
2008 8th IEEE-RAS International Conference on Humanoid Robots
December 1 -- 3, 2008 / Daejeon, Korea WP2-23

An Improved Hierarchical Motion Planner for
Humanoid Robots

Salvatore Candido \ Yong-Tae Kim 2, Seth Hutchinson 1

1 University of Illinois at Urbana-Champaign, USA candido@illinois.edu, seth@illinois.edu

2Hankyong National University, South Korea ytkim@hknu.ac.kr

B. Motion Primitives

We consider a motion primitive to be a control policy that
when activated at time t from a configuration with a specific
initial shape, s(t) == Si, takes the system to a configuration
with a corresponding specific final shape, s(t+T) == sf' after T
seconds have elapsed. Essentially, a motion primitive encodes
a repeatable pattern of motion that the robot can perform any
time its shape is Si' For example a motion primitive might be
the motion associated with a single step.

The robot is assumed to be a collection of rigid links whose
positions and orientations, relative to one another, are defined
by the positions of the joints linking them together. The set
Ai denotes the set of points in the world occupied by the i th

link.
A configuration of the humanoid (or bipedal) robot is a

complete specification of every point on the robot [2]. We
denote the location of a coordinate frame rigidly attached to
the robot in an arbitrary but defined place by x E 8E(3). This
coordinate frame specifies a transformation between a fixed
world coordinate frame and a specific link of the robot. The
robot's shape s is an ordered list of all the joint positions of
the internal degrees of freedom of the robot. We parameterize
the configuration with the following representation:

A configuration, q E Q, encapsulates the shape of the robot
and its position and orientation in the workspace. The notation
Q refers to the configuration space, which is the set of all pos
sible configurations. A parametrization of the configuration,
when combined with a specification of the geometry of each
link Ai can be used to uniquely determine the coordinates of
every point on the robot. Commonly, the configuration space
of a bipedal robot is Q == SE(3) x Tm where Tm is the
m-dimensional torus. This refers to a robot with m revolute
and no prismatic joints. This could correspond to a robot built
from m servo motors.

The robot's state is the information necessary to characterize
the dynamics of the robot. It consists of the robot's configu
ration and the first time derivative of the configuration. The
derivative is specified by scalar values for position and each
internal degree of freedom and a matrix belonging to the Lie
Algebra of 3 x 3 skew symmetric matrices of 80(3) [3].

Abstract-In our previous work [1], we proposed a hierarchical
planner for bipedal and humanoid robots navigating complex
environments based on a motion primitives framework. In this
paper, we extend and improve that planner by proposing a
different approach for the global and subgoal components of
our planner. We continue to use a workspace decomposition that
consists of a passage map, obstacle map, gradient map, and local
map. We verify our approach using both simulation results and
experimentally on a mechanical humanoid system.

I. INTRODUCTION

Motion planning for humanoid robots is computationally
expensive due to the high dimensionality of the robots' con
figuration spaces and the complexity of the environments in
which they operate. In our previous work [1], we discussed
a workspace decomposition and accompanying hierarchical
planner for bipedal and humanoid robots based on a motion
primitives framework. In summary, the hierarchical planner
worked by planning a route through a two-dimensional map,
generated by the workspace decomposition, using a classical
motion planning algorithm. Subsequent levels of planning then
attempted to construct a sequence of motion primitives to
realize that path. This technique worked in some simulations
but had some modes of failure. The problem centered on the
fact that once a high level plan was generated, there was no
mechanism by which to change it if lower levels of the planner
could not find a sequence of motion primitives. Because of
the greedy nature of the planning technique, we refer to this
algorithm as the Greedy Hierarchical Planner (GHP).

In this paper, we propose an algorithm which overcomes
some of the deficiencies of the GHP. We build a connectivity
graph of the workspace decomposition and store it in a data
structure. Querying this data structure gives us additional
flexibility when planning sequences primitives. Furthermore, if
no sequence of motion primitives can be found corresponding
to a given path path through the connectivity graph, this
approach can replan for another path through the graph. We
refer to this algorithm as the Dijkstra Hierarchical Planner
(DHP) due to the type of search used to plan paths through
the connectivity graph of the workspace decomposition.

