
Proerrdings of the 2003 IEEE
International Conference 00 Robotics &Automation

Taipei, Taiwan, September 14-19, 2003

Real-Time Object Tracking using Multi-Res. Critical Points Filters

JBrBme Durand and Seth Hutchinson (jdurand@uiuc.edu, seth@uiuc.edu)

University of Illinois at Urbana-Champaign

Abs t rac t
In this paper, we will propose a new method for ob-
ject tracking, which is primarily based on the results
from prof. Shinagawa's iniage matching. We will
provide a method that tracks an object and follows it
in real-time throagh a sequence of images which are
given, for example, by a robotic camera. The main
feature of the method is that it is not affected by the
movements (within a certain reasonable range) of the
camera or the object; such as, translation, rotation or
scaling. The algorithm is also insensible to regular
changes of the object's shape. For real-time applica-
tions, the algorithm allows the tracking of an object
thmugh a sequence of 64*64 images, at a rate of over
8 fmmes/second.

1

Object tracking has been one of the main fields of
study in Computer Vision for the last 20 years. The
applications for real-time object tracking are numerous
(medicine, security, industry), as the robot is increas-
ingly helping the human in his regular tasks.

1.1 segmentat ion-based algori thms
Some of the previous work in this field implies a
segmentation-based method: all the basic 'blob' al.
gorithms, based on intensity, color (best known [l]),
motion, texture ... The main limitations for these a lge
rithms is that the target has to remains roughly con-
stant in size, and cannot move out of the region of
interest. Furthermore, these algorithm can be com-
pntationally time consuming.

1.2 template-based region tracking
The idea of this algorithm is to match the direct ap-
pearance from frame to frame [2]. However, this al-
gorithm assumes that the appearance of the object
remains roughly the same: and it cannot handle rapid
changes in position, lightning etc.

1.3 Snake algori thm
This is the best known algorithm. The main idea is to
minimize an energy, and the algorithm is usually based

Previous work and related studies

on splines [3]. The limitations of this algorithm tu
wards what we are going to propose is that it assumes
it is possible to get good local contour information so
that lcast squares can work. Despite its relatively good
accuracy, the algorithm remains slow.

1.4 Other algorithms
Some other algorithms are based on probabilistic
methods[8]. The most recent methods [5] are based
on linear dynamic models (using Kalman filter [9]) or
non-linear dynamic models. Here, the method is much
faster and does not require much information about
the object, the scene or the movement to achieve the
tracking.

2 The Multi-resolution Critical Points
Filters

They where first introduced by Yoshihisa Shinagawa in
1998 (4][6]. The goal of this paper is, of course, not to
describe them in detail, but we will present the main
ideas. First of all, we have to consider 2 images, the
source and the destination. The aim of the algorithm
is to match points of the source image (in our case,
the points of the contour of the object) to points of
the destination image. Let's suppose the size of the
image is N = M = 2". If the size of the image is not
a power of 2, we have to shrink it to be so.

2.1 Comput ing the Multi-resolution hierarchy
We will compute a multi-resolution hierarchy of size
2[* 2' (1 5 1 5 n) images. At each level of the hi-
erarchy, 4 images are calculated. Let's call pi:;:), the
point (i,j) of the image number m, from the source
image, at level number 1. The images are recursively
computed as follows:

0-7803-7736-2/03/$17.00 02003 IEEE 1682

mailto:jdurand@uiuc.edu

which is the point of the original image.
The reason why they are called critical point filters is
because they 'extract' the minimum, maximum and
saddle points at each level of the hierarchy. The com-
puting of the multi-resolution hierarchy is achieved on
both the source and destination images. We'll call
q:$) the point (i,j), of the image number m, from
the destination image, at level number 1.You can see
an example of the images computed, on figure 1.

Figure 1: The original image and the four images
computed at level 5 of the hierarchy (original image is
256 *256).

