towards El and finally, when it is close to 
El  it changes direction and moves towards E2. Obviously, 
our algorithm does not know this information in advance (this 
is for illustration purposes only). 

When the target starts moving, it forces the observer onto 
the obstacle El. Note that the rod must he in a configuration 
that allows the observer to perform the compliant motion (see 
section V-C). As a consequence, a rotational observer motion 
may he required before the observer (endpoint of the rod) gets 
in contact with the obstacle. When the observer is in contact 
with the obstacle, it stam sliding along El. Let's assume that 
it moves towards the corner. When the target is at L*(z, U, 8) 
distance from the escape point (a point on the critical curve 
associate with an escapable cell), the rod is at configuration 
( R l , E l , E l )  and it would change to (RZ,El,EZ) if the 
current compliant motion was continued. However, this cell is 
an escapable cell. Therefore, the observer must rotate the rod 
to keep its configuration outside it and allows the observer to 
perform the compliant motion. After this, as the target moves 
closer to E2 the observer starts moving along the boundary 
of this edge. 

VIII. CONCLUSIONS AND FUTURE WORK 

This work proposes an approach to maintain visibility 
of a moving evader with a mobile robot in a polygonal 
environment. The target moves continuously, its global tra- 
jectory is unknown hut the distribution of obstacles in the 
workspace is known in advance. It is assumed that the delay 
between the target's motion and the observer's is zero. The 
approached consists in partitioning the configuration space 
and the workspace in non-critical regions separated by critical 
curves. We give necessary conditions for the existence of a 
surveillance strategy. A motion strategy that maintains target 
visibility is proposed. This motion strategy consists of three 
types of motions: reactive, compliant and rotational. 

As future work, we plan on finding the optimal motion 
to define L"(z,y,8). In this work, it is assumed that the 
delay between the target and the observer motions is zero. 
This assumption was done to simplify the analysis, and better 
understand the problem. However, in order to get a more 
realistic model, considerable delay must be taken into account. 
we would also like to find a solution for the case of both delay 
and bounded observer speed. 
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