A. Robot Model

The robot's shape s is an ordered list of all the joint
positions of the internal degrees of freedom of the robot.

q=(x,s) (1)

654 978-1-4244-2822-9/08/$25.00 ©2008 IEEE

The generation and use of motion primitives has been
demonstrated in [4], [5], [6]. The planning algorithm requires
only specific parameters of each motion primitive to compute
the sequence of motion primitives to be used to navigate
the environment. Thus, each primitive is parametrized by the
following set:

P == (x, Si, Sf, C, 7, V) (2)

The net displacement of the robot's root frame in SE(3)
during execution of the motion primitive is x. The initial and
final shapes the robot will take while executing the motion
primitive are Si and sf. The cost of executing this primitive is
c. The amount of time the robot takes to execute the motion
primitive is 7. A bounding volume V contains the swept
volume the robot moves through while executing this motion
primitive. The cost can be based upon a combination of time,
energy, risk (potential instability), and general desirability of
a given motion.

The swept volume is the union of the set of all points
on the robot at every instant of time during execution of
the primitive. The bounding volume V is either the swept
volume or a superset of the swept volume, and is used for
fast collision checking. As the motion primitive produces a
repeatable motion, the bounding volume can be precomputed
and stored by the path planning algorithm. By placing the
bounding volume at the location of the robot in the workspace,
the path planning algorithm can quickly check for collisions
with workspace obstacles without calculating any motions of
the robot or recomputing the location of the robot's links while
executing those motions.

In practice, V could be the swept volume [7], an approxi
mate bounding volume [8], a bounding box, or an axis-aligned
bounding box. Each one of these has trade-offs between
computational expense and precision of the approximation. A
swept volume is difficult to construct and testing for collisions
against polygonal meshes may require a lot of computational
operations, but the collision checking is exact. In contrast, an
axis-aligned bounding box is simple to construct and testing
for collisions is trivial. However, in many cases, too many
potential collisions are reported where the robot would actually
be far from any obstacle because the bounding volume is an
overly conservative approximation. Requiring V only to bound
the swept volume, in practice, allows an approximation that is
arbitrarily close to the actual swept volume, although a high
degree of precision is often unnecessary.

Use of motion primitives can be thought of as restricting
the trajectories allowed in a continuous planning problem to
tum it into a discrete problem with a finite action set. This
defines a discrete transition function

(3)

where qf == (xf, sf)' qi == (Xi, Si) and xf == Xi . X where
X E SE(3) is a constant transformation that is a parameter
of P. A sequence of motion primitives is denoted as 'Y ==
(PI, P2 , ... PK). By iteratively expressing the configuration
using Equation (3) as each Pi is applied after Pi-I, the final

configuration after applying the motion primitives of 'Y at qi

can be found. Thus, the transition function can also be defined
for sequences of motion primitives

(4)

where xf == Xi . Xl . X2 ... XK and Xk is the X parameter of

Pk ·

C. Environment

A walking or humanoid robot operates in a workspace that
is a subset of ~3. We assume the floor to be mostly on a
plane perpendicular to the gravity vector. Obstacles, ramps
and holes in the floor may be sparsely scattered throughout the
environment. Obstacles are assumed to have steep side walls.
Basically, these assumptions correspond to typical indoor
environments.

The motion planning algorithm is assumed to have a three
dimensional polygonal map of the robot's workspace denoted
as W C ~3. This will be stored as a triangle mesh of the
environment for collision checking against a simulation model
of the robot. It is assumed that information about the height
of the floor (or obstacles sitting on the floor), height of the
ceiling, and orientation of the floor can be easily extracted
from this map.

D. Problem Statement

The task of the motion planning algorithm is to find a
sequence of motion primitives that, when applied, move the
robot from a given initial configuration, qinit, to a configura
tion in a desired goal region, Qgoal C Q. The set Qgoal will
correspond to the robot's body-attached frame being in some
region in the workspace, Bgoal C SE(3), and the robot being
able to maintain that position. Thus, every q == (x, s) E Qgoal

will have the properties that X E Bgoal and S is at an
equilibrium. Given qinit, Bgoal, the model of the robot A,
a set of motion primitives P, and a model of the environment
W, the goal of the motion planner is to find a sequence of
motion primitives 'Y that satisfies the following conditions:

1) f(qinit,'Y) E Qgoal.

