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Abstract 
Probabilistic roadmaps (PRMs) are a popular repre- 
sentation used by  many current path planners. Con- 
struction of a PRM requires the ability to generate a 
set of random samples from the robot’s configuration 
space, and much recent research has concentrated on 
new methods to do this. 

In this paper, we present a sampling scheme that 
is based on the manipulability measure associated with 
a robot a m .  Intuitively, manipulability characterizes 
the arm’s freedom of motion for a given configuration. 
Thus, our approach is to sample densely those regions 
of the configuration space in which manipulability is 
low (and therefore the robot has less dexterity), while 
sampling more sparsely those regions in which the ma- 
nipulability -is high. 

We have implemented our approach, and performed 
extensive evaluations using prototypical problems from 
the path planning literature. Our results show this 
new sampling scheme to be quite effective in generat- 
ing PRMs that can solve a large range of path planning 
problems. 

1 Introduction 
Probabilistic roadmaps (PRMs) were introduced in the 
early nineties as a representation useful for planning 
collision-free paths for robots with many degrees of 
freedom [ll, 161. PRM path planners use a two-stage 
approach. During a preprocessing stage, the plan- 
ner generates a set of nodes that correspond to ran- 
dom configurations in the configuration space, con- - 
nects these nodes using a local path planner to form 
a roadmap, and, if necessary, uses a subsequent sm- 
pliing stage to enhance the roadmap. During a second, 
on-lime stage, planning is reduced to query processing, 
in which the initial-and final configurations are con- 
nected to the roadmap, and the augmented roadmap 
is searched for a feasible path. 

The method used for generating the random config- 
urations lies at the heart of apy PRM planner. For 
this reason, numerous sampling schemes have been 

proposed in recent years. We review many of these 
methods below, in Section 2. 

In this paper, we present a new method for biasing 
the sampling during the node generation stage used 
to build a PRM. Our method is based on manipula- 
bility [18], an intrinsic property of robot arms, which 
measures an arm’s freedom to move in all directions. 
Our rationale for this approach is that in regions of 
the configuration space where manipulability is high, 
the robot has great dexterity, and therefore relatively 
fewer samples should be required in these areas. Con- 
versely, regions in which the manipulability is low tend 
to be near (or to include) singular configurations of the 
arm, where the range of possible motions is reduced; 
therefore such regions should be sampled more densely. 
Our choice to use such an intrinsic property, rather 
than to drive sampling based on the geometry of the 
obstacle region of the workspace is motivated by our 
previous work in generating representations that can 
be used for path planning in changing environments 
[15, 141. We describe our new approach in Section 3. 

We have done extensive comparisons between our 
new approach and the original approach described in 
191. We present these results in Section 4, and in Sec- 
tion 5 we briefly present the conclusions that can be 
drawn from our results. 

2 Related Work 

The simplest way to generate sample configurations is 
to sample the configuration space uniformly at ran- 
dom, discarding the samples that lead to a collision. 
This technique makes no assumptions about the dis- 
tributions of the obstacles and is relatively easy to an- 
alyze [lo]. Unfortunately, the number of samples this 
technique places in any particular region of ef,-ee (the 
set of collision-free configurations) is proportional to 
its volume; therefore, uniform sampling is unlikely to 
place samples in narrow passages. Most recent PRM 
sampling schemes have been developed to address this 
problem. 
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One means to address the problem of few samples in 
narrow passages in efree is to add samples in regions 
where the roadmap has few nodes. More samples near 
these nodes can be taken by randomly bouncing off ob- 
stacles: choose a random direction, travel in the direc- 
tion until an obstacle is encountered, choose another 
direction, and continue until the path length reaches 
some threshold [7, 121. 

