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Abslrael-In this paper we describe a new representation for 
a configuration space for formations of robots that translate in 
the plane. What makes this representation unique is that it is 
permutation-invariant, so the relaheling of robots does not affect 
the configuration. Earlier methods generally either pre-assign 
roles for each individual rohot, or rely on local planning and 
behaviors to build emergent behariors. Our method first plans 
the formation as a set, and only afterwards determines which 
&bot lakes nhicb role. 

To build our representation of this formation space, n e  make 
use of a property of  complex^ polynomials: they are unchanged 
by permutations of their roots. Thus we build a characteristic 
polynomial whose roo6 are the robot locations, and use its coef- 
ficients as a representation. Mappings between work spaces and 
formation spaces amount lo building and solving polynomials. 

In this paper we also perform basic path planning on this 
new representation, and show some practical and tbeoretical 
properties We show that the paths generated are invariant - 
relative to their endpoints - with respect to linear coordinate 
transforms, and in most cas- produce reasonable, if not linear, 
paths from start to finish. 

' 

1. INTRODUCTION 

Multi-robot planning is an interesting and developing sub- 
field of robot planning. Multiple coordinated robots have been 
used successfully in applications such as localization and 
exploration [I], surveillance and monitoring 121, search and 
rescue [3], satellite arrangement [4], and object manipulation 
and transportation [5],[6],[7]. 

We are particularly interested in one aspect of multi-robot 
planning: formations. The problem of robot formations is to 
move a group of robots into a predetermined shape, and 

. 'then manipulate the shape accordingly. By treating a group 
of robots as a single formation, planning motion becomes 
planning on a single global entity, rather than the sum of 
individual'robot plans. This is especially true for simple 
operations: it is much easier to rotate or scale a formation 
than to plan each robot's motion accordingly. 

Previons approaches to formation planning have included 
-planning individual trajctories for each robot in the formation 
[4],[8]; defining virtual structnres in which subgroupwise 
constraints are imposed on the relative motions of robots 
[7],[9],[10],[11]; and using local beviours that give rise to 
emergent group behaviour [12],[13]. 

The first two methods, based on predefined roles and s m c -  
tures, are inflexible to changing roles and relationships among 

the multiple robots. Behavior-based methods can have the 
same restriction; the ones that are not based on such suuctures 
are significantly less powerful and can generally only create 
symmetrical or repetitive formations. This is adequate in the 
case of a single formation pattern plus general manipulations 
(scaling, rotation, etc.), or a limited formation set, but not 
in the general case, where formations can have any shape, 
any relationships, and any role assignments, ail of which 
can change throughout the situation. We propose a new way 
of representing and planning robot formations that differs 
distinctly from the above. It will be designed to accommodate 
any formation, but without predefining roles and relationships. 

Our representation will be a formation manifold comparable 
to configuration spaces. The space will be a manifold over 
unlabeled robot formations. The robots are unlabeled so the 
formations will be permutation-invariant, i.e. exchanging two 
robots does not change the formation. Previous methods 
required each robot to move only to its assigned role in the 
formation; our new representation allows the planner to find 
the optimal assignments for each case. While one could use a 
labeled robot formation space, plan for each possible formation 
permutation, and then select the optimal path; n robots have n! 
formations, so such a method would not scale well. Once the 
new formation is reached, preexisting methods such as [I41 
can be applied to translate, rotate, or scale it. 

This paper presents a representation for a particular domain: 
robots translating in the plane. We show that it is possible 
to build a representation for formations of arbitrary size and 
with the desired properties enumerated above. We also give 
a method for path planning in this configuration space that 
effectively plans in situations where there are no obstacles. 

This paper is laid ont as follows: section 2 describes the 
representation, section 3 describes the path planning algorithm 
as well as its properties, section 4 describes the results, section 
5 describes collision properties, section 6 describes control 
issues, and section 7 describes the proposed additional work 
for this representation. 

11. REPRESENTATION 
The configuration space of a labelled multirobot formation 

is generally an ordered list of configurations, one for each 
robot. However, we are building a configuration space for 
unlabelled formations, where exchanging two robots does not 
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change the configuration. We call this a formation space, 
and write F S [ X ] "  = Xn/S,,  where n is the number 
of robots, X is the configuration space of one robot, and 
S,, is the symmetric group of permutations of n elements. 
In this quotient space, (zl, z2,. . . , zn) and (z;, z;, . . . .&) 
are identified iff they are permutations of each other. We 
shall sometimes refer to F S [ X ] "  as FS" for short if X 
is known. If X n  is a manifold, then clearly FS" is also a 
manifold, as its neighborhoods are topologically equivalent to 
the neighborhoods in X n .  However, what kind of manifold 
is it? And can it be represented in a continuous manner? 
Simply sorting the individual robot configurations by a well- 
defined full ordering would uniquely represent every possible 
configuration, but would do so with discontinuities at points 
where robots switch places in the ordering. 