2) The bounding volume V of Pk is not in collision with
any obstacles when placed at f(qinit, 'Y).

3) For all Pk in 'Y, Si of Pk is the same as Sf of Pk - l and
Sl == Sinit·

4) The foot contact orientation of Si and sf of Pk match
the support surface at qi and f(qi' Pk), respectively.

Furthermore, the planner should seek to minimize the cost of
the path, the sum of the costs of each primitive in the sequence.

E. Previous Work

Much research has been done on generating motion primi
tives and a number of approaches are commonly taken. Gaits
are generated manually in some cases by a human designer's
intuition or by using motion capture to directly mimic human
motion [9]. Computer algorithms such as neural networks,
fuzzy logic, learning, and genetic algorithms can also be used
to find gait trajectories for the robot [10], [11]. Control policies

655

based on the robot's zero moment point [12], [4] are common
examples of using feedback to stabilize the robot and generate
motion primitives. By looking at and controlling indicators
of system behavior such as the center of mass, center of
pressure, or zero moment point, controls are designed that
produce (typically) statically stable gaits. Other interesting
methods based on the tools of nonlinear control are virtual
model control [13] and hybrid zero dynamics [14]. An energy
efficient approach to biped locomotion derived from the anal
ysis of passive walking devices [15] combines the principles
of passive walking together with controlled feedback [16]. In
[16], a nonlinear control is used that replicates the principle
of passive walking down an incline on arbitrary ground slope.
These methods have been shown to be more efficient than
strict trajectory tracking methods and it has been conjectured
that this approach models the behavior of humans and animals
(e.g., [17]).

Some approaches other than own are also based on a
simplification of the humanoid motion planning model. Path
planning for a humanoid robot on flat ground can be consid
ered as a search for a sequence of feasible motion primitives
rather than a search of a high dimensional configuration space
for a trajectory [5], [6]. A search algorithm can, in many
cases, quickly find a sequence of motions to take the robot to
its destination. However, a search will require exponentially
more checks as the number of motion primitives in that path
increases. In environments with obstacles, stairs, inclines, and
holes, the motions of humanoids are constrained by more than
just placements of the robot on the plane. A large set of motion
primitives is required to traverse these environments. An A*
search or forward dynamic programming algorithm may take
considerable time to compute a sequence of motion primitives
or the problem may become computationally intractable. Some
hierarchical planning approaches have been applied to control
the growth of complexity and find an approximate solution to
this problem [18], [19], [20].

II. PLANNING ALGORITHM

We propose a hierarchical algorithm consisting of a global
plan, subgoal (or waypoint) plan, and local plans. A decom
position of the three-dimensional workspace is encoded into a
set of two-dimensional maps and the higher level layers of the
algorithm build heuristics that guide a series of A* searches
that are small enough to compute quickly.

The higher levels of planning are conducted in]R2 and
SE(2) but the local plan is made in SE(3) with a discrete set
of motion primitives that limit the movements of the robot.
Local plans must be made in sequence as the initial position
for a given local path depends on where in the subgoal region
the previous local plan left the robot.

In our previous work, our global planner used a classi
cal motion planning algorithm to overlay a path over our
workspace decomposition. Then, our subgoal and local plan
ners used the workspace decomposition, the overlayed global
path, and a model of the environment to transform that
decomposition into a feasible sequence of motion primitives.

656

In the algorithm we propose in this paper, the global planner
builds a data structure from our workspace decomposition that
represents the connectivity of adjacent regions of space that
the robot can traverse. This is done as preprocessing. Then,
either as preprocessing or online, the subgoal planner searches
this data structure for a path to the goal and passes the next
subgoal to the local planner.

A. Workspace Decomposition

We have discussed the construction of a workspace decom
position for the GHP in [1]. The same decomposition will be
used here and we summarize the procedure for constructing
it.