Another technique for sampling C!free  is to concen- 
trate the samples near the surfaces of the obstacles in 
configuration space. One such approach is to locate 
samples on the surfaces of the obstacles themselves. 
This approach works by taking an arbitrary sample in 
collision and then searching for the boundary of the 
collision region of e (the configuration space) on rays 
directed away from the collision point, uniformly dis- 
tributed on a hypersphere [3]. The hope is to locate 
the center point close to the center of the obstacle re- 
gion such that the samples are uniformly distributed 
over the surface of the obstacle. A modified version 
of this approach also adds samples near the surfaces, 
in some cases building shells of samples around the 
e-obstacles [2]. Another approach for concentrating 
the samples near the obstacle surface is to generate 
pairs of points, one uniform at random in C! and the 
other a small distance away (with the distance guided 
by sampling a Gaussian distribution) [4]. In this case, 
the collision-free sample of the pair is added to the 
roadmap only if the second sample is in collision. 

There are other techniques that use the geometry 
of the obstacles to define sample points. One such 
approach that works well for rigid-body robots in 2D 
environments is to use the geometry of the obstacles 
and the robot in the workspace to define the sample 
nodes in efree [16]. In this case, the axis of the robot 
is placed parallel to obstacle surfaces with the robot 
a small distance away from the surface (a similar po- 
sition is defined for vertices). Another geometric ap- 
proach is to generate samples along the medial axis, 
either in C!free or in the workspace. To generate sam- 
ples using the medial axis in the workspace, the idea is 
to first compute the medial axis of the workspace, and 
then take random configurations and move the robot 
from those configurations until some subset of refer- 
ence points defined on the robot lie on (or as close as 
possible to) the medial axis [5,6]. To generate samples 
in the medial axis in e f r e e ,  the idea is to take random 
configurations and transform them to the medial axis 
[17]. Each random configuration falls into one of three 
cases. In the first case, the sample is on the medial axis 
and nothing further need be done. Second, the sample 
could be in (?free but not on the medial axis, in which 
case the point is translated away from the nearest ob- 

s 

stacle until it is equidistant from two obstacles. Third, 
the sample could be in an obstacle region. In this case, 
the configuration is translated to the nearest obstacle 
surface, and then to the medial axis. 

Some techniques are designed in particular for 
single-query path planning. One of these involves 
choosing a node at random from the current roadmap, 
generating samples around that node, and adding 
some of these new samples to the roadmap [8]. In this 
case, the node selection is biased towards the nodes 
with fewer neighbors, and new samples that have too 
many neighbors in the roadmap are rejected. Another 
technique in a similar vein is to generate a sample 
at random of e, find the node nearest to it in the 
roadmap, and generate a new node in the roadmap by 
moving toward the random sample [13]. This use of the 
random sample should bias the tree to explore C!free 
more rapidly. The Ariadne’s Clew algorithm also falls 
in this category, though it uses the endpoints of Man- 
hattan paths as its samples [l]. Another approach for 
single-query path planning used a vision sensor to de- 
tect the free portions of the workspace, and a sampling 
algorithm that placed new nodes to explore further the 
free workspace 1191. 

3 Manipulability-based sampling 
We have developed a new importance sampling ap- 
proach that is based on the manipulability measure 
associated with the manipulator Jacobian matrix [18]. 
The basic idea for using the manipulability as a bias 
for sampling is the following. In regions of the config- 
uration space where manipulability is high, the robot 
has great dexterity, and therefore relatively fewer sam- 
ples should be required in these areas. Regions of the 
configuration space where manipulability is low tend 
to be near (or to include) singular configurations of 
the arm. Near singularities, the range of possible mo- 
tions is reduced, and therefore such regions should be 
sampled more densely. 

Let J(q) denote the manipulator Jacobian matrix 
(i.e., the matrix that relates velocities of the end effec- 
tor to joint velocities). For a redundant arm (i.e., an 
arm with more than six joints for a 3D workspace, 
and an arm with more than three joints for a 2D 
workspace) the manipulability in configuration q is 
given by 

w(a) = Jm- (1) 

Consider the robot shown in Figure 1 as an example. 
The manipulability for this robot is w = 11121 sin&l, 
where 11 and 12 are the lengths of the two links. The 
configuration shown in Figure 1 corresponds to one 
of the configurations at which the manipulability is 
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Figure 1: Planar robot example. 