2.2 Determining the mapping from one point
to another

Once thc hierarchy is created, we must determine the
matching between the points: this is done recursively.
Let's take an example (figure 2): suppose we want to
map a point p (at level m), from the source image, to
a point q , of the destination image. First of all, we
determine the 4 nearest neighbors of point p , which
we call a , bl c, d. In our algorithm, we take the four
'diagonal' nearest points, but we could have taken the
four other neighbours without any significant change
in the result. For each of them, we map the par-
ents (A , B, C, D) recursively to A', B', C', D'. If one
of them is located out of the image (this may be possi-
ble if point p helongs to the border), it is then mapped
to the nearest border. For each of the parents, we take
one child (if b is the top left child of B: then b' will
be the top left child of B'). The four children d o
fine what we will call the inherited quadrilateral. The
point p will he mapped to one of the points inside this
quadrilateral. We will then choose q so that it min-
imizes a certain distance (between p and q) , that we
are going to describe below.

Inherited Destination

Quadrilateral I
image

Pixel at level m-1

~~~~~~~ . ,  
. ,  .,' .,' Pixel at level m , .  ~ ~ ~ ~ ~ . .  

Points they are mapped to 
(from source to destination) I (from X to X' and x to x') 

Figure 2: The definition of the inherited quadrilat- 
eral. 

1683 



3 The predicted parameters 
3.1 
Using the previous positions of the center of the object 
(defined as the average of the position of the points), 
and a polynomial interpolation, we can predict the 
next position of the center of the object. By using 
a center-based definition of the object, we allow trans- 
lation in the viewing plane and rotation around the 
viewing axis. This prediction can also connt for the 
camera, as the movement of the camera and the rela- 
tive movement of the object form only one single move- 
ment, from the viewer point of view. 

3.2 
With a polynomial interpolation on the previous size 
of the object (typically the last 5 ) ,  we can make an 
estimation of the d u e  of the surface of the object. 
This value is used to normalize the value of the dis- 
tance between the center and a given point, through 
different images. By doing so, we allow the object to 
move forward or backward on the viewing axis. We 
will also be able to track a deformable object, as long 
as the color doesn't change. 

3.3 
As we have seen, the algorithm might he able to track 
the object during translation, rotation and scaling of 
the object or of the camera (as long as the object re- 
mains in the scene!). However, if the object rotates 
on an other axis than the viewing axis, we may lose it 
because its shape (from the viewer point of view) will 
change, and may be the color will change too (think 
of a cube with a different color on every face). 

4 The e l e m e n t s  that compose the distance 
The distance defined above takes several elements into 
account. Each of these elements is affected by a coef- 
ficient that will determine its relative weight towards 
the others. The coefficient is a function of the level of 
the hierarchy. 

4.1 
This is the most important part of the distance; it 
is based on the multi-resolution hierarchy described 
before. If we call P ( < , ~ )  the point to map and t ( i r , j r )  the 
point to test with inside thc inherited quadrilateral, 
then the 'intensity' distance at  level 1 of the hierarchy 
between the 2 points is 

T h e  center of the object 

T h e  surface of t h e  object  

The different movements we can  t rack  

T h e  intensity of the pixel 

vhere m is the number of the image in the multi- 
resolution hierarchy. As the level (in the multi- 
resolution hierarchy) of the pixel increases, the 'inten- 
sity coefficient' is decreasing, because as we 'get closer' 

to the original image (level n of hierarchy), intensity 
only counts for adjustments. 

4.2 

Introducing the center c(cz,cy) of the source image 
,d(c;,d,) the predicted position of the center in the 
destination image, S the surface of the object in the 
source image, S' the predicted surface of the object in 
the destination image, and with the same notations as 
before, the distance is 

T h e  position of the pixels 

Which is the difference between the normalized (by the 
surface of the object) square distance between a point 
and the center (or estimated center) of the object. 

4.3 
In order for the mapping to be more accurate, we 
use 2 edge detection filters (Sobel filters) for level n 
of the hierarchy: these two filters create horizontal 
and vertical edge detection images (edgehSoUrCe and 