The motion planner is given as input a three-dimensional
polygonal mesh modeling the robot's workspace. From this
model, the height of the floor (or obstacles sitting on the
floor), height of the ceiling and orientation of the floor is
extracted into a set of two-dimensional maps. This is called
a 2.S-dimensional representation of the workspace [21] and
can be used to simplify computation by providing pertinent
information in an easily accessible data structure. The two
dimensional floor height map is referred to as M j , and
Mj(i,j) refers to the element of the grid M j , at location
(i, j), which stores a rational number. Using the resolution
of the grid and a knowledge of where the world coordinate
frame projects onto a the grid, i and j can be converted to
x and y, the projection of the robot's body-attached frame
on the support surface in the world frame in 0(1) time. Thus,
Mf(i,j) stores the height of the support surface or an obstacle
sitting on the floor at (x, y). Similarly, Me, M4>' and M'l/J store
the height of ceiling and the orientation of the support surface
with respect to the gravity vector. The maps M¢ and Mt/J store
the angle made between the support surfaces and the x and y
axes, respectively.

The robot can only move through regions where the free
space between the ceiling and floor is larger than a constant
kp that is related to the robot's height and the clearance that
is desired above the robot. The occluded passage map M p

is generated by checking that the difference between ceiling
and floor height is greater than kp • Rather than storing a
rational number at each (i, j), M p stores a Boolean value
corresponding to whether or not the robot could stand at (x, y).
Some obstacles have sufficient clearance above to allow the
robot to stand on top of them, but they are tall enough that the
robot has no motion primitives to place itself on top of that
obstacle. If the maximum height difference between any point
(x, y) and any other point belonging a fixed neighborhood of
(x, y) is greater than the constant ko ' then the point is on
the edge of a tall obstacle. The value of ko is chosen with
respect to the capabilities of the robot and the set of motion
primitives with which it is equipped. For example, if using a
set of motion primitives where the maximum height the robot
can step onto an obstacle is one foot, ko should be chosen
equal to a foot. If an edge is taller than ko with respect to its
neighboring environment, then the robot will have no chance
of stepping on top of it, and (x, y) is flagged in what is called

the obstacle map M o as a constraint on motion. Also, if the
change of orientation of the floor is greater than a different
constant kf' the robot for similar reasons should not attempt
to step over that discontinuity, and these areas will also be
flagged in the navigation map.

The navigation map M nav is computed by combining the
occluded passage map and obstacle map. The free workspace
of this map is the set of candidate locations for a path for
the robot. This map can be computed with a running time
of 0 (w2) where w corresponds to the maximum number of
grid cells in either the i or j direction of the map. The terrain
discontinuity map, denoted M d , is the map that will be used to
choose subgoals for the robot's path. The terrain discontinuity
map is constructed by a similar procedure to the navigation
map choosing ko == kf == O. Any discontinuous change in
floor height or orientation will be flagged. The robot cannot
step on, but can step over, some of the edges in the terrain
discontinuity map. For explicit algorithms to compute M nav
and M d see [22].

B. Global Planner

The objective of the global planner is to create a workspace
decomposition that separates the free space of the terrain
discontinuity map M d into a set of regions and represents
the ability of the robot to move between these regions in a
graph structure. This workspace decomposition is used by the
subgoal planner to find a route through the workspace and
subgoals for the local planner to use as heuristics.

The first task of the global planner is to build M d , the terrain
discontinuity map. Once Md is built, the planner partitions it
into a set of disjoint regions. It would be desirable for all
regions to be convex so planning within a region is simple.
The individual regions of the decomposition are chosen as
the maximal sets of adjacent grid cells in the free space of
M d (where there is no terrain discontinuity). Because the
free regions of M d are not necessarily convex, a trapezoidal
decomposition [2] is performed on all regions that are not
convex. Examples of this process can be seen in the simulation
results.

The representation of the regions of M d is stored as a set
of polygons. The union of this set of polygons covers the
entire two-dimensional projection of the workspace. Since the
robot and Qgoal are always in the workspace, the regions onto
which the robot's position and Qgoal project are determined
by checking those projections against all polygons.