Figure 2: Sample distributions for a twejoint planar 
robot: (a) uniform, (b) higher density in regions of low 
manipulability, (c) higher density in regions of high 
manipulability. 

highest for this robot (the other configuration has the 
second link pointing down). Notice that for this robot 
the manipulability does not depend on the position of 
the first joint. 

Three different sample distributions for the robot 
are shown in Figure 2. As shown in the figure, concen- 
trating the sampling in regions of low manipulability 
results in more samples near 02 = -7r, 0, and 7r at the 
bottom, middle, and top of the views of configuration 
space, respectively; sampling in regions of high manip- 
ulability results in more samples near 02 = -7r/2 and 
7r/2. Normalizing for the link lengths, the average ma- 
nipulability of the samples for the uniform distribution 
is 0.65, the average for low manipulability is 0.49, and 
the average for high manipulability is 0.82. 

In order to bias sampling based on manipulability, 
we use an approximation of the cumulative density 
function (CDF) for manipulability. If we treat manip- 
ulability as a random quantity, denoted by the random 
variable Q, with probability density function pn, the 
CDF isgiven by 

pn (U)  = 1“ pn ( ~ t .  

We compute a discrete representation of Pn as fol- 
lows. First, we create a discrete approximation to pn. 
This is done by sampling the configuration space of the 
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robot uniformly at random and computing the manip- 
ulability for each sample configuration. We exclude 
from this computation any configuration in which the 
robot collides with itself. .We then create a histogram 
of the manipulability values that have been computed. 
We normalize the number in each bucket of the his- 
togram, and create the approximation to Pn from 
these normalized values. The bucket size of the his- 
togram and the number of samples to take axe param- 
eters. 

We have adopted a rejection-based approach for us- 
ing Pn to bias the sampling of the configuration. For 
each sample, we use the following procedure. First, 
a candidate sample, q, is generated using uniform 
random sampling of the configuration space. If q, 
is a self-collision configuration, it is rejected. If q, 
is not rejected, we compute the manipulability w(q,). 
We reject q, with probability Pn(qc). This approach 
was used to generate the sample distribution in Fig- 
ure 2(b). In Figure 2(c), we use Pn(q,) as the proba- 
bility of acceptance. 

One shortcoming of the manipulability measure for 
our purposes is that it does not reflect joint limits. 
When the robot is near a joint limit, its movement is 
restricted. In an effort to include samples near joint 
limits we adopt the following convention: at configu- 
rations in which some joint is near a limit, the manip- 
ulability is defined to be aero. The nearness of a joint 
to its limit is a parameter of our sampling algorithm. 

Example manipulability pdfs are shown in Figures 
3-5. As can be seen in the figures, the manipulability 
pdfs tend to be unimodal, and quite smooth. 

For our implementation, we define the manipula- 
bility measure to evaluate the ability of the robot to 
change the position of the end-effector (i.e., we use the 
manipulator Jacobian that relates joint velocities to 
the linear velocity of the end effector). In these figures, 
the plots labeled “Not filtered” correspond to sampling 
the manipulability of the robot without filtering out 
samples in which the robot is in self-collision; the plots 
labeled “Filteredn do exclude these samples. In all 
cases, 10 million samples were evaluated for manip- 
ulability. In addition, the gnuplot ‘‘csplies~’ function 
was used to smooth the plots. An explanation for the 
shift that can be seen for both robots in the probabil- 
ity distribution when filtering out self collisions is that 
configurations in which the robot is in collision with 
itself tend to be configurations for which the manipu- 
lability is low. 