Therefore what is needed is a homeomorphism J : 
F S  [XI" i M ,  where M is some manifold with known prop- 
enies. This can alternatively be viewed as f : X" - M where 
J is not a bijection, but is onto, invertible, and permutation- 
invariant (i.e. J ( z 1 , 2 2 , .  . . .z,) = J (.;..;, . . . , &) iff 
z;, zk,. . . , zh is a permutation of zlr Q,. . . , zn). 

Below is a representation of the formation space for robots 
in the plane. We can represent a location in the plane as 
(x, y) E R2. We can also use the complex plane C to represent 
these locations, since R2 2 C. Any point (z, y) E R2 can be 
represented as z = x + i y  E C. In this paper, we use C 
so that we can take advantage of the larger set of available 
operations on complex numbers, as well as the properties of 
complex polynomials. This will be clarified below. Therefore, 
set X = @, and define FS[C]" for any n E W. The 
representation we will define is not completely closed form, 
but it is well defined and fits the above criteria. 

Given a set of values z l , z2 , .  . . , tn E C representing 
the locations of the n robots, define polynomial P ( A )  = 
(A - 21)  (A - 2 2 ) .  . . (A - rn). Since complex numbers form a 
field, this polynomial is unchanged by permuting the r-values. 
Therefore it is a suitable representation for permutation- 
invariant point sets in the plane. 

" 

(3) 

ar = ( ~ 1 ) ~  ntj ( 5 )  
Sc[l,n] j € S  

ISl=k 

(a l ,  ..., an)  E C" constitutes a formation space for 
(21,. . . ,z,) E. FS". J ( z 1 , .  . . ,zn) = (a l , .  . . ,an)  defined 
above, and J-' (a l , .  . .,a,) is defined as the roots of A" + 

ajX"-j. J is a homeomorphism because of what is already 
j=1 
known about complex polynomials: A polynomial of degree n 
has exactly n roots (counting multiple roots multiple times), 
every polynomial has a unique factorization, and the mapping 
from polynomial coefficients to roots is continuous. Therefore 
J : F S  [CIS + C" is a homeomorphism, so F S  [C]" % C". 
Although J - I  is well defined, it has no known closed form 
for n > 4. Therefore application of this mapping will require 
numerical methods. 

n 

111. PLANNING 

Now that we have a suitable representation for unlabeled 
formations, we can do motion planning for them. To plan 
motion with the aid of a configuration space, one would 
normally (1)  map the initial and goal configurations to the 
configuration space, (2) determine a path from start to goal in 
this configuration space, and (3) map this path back into the 
workspace. But in this case step 3 is not straightforward, as 
there is no way to directly translate a trajectory in formation 
space to a corresponding trajectory in work space. Therefore 
it must he broken down into discrete steps, which can in- 
dividually mapped back into the workspace. These discrete 
workspace configurations can then be reconnected to produce 
a path in the workspace. 

This section deals with the simplest formation space plan- 
ning algorithm: the straight line planner. 

A. The Basic Planning Algoritlini 
The basic method is to follow a straight line from start 

lo finish in formation space, and follow it linearly. Therefore 
to plan from (al ,..., a,) to (a;, . . . ,ah),  follow the path 
p ( t )  = (1 - t )  (al,. . . ,a,) + t ( a i , .  . . ,ab). Since, as stated 
above, it is impossible to determine the trajectory directly, 
we need to discretize the path, and then connect the resulting 
configirations. We take a sampling of the interval [0,1] by 
taking N values: 0 = t l  < t 2  < ... < t N  = 1. Calculating 
J-' ( p ( t i ) )  for each ti produces the locations of the robots 
at each time. To produce a path, we connect J-' ( p  ( t i ) )  to 
J - ' ( p ( t i + ~ ) )  for each ti. 

To connect (q , .  . . ,rn) = J-' ( p ( t i ) )  to (zi,. . . , z k )  = 
J - ' ( P ( ~ ~ + ~ ) ) ,  we need to determine which zi moved to 
which 2:. Define closest ( t i )  = argmin jzi - z;I . Calculate 

closest ( z i )  for each 2;. If every value of closest is unique, 
then connect each zi to closest ( z i )  with a straight-line path. 