A connectivity graph, denoted g, is built from this represen
tation. A vertex in 9 represents a region in the decomposition
Md. Each vertex stores the polygon surrounding its region in
the decomposition. An edge represents the robot's ability to
move between adjacent regions of the graph using a given
motion primitive. This means 9 is necessarily directed and
multiple edges (directed in the same way) may exist between
vertices.

The connectivity graph is initialized with an edge between
every two vertices that share a common border in the de
composition of Md. The set of motion primitives is then be

Algorithm 1: Subgoal Planner

Input: g, qi' Qgoal

Output: 8 i or failure
Vinit f- vertex of 9 containing projection of qi;
Vgoal f- vertex of 9 containing projection of Qgoal;

Cost(Vinit) == 0;
forall v i= Vinit do
LCost (Vinit) == 00;

Run Dijkstra's Algorithm from Vinit to Vgoal, Q is a set
of vertices;
Q f- {Vinit};

while IQI > 0 do
v f- argmin Cost (v') ;

v'EQ
Qf-Q-{v};
if v == Vgoal then break;
forall (v', e) E Neighbors(v) do

l
if Cost(v) + Cost(v, v', e) < Cost(v') then

lCost (v') f- Cost (v) + Cost (V, v' , e);
v'.Path f- (v.Path, e);
Q f- Q U {v'};

Dijkstra fails or returns Vgoal with a sequence of edges,
(eI, e2," ·eg) leading from Vinit to Vgoal;

if Dijkstra fails then
L Return failure.;

else
L Return B1 stored on e1 in v.Path;

checked to see if one or more motion primitives exist to
transition from one region to another. If there is no such
motion primitive, the edge is deleted, and the robot will
not attempt to transition between these two regions in the
workspace decomposition. If a motion primitive is found to
facilitate the transition, the edge is retained and augmented
with a reference to the motion primitive used to transition
into the adjacent region, the cost of performing this transition
and the subgoal region, Bi C SE(3), to which the robot's
configuration must belong to make the transition. Additional
edges are added if more than one motion primitive can be used
to move between two regions.

For the edges representing transitions between regions that
composed a larger region and that were split during trapezoidal
decomposition, transitions do not correspond to a physical
obstruction in the workspace. A large subgoal region is used,
and a designation is given to the edge to mark that any motion
primitive that could be used on the support surface containing
this edge will be acceptable to make the transition between
regions. Also, a transition cost of zero is given to this edge.
Once this processing is complete, 9 is stored and passed to
the subgoal planner.

C. Subgoal Planner

The task of the subgoal planner is to find a path through
9 between the vertex of 9 containing the projection of the

657

current configuration qi and the vertex of 9 containing the
project of the goal region, Qgoal. The algorithm used by the
subgoal planner is given by Algorithm 1.

First, the subgoal planner must determine the regions of
the workspace decomposition to which qi and Qgoal belong.
This is done by projecting the body-attached frame of the
robot at those configurations onto the two-dimensional map
and searching through the regions stored in the vertices of g.
From the vertex representing the region that contains the initial
configuration of the robot, Vinit, Algorithm 1 performs a graph
search. Algorithm 1 is a version of Dijkstra's algorithm [23]
modified for the specific purpose of the subgoal planner.

The cost of the edges, the cost of transitioning between
regions, plus the Euclidean distance between the centroids
of the regions corresponding to a path through 9 is used
to measure the cost of a given path through the graph. In
Algorithm 1, the function Cost(v) refers to the cost labeled
on the vertex, v. The function Cost(v, v' , e) refers to the cost
to get from vertex v to v' using the transition specified bye,
the Euclidean distance between the centroids of v and v' plus
a penalty stored on on e. The cost penalties on the edges are
used to penalize certain transitions that are not desirable. For
example, stepping onto a tall ledge costs more than a stepping
down from a small ledge. Transitions between regions where
the boundary is artificial, regions that were split to satisfy the
convexity requirement, are given zero cost. More sophisticated
cost functions could be used to measure the quality of paths
through the graph but, in simulation, this simple one has given
desirable results. In Algorithm 1, each vertice is augmented
with a sequence of edges to traverse from Vinit to v before
being placed in the queue. This is referred to as v.Path. Once
v == vgoal, the loop terminates and v stores a path from Vinit

to Vgoal.