4 Results 
To evaluate sampling biased by manipulability, we 
used a modified form of the planner for planar fixed- 
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Figure 3: The pdf for the manipulability of a planar 
robot with six joints. 
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Figure 4: The pdf for the manipulability of a robot 
with six joints in a 3D workspace. 

based articulated robots described in [9]. In particu- 
lar, we added a function to the preprocessing phase 
to compute whether to reject a configuration based on 
its manipulability. We further modified the planner to 
adjust the order in which tests are applied to a ran- 
dom sample of the configuration space to determine 
whether to accept a sample. For each random sample, 
we test first whether the robot is in self-collision, then 
we apply the manipulability bias criterion, and last 
test the sample for collision between the robot and the 
obstacles. If the sample passes all tests, it is added 
to the network. The remainder of the preprocessing 
phase continues as described in [9]. 

To evaluate the planner, we performed a similar set 
of experiments to those described in 191: for each set 
of parameters, we generate 40 networks and then test 
whether eight test configurations, shown in Figure 6, 
can be connected to the network. As a baseline, we 
include the results using unbiased sampling. 

An explanation for the labels on the tables is as fol- 
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Figure 5: The pdf for the manipulability of a planar 
robot with twenty joints. 
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Figure 6: Eight configurations of a 7-revolute-joint 
fixed-base robot. 

lows: The columns marked “Nodes” represents the tar- 
get number of nodes for the roadmap after preprocess- 
ing, with “N” nodes generated during random sampling 
and “W’ nodes generated during enhancement. The 
columns labeled “Number Rejected” list the number 
of nodes that failed a test: robot self-collision (“Self”), 
manipulability bias (“Manip”), and robot collision with 
an obstacle (“Obstacle”). The next three columns show 
three more statistics for the preprocessing phase. The 
column labeled “Avg. Size” lists the average size of 
the largest connected component in the roadmap after 
preprocessing. The column labeled “Avg. Comps” lists 
the average number of components in the roadmap af- 
ter preprocessing, and the column labeled “Avg. Time” 
lists the average processing time required by the pre- 
processing phase. The last columns show the success 
rate over the 40 roadmaps of connecting the configu- 
rations shown in Figure 6. 
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Table 1: Results for unbiased sampling with enhancement. 

Nodes 
N M  

800 400 
1000 500 
1200 600 
1400 700 
1600 800 
1800 900 
2000 1000 
2200 1100 
2400 1200 
2600 1300 
3000 1500 

Nodes 
N M  

800 400 
. 1000 500 
1200 600 
1400 700 
1600 800 
1800 900 
2000 1000 
2200 1100 
2400 1200 
2600 1300 
3000 1500 

Number Rejected 
Self Manip Obstacle 

94367 0 43799 
116774 0 54253 
140434 0 65137 
163250 0 75763 
185751 0 86218 
209249 0 97039 
232937 0 108022 
256321 0 118841 
279882 0 129942 
302125 0 140305 
347880 0 161483 

Avg. 
Size 
911 
1253 
1584 
1916 
2240 
2534 
2862 
3144 
3456 
3747 
4359 

Avg. 
Comps 

59 
52 
48 
43 
42 
40 
37 
35 
34 
32 
31 

Avg 
Time 
9.604 
12.978 
16.559 
20.338 
24.157 
28.108 
32.126 
36.323 
40.626 
44.903 
53.779 

Connection success rate (%) 

100 63 60 60 60 100 65 58 
100 78 78 78 78 100 78 78 
100 88 88 88 90 100 88 88 
100 98 90 98 93 100 98 90 
100 98 100 98 100 100 98 100 
100 100 98 100 98 100 100 98 
100 100 100 100 100 100 100 100 
100 100 100 100 100 100 100 100 
100 100 100 100 100 100 100 100 
100 100 100 100 100 100 100 100 
100 100 100 100 100 100 100 100 

c1 cz c3 c4 c.5 c6 c7 CE 

Table 2: Results for sampling biased toward high manipulability with enhancement. 