However, If 3i # j such that closest ( z i )  = closest ( z j ) ,  
then there is an ambiguity. In this case select a new ti E 
( t i ,  t , + l ) ,  (usually ti = *) and use the above method 
to connect J-' ( ~ ( t ; ) )  to J - I  ( p  ( t i + l ) )  and f-' ( p  ( t i ) )  

2 
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to f-' ( p ( t i + l ) ) .  This is a recursive procedure; it may he 
necessary to set t:' E ( & , t i )  or- t? E ( t : , t ,+ l ) ,  etc. many 
times until there are no ambiguities. If 1 %  - closest (zi)lz is 
too large (above a preset threshold), this can also be considered 
an ambiguity and require a new t:.  

This algorithm produces a set of distinct paths out of 
unlabeled point sets, and allows for variable-density sampling 
to reflect the variable nature of the resulting path. 

B. ~ Propenies 
Due to its linear nature, as well as the nature of FSn,  

the straight-line planning method has some nice algebraic 
propelties. The upshot of these is that paths produced by 
straight-line planning, relative lo their endpoints, are invariant 
to linear coordinate transformations. In the lemmas that follow, 
we will frequently; refer to the straight line path in FS" 
that that connects two configurations a = (a1 

,ah) .  We denote the path by L (a, 

L(a,a') = ~ ( 1 -  t ) . (a l , .  . . ;an)  + t (i;, 
in which t E [0,1] parameterizes ;he path. 

I )  Translation: Define the translational operator 

T c ( z l , . . ' . , ~ n ) =  (21 + c , z ~ + c  
- 

, T, translates every robot by c -:e @, which can be any 
translationjn the plane. F p n  T,, define the lifted translational 
operator T, = f T c f - ' .  T,- shows the effect of T, (which is 
aplied to the roots)-on the coefficients of the polynomial, .i.e. 

Lemma I: .T, commutes with L, i.e. . . . ~ ~ . . 

. 

I .  

j if a f (2). then'?, (aj = f (T, (2 ) ) .  

. .  

.~ ~ ( s ( a j , E ( a ~ ) )  = i%(~(a ,a ' ) ) .  (8) 
. . This means that 'if the initial and goal conf igh ions  both 

translate by the s p e  amount, the resulting path-will translate 
. accordingly. . . . '- - 

Pro08 First; set a = f (2) and determine a' = T, (a). 

( - l )ka ; '=  JJ(ij+c)= Cnzj 
~SclLnI  j e s  ~ X l l , n ]  TCSjET 

- ISI=k , . IS/=k 

I 

Now, set: 

Therefore, 

k 

k - j  
j = O  

k 

+tc bj (i 1;) (-c)~-'  
j = O  

= 5 ( i I : ) ( - c ) ! - j ( ( l - t ) a j + t b j )  (13) 
j=O 

= p k  (14) 

Therefore (8) holds. rn 
An important consequence of this is that the location of 
the origin of the coordinate frame. is irrelevant when doing 
straight-line planning. 

2) Scaling and Roration: In the complex plane, scaling and 
rotation are actually the same operation: multiplication. Every 
c E C can he written as c = m.d, where rn is an integer and d 
has absolute value 1 (set m = /cI, and d = c /m) .  Multiplying 
by m is a scale operation, and multiplying by d is a rotation. 
Therefore multiplying by c does both. Defme the scalelrotate 
operator 

SR, (21,. . . ,z,) = ( Z I C , Z Z C , .  . . , z , c ) .  (15) 

SR, applies the scale and rotation opeiaiions corresponding to 
c2al l  robots. From SR, define the lifted scalelrotatpLoperaior 
SR, = fSR,f2, with the same reasoning as for T, above. 
Lemma 1: SR, commutes with L, i.e. 

L (~71, (a), SX (af)) = ~71, (L (ajar)). (16) 

This means that if the initial and goal configurations both scale 
and rotate by the same amount, the resulting path will scale 
and rotate accordingly. 

Pmof: First, set a = f ( 2 )  and determine a' = S x  (a). 
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Now, set: close to optimal. The paths never intersect themselves or other 
paths, with the exception of certain degenerate cases, described 
below. The results also scale well: planning 50 robots does not 
take significantly longer than planning 2 robots. 

The diagrams on the next page show some typical results. 
Often the resulting paths are nice, simple, and almost direct. 
Fig. 1 and 2 show two examples of this. But oflen the resulitng 
paths are convoluted and roundabout. Fig. 3 shows many 
robots following convoluted paths, and some moving directly 
away from their eventual goals. Fig. 4 shows a more extreme 

(al  . . . On) = (z (a) , xc ( ' I ) )  (") 

(22) (81,. . . , pn) = SX ( L  (a, a')). 