Once a path through 9 is found, (e1' e2, ... el), the subgoal
planner passes the subgoal region of the edge corresponding
to the next region transition, 8 1 stored on e1, to the local
planner. The local planner attempts to tum the high level
transition between vertices in g, specified by e1, into a
sequence of motion primitives that allows the robot to move
to the next region. If no path through the graph can be found,
the hierarchical algorithm has exhausted all avenues through
which to find a path and the algorithm returns failure.

If Qgoal projects onto a subset of a region in the decompo
sition, a final subgoal is added once the robot enters the region
marked as Vgoal. Similarly, if Qgoal projects onto portions of
two or more regions in the decomposition, Algorithm 1 can be
modified to search for the shortest path to one of the vertices
whose region in the decomposition contain a portion of the
projection of Qgoal.

D. Local Planner

It is neither feasible nor desirable to attempt to exactly
follow the global path, as it is chosen with minimal constraints
on motion. The task of the local planner is to obtain a sequence
of motion primitives that replaces 9 between successive sub
goals. Starting at the robots current location, the goal of

658

the local planner is to find a sequence of motion primitives
such that after the final motion primitive is applied the robot
is left in the subgoal region for the next subgoal and the
robot is in an equilibrium state. Furthermore, the sequence
of motion primitives should obey constraints on ordering and
avoid causing the robot to collide with the environment.

We use the same local planner as [1]. It is essentially a
modified A* search that trims nodes from the search that
violate the dynamic constraints of or artificial constraints
imposed on the robot or that correspond to the robot colliding
with an obstacle. The difference with the previous work is
how the output of this component is treated. If the planner
succeeds in finding a path from qi to 8 i +1 and a sequence
of motion primitives is returned, then the subgoal planner is
given f (qi , '1) as the initial condition. The subgoal planner
then calculates a new sequence of subgoals that takes the robot
to the goal. This continues until the robot reaches the final 8i

in which all q have x E Bgoal.

If the local planner is unable to find a sequence of motion
primitives to reach the subgoal region, this failure is reported
to the global planner. The connectivity graph of the workspace
decomposition, g, is then augmented by removing the edge the
local planner was attempting to traverse. This new connectivity
graph is then passed to the subgoal planner and the subgoal
planner attempts to replan a new route to the goal. This
procedure continues until either the robot reaches the goal or
no path remains in the connectivity graph. In the latter case,
the hierarchical algorithm reports failure.

III. SIMULATION RESULTS

To show that DHP is able to plan routes in some cases
where GHP fails or gives an undesirable result, the subgoal
and local planners of DHP were simulated in some of the
same environments as GHP with the same simulated robot.
The data structures 9 were constructed in a principled manner
outside of the simulation environment. We found that the DHP
was, in fact, able to improve upon the results of the GHP
in some cases. Figures 1 (a), (b), and (c) show Md, Md
after the trapezoidal decomposition, and the graph transitions
chosen by DHP superimposed on Md. The red lines in (b)
indicate partitions inserted by the trapezoidal decomposition.
The resulting plan is shown in Figure 1. The DHP result
on this workspace shows the robot taking a route avoiding
both sets of stairs crossed by the robot in the GHP result in
the same workspace, improving on the result of GHP. In the
simulation run used to generate Figure 1, the subgoal plans
took an average of 0.502 ms and the local plans took an
average of 250.3 ms. Note that we report average times as
this corresponds to the average pause at subgoals if the robot
is generating the local plans as needed. The plan required a
sequence of 75 motion primitives to move the robot to the
goal.

A second example environment is shown in Figure 2 (a) and
(b) which shows M d after the trapezoidal decomposition and
the graph transitions chosen by DHP superimposed on Md. For
the same inputs GHP failed due to the global plan touching an

(b) Cells (c) Path

(d) View of Result (e) Another View of Result

Fig. 1. First Simulation Example

obstacle region in Md , but not crossing it. The resulting DHP
plan is shown in Figure 2 (c) and (d). This gives an example
of a DHP success on a workspace and input where GHP fails
to find any path. The subgoal plans took an average of 0.604
ms and the local plans took an average of 279.7 ms. This plan
required a sequence of 69 motion primitives to reach the goal.