Number Rejected 
Self Manip- Obstacle 

157374 82433 32451 
195695 
236037 
275244 
315373 
354719 
391648 
431421 
470227 
511244 
588644 

102337 
123329 
143893 
164900 
185277 
204513 
225607 
245733 
267431 
307629 

40384 
48690 
56812 
65038 
73182 
80872 
89066 
97018 
105446 
121385 

Avg. Avg. Avg 
Size Comps Time 
881 63 10.543 
1231 57 
1549 52 
1854 50 
2175 45 
2520 45 
2816 41 
3123 39 
3441 36 
3760 35 
4359 34 

5 Discussion and Conclusions 
We begin by noting that some of our results in Table 1 
are slightly better than those originally reported in [9]. 
This can be attributed to improvements in computing 
power since those early results were published, 

It can be seen in Tables 2, 3, 5 and 6 that our new 
approach is significantly more selective than unbiased 
approaches. Our mauipulability-based rejection crite- 
rion rejects 2 to 3 times the number of nodes as are 
rejected due to collision with obstacles. Thus, one 
can see from these tables the trade-off between effi- 
cacy in node selection and the amount of computation 
required to construct the PRM. 

By comparing Tables 1 and 6, it can be seen that 
using manipulability-biased sampling without enhance- 
ment produces PRMs that are nearly as effective as 
those that are produced by unbiased sampling with 
enhancement. This indicates that it may be possible 
to drive PRM enhancement using primarily intrinsic 
properties of the robot arm, as opposed to properties 
that are specific to the obstacles in a given workspace. 
This opens the door for new representations that can 

. 

14.159 
17.915 
21.877 
25.822 
30.074 
33.991 
38.417 
42.782 
47.204 
55.602 

Cl 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 

Connection success rate (%I 
Ca 
38 
63 
75 
85 
88 
100 
95 
98 
100 
100 
100 

CS 
35 
70 
80 
85 
93 
98 
98 
100 
100 
100 
100 

-- c4 
35 
60 
75 
83 
88 
100 
95 
98 
100 
100 
100 

cs 
35 
70 
90 
85 
93 
98 
98 
100 
100 
100 
100 

C6 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 

C7 
40 
60 
75 
83 
88 
100 
95 
98 
100 
100 
100 

& 
35 
68 
80 
85 
95 
98 
98 
100 
100 
100 
100 

be constructed for arbitrary workspaces, as in some of 
our related work 115, 141. 

Based on these results, we believe that our new ap- 
proach to biased sampling can play a useful role in the 
construction of PRMs for many path planning appli- 
cations. 
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Table 3: Results for sampling biased toward low manipulability with enhancement. 

Nodes 
N M  

800 400 
1000 500 
1200 600 
1400 700 
1600 800 
1800 900 
2000 1000 
2200 1100 
2400 1200 
2600 1300 
3000 1500 

Nodes 
N M  

1200 0 
1500 0 
1800 0 
2100 0 
2400 0 
2700 0 
3000 0 
3300 0 
3600 0 
3900 0 
4500 0 

Number Rejected . 
Self Manip Obstacle 

228219 96440 58891 
287113 121424 74035 
341759 144396 88094 
403436 170477 103999 
460660 194606 118832 
520620 219997 134298 
576715 243793 148752 
633438 267774 163294 
688248 290849 177390 
746051 315498 192478 
863813 365067 222769 

Avg. 
Size 
970 
1366 
1651 
1955 
2275 
2567 
2868 
3156 
3463 
3758 
4348 

Avg. 
Comps 

43 
37 
36 
36 
33 
31 
28 
28 
27 
25 
25 

Avg 
Time 
10.793 
14.509 
18.473 
22.697 
26.885 
31.233 
35.729 
40.162 
44.795 
49.453 
59.231 

Cl 
98 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 

Connection success rate (%) 

75 85 75 85 100 75 
95 98 95 98 100 95 
95 98 95 98 100 95 
95 100 95 100 100 95 
100 100 100 100 100 100 
100 100 100 100 100 100 
100 100 100 100 100 100 
100 100 100 100 100 100 
100 100 100 100 100 100 
100 100 100 100 100 100 
100 100 100 100 100 100 

c2 C S  c4 c5 c6 c? 