Therefore, 

(23)  
(24) 
(25)  

a k  = ( l - t ) a ; + t b ;  
= 
= 

( 1  - t )  akck + tbgck 
( ( 1  - t) ak + tbk) C* = f i k  

example of this is: one where the start and goal configurations 
are each very close together, but the ends are very far from 
each other. In this case, some robots move straight to a goal, 
hut many robots take unusually roundabout routes, moving as 
far away from the other robots before moving in toward the 
goal. In cases like these it may be better to translate the goal 
to a configuration very close to the start, plan to this new goal, 
then translate the formation to the original goal, 

Although some paths appear to collide in these figures, they 
are just very close to each other. The only way we've been 

' Therefore (16) holds. 
Scaling and rotation operations can be composed with trans- 
lation operations to produce operations that scale and rotate 
about any point. Consequently, the orientation of the origin 
of the coordinate frame is irrelevant, as is the unit size, when 
doing straight-line planning. 

3)  Rejection: Reflection about the horizontal axis is per- 
formed by conjugating all robot coordinates. Therefore define 
the reflection operator 

F (21,. . . , 2,) = (E,. . . , G) , (26) 

where L is the complex conjugate of 2. F reflects all robots 
a_cross the x axis. From F define the lifted reflectgn operator 
F = fFf-', with the same reasoning as for T, and SR, 
above. 

Lemma 1: F commutes with L, i.e. 

L (F (a) , F (af)) = F ( L  (a, a')). (27) 

This means that if the initial and goal configurations are both 
reflected about the x-axis, the resulting path will also be 

Pm08 First, set a = f (2 )  and determine a' = F(a). 
Since E .  b = a .  b, and ti + 6 = a + b for all complex U and 

and f is only composed of additions and multiplications, 
F ( n l , .  . . , a n )  = (E, .  . . , G). Now. set: 

( 0 1 . .  .a,) = L (F (a), F (a'!)) 

reflected about the x-axis. - 
- -  - 

(28) 

(81, ..., A) = F(L(a,a')). (29) 

Therefore, 

a k  = (1 - t ) z +  tG= (1 - t ) a g +  tbk = P k .  (30) 

Therefore (27) holds. 
Composing reflection about the horizontal axis with rotation 
and translation produces all reflections, so reflecting both start 
and goal produces a path reflected the same way. Therefore 
left-handkight-hand coordinate frame orientation is irrelevant 
to straight-line planning. 

IV. RESULTS 
Simulating the straight line path planning method has pro- 

duced some interesting results. The algorithm has been a n  
on a variety of arbitrary start and goal configurations for a 
varying number of formation sizes. The resulting paths are 
generally simple and straightforward. In many cases they are 

. .  
able to generate a collision is by contriving the initial and goal 
configurations specifically to generate a collision. 

V. CHARACTERIZING COLLISIONS 

Although we have not been able to generate collisions 
by picking arbitrary initial and goal configurations, there are 
ways to explicitly generate collisions. Note that in the current 
representation, robots have zero size, so a collision only 
happens when two robots coincide. Here we show a specific 
form that all collisions conform to. 

Define a generalized collision path to be a path that contains 
a collision somewhere on its interior. Since our current plan- 
ning method uses straight lines in @", a generalized collision 
path must be a line through a point that corresponds to a 
collision. Using this idea, we show that every generalized 
collision path can be generated by a single method. Note that 
we are not concerned with trir*ial collision parhs, paths with 
start or goal collisions but no collisions in between. 

First define a collision point a = ( a l , .  ..., a,) E C" such 
that X" + ajX"-J has at least one multiple root, which 

corresponds to a collision. Any collision paths involving this 
a are straight lines in the formation space through a, and can 
be written as L (a - d,'a + kd), where L is from (6) ,  d = 
(dl,. . . id,) E C", and k E R+: Therefore every nontrivial 
collision path is uniquely defined by a single (a, d, k )  E Col x 
@" x W+, where Col is the set of all collision points. 

These specific cases are the only configurations that gen- 
erate collisions. Our experiments have shown that even con- 
figurations that approximate these don't generate collisions. It 
is highly unlikely that a random selection of start and goal 
configurations will lead to a collision path using the straight 
line method. 