IV. EXPERIMENTAL RESULTS

A twenty-four degree of freedom humanoid robot was
developed to verify our motion planning method in a real
environment. We implemented twenty motion primitives of
the robot including forward step, sidestep, turning in place,
angle step, step up and so on. Figure 3 (a), (b), and (c)
shows the humanoid robot, an experimental environment and
the trapezoidal decomposition of the workspace.

The snapshots of experimental results are shown in Figure 3
(d). A sequence of 105 motion primitives is required and it
takes an average of 99 seconds to move the humanoid robot
to the goal.

We found that individual execution of a motion primitive
shows the displacement error and the direction deviation
according to floor state and external disturbances. Also, we
found that a long span of motion primitives can have disastrous
effects on an open loop local plan.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we discuss an extension and improvement
of the GHP discussed in our previous paper [1]. We propose
the Dijkstra Hierarchical Planner (DHP) which although it
requires more preprocessing and computation as the algorithm

runs, in some cases improves upon the failures of the GHP.
We have shown simulation and experimental results for this
algorithm.

A. Future Work

One of the biggest assumptions implicit in this work is the
model of motion primitives. While an open loop local plan
is ideal for character animation, it is less than desirable for
actual bipedal robots. Small disturbances in the displacements
individual executions of motion primitives can have disastrous
effects over a long span of primitives concluding in stepping
up onto or down off of a ledge. These deficiencies could arise
due to unmodeled dynamics, external disturbances, modeling
and measurement errors, and noise in the system. It will be
important to develop methods to cope with some of these
deficiencies of the model of the physical system.

One approach to deal with this is to take into account
these deficiencies in the local planning phase of the algo
rithm. Guaranteeing bounds on the error or probabilistically
ensuring success quantifies the risk to the robot hardware
while allowing local plans to still be precomputed before each
segment of the local path. Another approach is to integrate
feedback into the local planning system. By having the robot
replan its path after execution of each motion primitive (or
every few motion primitives), the difference between the ideal
execution and actual execution of previous motion primitives
can be accounted for in future actions. This has been partially
explored so far in simulation. A third approach may involve
designing robust motion primitives that have guarantees on
how far they might deviate from the nominal trajectory and

659

(a) Cellular Decomposition

(c) View of Result

(b) Path

(d) AnotherView of Result

Fig. 2. Second Simulation Example

tolerances on the initial shape from which they begin.
An important variable determining the quality of paths (or

if paths can even be found) is the set of motion primitives.
However, little work has been done to characterize what a
desirable set of motion primitives would be with respect to
the environment in which the robot is designed to operate.
So far, the set of motion primitives has been chosen with
respect to specific workspace features and on a trial and error
basis. Perhaps sets of motion primitives could be characterized
as deficient or redundant with respect to an environment.
Another possibility would be to characterize how limiting a
set of motion primitives is with respect the overall motions
the robot is capable of performing. Analysis along these lines
will be important for any robot employing the motion primitive
concept as part of its movement strategy.

Finally, in order for a bipedal robot to be completely
autonomous it must be able to navigate more than just a
few workspaces. A truly autonomous robot using a motion
primitives framework will need to be able to adapt its set
of motion primitives to new environments. Combining high
level planning, such as the work presented in this paper, with
systems that allow robots to adapt current motion primitives
and learn new motion primitives will allow robots to function
in the various environments we find all around us.

660

REFERENCES

[11 Y. Kim, S. Candido, and S. Hutchinson, "A workspace decomposition
for hierarchical motion planning with humanoid robots," in Proceedings
of the IEEE International Conference on Advanced Robotics, 2007.

[2] H. Choset, K. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. Kavraki,
and S. Thrun, Principles of Robot Motion: Theory, Algorithms, and
Implementations. Cambridge, MA: MIT Press, 2005.

[3] M. Spong, S. Hutchinson, and M. Vidyasagar, Robot Modeling and
Control. Hoboken, NJ: John Wiley and Sons, 2006.