edgevSoU'Ce for the source image, and edgehdest 
and edgevdeat for the destination image). You can 
see one example of this in figure 3. For the other 
levels of the hierarchy, we only average the value of 

The value related t o  the edge  

the pixels from the filter (e.g. edgeh{z!;""'ce) - - 

edgehj2,+l:2i) + edgehj2,+l,zj+l) ) with the 

+ m+l,SOuXe) (m+l,SOWCe) t (edgeh&,2j )  + edgeh(2;,2j+l) 
m+1 source) m+l,80.'rce) 

same notations as before). Then, the 'edge' distance 
between the 2 points at  level rn of the hierarchy is: 

The importance of this distance is independent of the 
level of the hierarchy. 

Figure 3: the vertical and horizontal edge filters 
( same image as before). 

1684 



4.4 Summary  
This section will summarize, into a table, the different 
components of the distance we want to minimize, in 
function of the hierarchy level. Table 1 gives some in- 

t h e  distance 
intensity 
position 
edge 

1 Element of 1 impact for 1 impact for 1 
low levels high levels 
very high medium 

low low 
medium medium 

Table 1: T h e  elements of the distance. 

dication of the coefficients affected with each element 
of the distance. In our experiments, we used linear 
function of the level, with a fixed slope. The next step 
will be to automatically adapt these functions during 
the tracking, using information provided by the previ- 
ous mappings. 

5 

5.1 T h e  initial definition 
The object is initially defined manually by the user, 
who draws the contours of the object to track. Then, 
the algorithm finds the nearest contour from the draw- 
ing; using a certain tolerance; this contour is based 
on the intensity of the pixels, the edge detection, and 
the distance from the original drawing. Figure 4 is 
an example of the drawing of the user, and what the 
algorithm infers. 

How to define the object we track 

Figure 4 :  original drawing and what is deduced. 

5.2 
The surface that is deduced by the algorithm will de- 
fine the points of the source image we will be tracking. 
As we don't want to map every point (this would take 
too much time), only several point are mapped. As we 

The points t h a t  are mapped 

do not have any precise information ahout the struc- 
ture of the object (it might be deformable or not for 
example), we will only map the points of the objects 
that are also at the intersection of the lines of a grid 
(the size of the grid is automatically adapted, depend- 
ing on the surface of the object, and the number of 
points we want to map). Figure 5 is the result of such 
a mapping. 

Figure 5: Only the white points o n  the left image are 
mapped t o  the points o n  the right image 

5.3 
Once the mapping is done, we have to deduce the 
object from the points. This is done with a kind of 
painter algorithm starting with every mapped point, 
but with several restrictions : 

How to recover t h e  object 

The points cannot spread further than n points 
From the original point. Typically, n is equal to 
the distance between two lines on the grid, nor- 
malized by the ratio of the predicted surface of the 
object on the destination image over the surface 
of the object on the source image. 

The points cannot spread over a edge, with a cer- 
tain threshold (to be fixed by the user). 

The points can exceptionally spread over n, if an 
already spread point is nearer than IC point from it 
(for example IC equals 2 or 3), and there is no edge 
between them (over a certain threshold). This is 
done in order to fill in the gaps that may appear 
between the points. 

Once this is done, we can deduce the new center of 
the object, the new surface, calculate the predicted 
parameters and run the algorithm on the new image. 
This allow real-time tracking of the object. Here is 
an example (figure 6) of pixels mapped on the desti- 
nation image, and what the algorithm deduced from 
these pixels(for easy understanding, only the borders 
have been drawn and they are bigger than what the 
algorithm actually returns). 

1685 



64*64 rcsolution is a good compromisc betwecn speed . ,  
'I and quality. 

1 Resolution I t ime/mapping  I f rames/second I 
512*512 
256*256 1.25s 

0.40s 
0.12s 8.2 

32 *32 0.03s 30.7 

. .  ,. 

. .  

Table 2: Time of computation. Figure 6: mapped points and what is deduced. 

5.4 The case of multiple objects (or spl i t t ing 

In the initial definition of the object, it is possible for 
. ' the user, to define several objects at a time. As the 

algorithm maps'points of the 'global' object, and then 
spreads them, the two objects will be mapped sepa- 
rately and will give two different objects on the des- 
tination image. .The case where the object splits is 
equivalent, as ,the points are mapped independently. 