Table 4 Results for unbiased sampling without enhancement. 
Number Rejected 

Self Manip Obstacle 
139751 0 64889 
174232 0 80865 
210632 0 97676 
244919 0 113780 
279583 0 129809 
314987 0 146154 
348680 0 161858 
384748 0 178657 
419583 0 194684 
455130 0 211280 
527326 0 244786 

Avg. Avg. Avg 
Size Comps Time 
680 168 8.762 
966 167 
1269 175 
1595 177 
1944 1 76 
2207 180 
2622 186 
2902 185 
3226 187 
3569 192 
4201 194 
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100 
100 
100 
100 
100 
100 
100 
100 

Connection success rate (%) 
(32 CS c4 c5 c6 c7 
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40 48 40 45 100 40 
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88 98 88 98 100 88 
95 98 95 98 100 95 
100 100 100 100 100 100 

85 
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Table 5: Results for sampling biased toward higher manipulability without enhancement. 
Nodes 
N M  

1200 0 
1500 0 
1800 0 
2100 0 
2400 0 
2700 0 
3000 0 
3300 0 
3600 0 
3900 0 
4500 0 

Nodes 
N M  

1200 0 
1500 0 
1800 0 
2100 0 
2400 0 
2700 0 
3000 0 
3300 0 
3600 0 
3900 0 
4500 0 

Number Rejected 
Self Manip Obstacle 

235671 123258 48577 
293136 153299 60512 
353514 184734 72905 
412814 215555 85175 
468641 244993 96665 
531315 277513 109491 
590763 308767 121869 
646986 338165 133384 
705373 368756 145486 
767938 401333 158583 
882189 461151 181934 

Avg. 
Size 
809 
1055 
1285 
1556 
1855 
2109 
2434 
2691 
3075 
3329 
401 1 

- 
Avg. 

Comps 
178 
182 
186 
189 
197 
198 
199 
207 
204 
206 
212 

Avg 
Time 
10.104 
13.590 
17.139 
20.905 
24.682 
28.737 
32.658 
36.673 
40.932 
45.224 
54.159 

c1 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 

Connection success rate (%) 

3 5 0 0 1 0 0  0 
c2 c3 c4 CJ (76 c7 

3 15 3 13 100 3 
8 10 5 13 100 5 
23 15 20 18 100 20 
40 28 40 35 100 40 
35 38 35 38 100 35 
53 48 53 48 100 55 
50 50 -50 53 100 50 
65 73 65 78 100 65 
73 60 73 58 98 73 
88 70 88 70 100 88 

Table 6: Results for sampling bias toward lower manipulability without enhancement. 
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Self 

342290 
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599852 
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1291941 

mber Rejected 
Manip Obstacle 
144614 88228 
181626 110792 
217943 132974 
253770 154705 
290852 177466 
326285 199132 
364893 222513 
399917 243895 
436321 266026 
473301 288500 
546276 333038 
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Avg. Avg. 
Size Comps 
605 136 
913 135 
1367 142 
1647 148 
2085 150 
2472 152 
2709 156 
3092 157 
3385 159 
3678 163 
4258 170 

of Robotics, 
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Time 
10.558 
14.482 
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5 
13 
10 
18 
30 
38 
48 
53 
73 
60 
70 

Connection success rate (%) 

93 48 63 48 63 80 48 63 
98 65 83 65 83 98 65 83 
100 68 85 68 85 98 68 85 
100 85 95 85 95 100 85 95 
100 98 98 98 98 100 98 98 
100 90 100 90 100 100 90 100 
100 100 100 100 100 100 100 100 
100 100 100 100 100 100 100 100 
100 100 100 100 100 100 100 100 
100 100 100 100 100 100 100 100 
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