One interesting example of this is the alternating regular 
polygon. As its name suggests, the alternating regular polygon 
is a regular polygon that alternates between start and goal 

I 

j=1 
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Fig. 3. 50 raboe. convoluted paths Fig. I .  6 robo8. "nice". paths 

.. % .  

' 

Fig. 2. 5 robalr,."nice" paIhs Fig. 4. 3 m h 8 .  roundabout paths 

positions. The robots stan on the odd positions and finish. 
in the even ones. An alternating regular polygon centered. 
at the origin with radius I and one point on the positive 
x axis can be generated hy setting a = (O,O, . . . , 0), d = 
(0,. . . ,O, -l) ,  and k = 1. Applying the and .!% operators 
produces an alternating regular polygon in any location, size, 
or orientation. Allowing k to have a value other o than^ one 
produces a generalized alternating regularpolygon, where the 
start and goal polygons can he different sizes. 

VI. COE,FFlClENT CONTROL 

In a more general sense, we can control the robot move-. 
ments by controlling the coefficients of the polynomial. This 
leads to the notion of "coefficient control". Let us analyze how 
the roots of the polynomials change as we give small changes 
in the value of the~coefficients. 

Taking partial derivatives on both the sides of Equation 1 
from section I1 with respect to a k  and applying chain rule to 
the R.H.S: 

. 

(31) 

(32) 

f3P(X) ~ azi 
aak aak a 

WJAJ 

apo' l A A *  = -&=..- 
az, aak I~=r i  

aak ,3,3 IA=.?= 

_ -  - 

Hence 

(35) 

From (36) we can observe some points given helow 
For a given robot if the surrounding robots are quite 
nearby, a small change in the coefficient leads to a large 
change in the robot position. . Due to the unequal weighting of the coefficients in the 
equation, the same change in different coefficients will 
lead to different changes in the position of the robot. 
Hence if z. is large in magnitude, then the change in 
coefficients with smaller subscripts largely control the 
change in the position of the roots and hence the robots. - An interesting event occurs if the robots collide. Then 
the denominator of (36) becomes zero. Hence the change 
in robot position seems to he independent of the amount 
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Hence the path-planning problem in multirobot systems 
with coefficient control can be modelled as a matrix differ- 
ential equation(MDE) given by 

k(t) = T(R(t))A(t)  (37) 

where, 
R(t) = [ q ( t ) ,  z2 ( t ) ,  ... zn(t)]' is the n x 1 vector of robot 

positions, T ( R ( t ) )  is a non-linear transformation on R ( t )  

and A( t )  = [a l ( t ) ,az ( t ) ,  ..... an(t)lT is the n x 1 vector of 
coefficients. The boundary conditions of the matrix differential 
equation are given by the initial (R(0)) and final (R(1)) robot 
positions. 

The problem of optimization of distances in the workspace 
can be addressed using the MDE. For instance if it is required 
to minimize the L2 norm of the distances then the problem 
can he addressed as the minimization of [ f i ( t )*ITR(t)dt .  
The terms inside the integral can be related to the coefficient 
control terms(ak) by the MDE. 

In the path planning method we noted that sometimes 
connecting configurations in two timesteps is ambiguous, 
and requires additional timesteps. By using the coefficient 
control we can determine what is the maximum change in the 
coefficients allowed in a time step so that the disambiguity 
condition is satisfied. 

Z" -1 ( t )  
given by the x n matrix W,j) = ~ ~ = , . - ~ ~ ( ~ ~ ( * ) - ~ - ( ~ ~ )  

VII. CONCLUSION AND FURTHER WORK 

In this work we have built a continuous configuration space 
representation for formations of unlabeled robots that translate 
in the plane. We have shown that the space is homeomorphic 
to the configuration space for labeled formations, and that the 
representation is both invertible and permutation invariant. We 
have built a method that plans in this configuration space. We 
have shown that it has convenient algebraic properties, namely 
that it is invariant to linear coordinate transforms. 

But there is much that remains to be done, as this is a very 
specific subset of the problem of unlabeled formations. The 
paths produced are reasonable, but not optimal. We would 
like to generate more efficient paths, and remove problems 
with extreme cases. The current formations are very ideal: they 
represent holonomic robots with zero size and no obstacles. 
We would like to place constraints on these robots. starting 
with physical obstacles and nonzero robot sizes, and see how 
this representation accommodates them. The current system 
is for centralized planning with certain knowledge; we would 
like to see whether uncertainty and decentralized planning can 
be reasonably accommodated. Lastly, the formations are only 
for a single type of robot. Surely there are other comparable 
methods for representing formation space X"/S,, for any 
configuration space X. 

. .  
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