Then', the algorithm can easily tell how many objects 
there are on the screen on a given time. 

6 Results 
The results received from the algorithm (see the last 
page of the article) ,were obtained on a 1.8 GHz PC, 
using 256*256 images. The left image is the source im- 
age, and the right one is the destination. The borders 
are drawn thicker so that i t  is easier to see them. 

6.1 Tracking with a fixed camera 
Figures 7,s and 9. During these tests, the camera was 
fixed, and only the object was moving. The results 
appear quite good, with only a minor error at the end 
of the legs. These good results are mainly based on the 
fact that the camera is not moving, so the algorithm 
'matches'. the background correctly. 

6.2 
,Figures 10 , l l  and '12.'During these tests, the object 
was not moving.. ,The results are correct for transla- 
tion, but for. rotation and zooming, we still find some 
errors (especially.for rotation). These problems will be 
partially solved when..we will use the Kalman filter to 

., predict the position of the camera (see the Conclusion 

. object)  

: .  . . -. 

. . 

Tracking wi th  a mobile camera 

. , 

, " ' and future W O T ~  chapter) 

6.3 ' Time, of computa t ion  
This is the average time of computation and number 
of frames per;second, we can handle, for the complete 
mapping of an object (of about 10% of the size of 
the image) with several resolutions: it appears that  a 

7 Conclusion and f u t u r e  work 
Here, we have shown a new method for object track- 
ing, based on the results from Y.Shinagawa. The re- 
sults are more than satisfactory, because the tracking 
almost never fails, even if there are small errors, de- 
spite the movement of the camera (in a certain range of 
amplitude) or the object. The fact that the algorithm 
can be used with a moving camera allows for use with a 
mobile robot. The tracking of 64*64 images at a rate of 
over 8 frames/second allows for real-time applications 
in a wide range of fields. We expect the algorithm to 
be optimized in the near future, by imaging the same 
number of frames/second, but for 128*128 images. 
The most important focus, over the next few months, 
will be to automatically adjust the parameters for the 
different elements that compose the distance. By now, 
they are given manually, and remain the same during 
the tracking process. One other important improve- 
ment of the algorithm will be to track the object dur- 
ing a rotation that is not along the viewing axis. This 
could be done, for example, by using a database of 
what the object might look like, from several views. 
Finally, it could be interesting to  take occlusions into 
account, by keeping track of the background. 

Acknowledgments 
I'd like to thank Yoshihisa Shinagawa for his perma- 
nent help with understanding his algorithm, and the 
way he actually implements it. Without this help, 1 
would have certainly gone in the wrong direction on 
several points of his algorithm. I would also like to 
express my appreciation to Seth Hutchinson, who con- 
tinually gave me excellent advice on what I needed to 
implement. His sense of what may work and what may 
not certainly saved me a lot of time. I also would like 
to thank everyone in the Robotics Lab a t  the Univer- 
sity of Illinois, for their friendliness and the time they 
spent helping me with the computers and the robots. 

1686 



References. ' 

[l] C. Rasmussen, K. Toyama, and G. Hager: '"Exking 
Objects By Color Alone",l996 

[Z] G. Hager and P. Belhumeur: "Efficient region track- 
ing with parametric models of geometry and illurnina- 
tion",l998 

[3] M. Kass, k. Witkin, and D. Tcrzopoulos: "Snakes: Ac- 
tive contour models",1988 

[4] Y. Shinagawa and T.L. Kunii: '"Unconstrained Au- 
tomatic Image Matching Using Mutltiresoliitional 
Critical-Point Filters",l998 

151 J.  Ponce and D. Forsyth "Computer Vision : a modern 
approach" ,2001 

Fiyure 7: tracking during object translation. 

Figure 8: tracking during object rotation. 

Figure 9: tracking during object scaling. 

[6] K. Habuka, Y. Shinagawa and M. Hilaga: "Image in- 
terpolation using enhanced Mutltiresolution Critical- 
Point Filters: with applications to virtual pseud- 
3D model generation and keyframe interpolation of 
videos" ,1999 

171 C. Tomasi and T. Kanade: "Shape and motion from 
image streams: a Factorization Methad",l99Z 

181 E.P. Simoncelli, E.H. Adelson and D.J. Heeger: "Prob- 
ability distributions of Optical Flow",1990 

[9] G. Welsh and G. Bishop: "An introduction to the 
Kalman Fi1ter";ZOOl 

Fiyure 10: tracking during camera translation. 

Figure 11: tracking ing camera rotation. 

Fiyure 12: tracking during camera zooming. 

1687 