[4] K. Nagasaka, H. Inoue, and M. Inaba, "Dynamic walking pattern
generation for a humanoid robot based on optimal gradient method," in
Proceedings of the IEEE Conference on Systems, Man, and Cybernetics,
1999, pp. 908-913.

[5] J. Kuffner, K. Nishiwaki, S. Kagami, M. Inaba, and H. Inoue, "Motion
planning for humanoid robots," in Proceedings of the International
Symposium on Robotics Research, 2003, pp. 365-374.

[6] K. Hauser, T. Bretl, K. Harada, and J. Latombe, "Using motion
primitives in probabilistic sample-based planning for humanoid robots,"
in Proceedings of the Workshop on the Algorithmic Foundations of
Robotics, 2006.

[7] E. Larsen, S. Gottschalk, M. Lin, and D. Manocha, "Fast proximity
queries with swept sphere volumes," in Proceedings of the IEEE
Conference on Robotics and Automation, 1999, pp. 3719-3726.

[8] 1. Klosowski, M. Held, 1. Mitchell, H. Sowizral. and K. Zikan, "Efficient
co]]ision detection using bounding volume hierarchies of k-dops," IEEE
Transactions on Visualization and Computer Graphics, vol. 4, no. 1, pp.
21-36, 1998.

[9] M. Choi, 1. Lee, and S. Shin, "Planning biped locomotion using
motion capture data and probabilistic roadmaps," ACM Transactions on
Graphics, vol. 22, no. 2, pp. 182-203, 2003.

[10] D. Katie and M. Vukobratovie, "Survey of intelligent control techniques
for humanoid robots," Journal of Intelligent and Robotic Systems,
vol. 37, no. 2, pp. 117-141,2003.

[] 1] M. Cheng and C. Lin, "Genetic algorithm for control design of biped
locomotion," International Journal of Robotic Systems, vol.]4, no. 5,
pp. 365-373, 1997.

------------------ ~_~; ~~;; ~ ~-~;~ ~;~D: :---

-- -L..,-~L.-----L

Fig. 3. Humanoid Robot, Experimental Environment, and Snapshots of Experimental Results

[12] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Yokoi, and
H. Hirukawa, "A realtime pattern generator for biped walking," in
Proceedin~s of the IEEE Conference on Robotics and Automation, 2002.

[13] J. Pratt, C. Chew, A. Torres, P. Dilworth, and G. Pratt, "Virtual model
control: An intuitive approach for bipedal locomotion," lnternational
Journal of Robotics Research, vol. 20, no. 2, p. 129, 2001.

[14] E. Westervelt, 1. Grizzle, and D. Koditschek, "Hybrid zero dynamics of
planar biped walkers;' IF,F,F, Transactions on Automatic Control, vol. 48,
no. 1, pp. 42-56, 2003.

[15] T. McGeer, "Passive dynamic walking," lnternational Journal (~l

Rohotics Research, vol. 9, no. 2, pp. 62-82, 1990.
[16] M. Spong and F. Bullo, "Controlled symmetries and passive walking,"

IEEE Transactions on Automatic Control, vol. 50, no. 7, pp. 1025-1031,
2005.

[17] S. Collins, A. Ruina, R. Tedrake, and M. Wisse, "Efficient bipedal robots
based on passive-dynamic walkers;' Science, vol. 307, no. 5712, pp.
1082-1085, 2005.

[18] J. Chestnutt and 1. Kuffner, "A tiered planning strategy for biped
navigation," in Proceedings of the IEEE/RAS Conference on Humanoid
Robots. 2004, pp. 422-436.

[19] T. Li, P. Chen, and P. Huang, "Motion planning for humanoid walking
in a layered environment," in Proceedings of the IEEE Conference on
Robotics and Automation, 2003, pp. 3421-3427.

[20] 1. Gutmann, M. Fukuchi, and M. Fujita, "A modular architecture for hu
manoid robot navigation," in Proceedings of the IEEE/RAS C01~ference

on Humanoid Robots. 2005, pp. 26-31.
[21] --. "Real-time path planning for humanoid robot navigation." in Pro

ceedings of the International Joint Conference on Artificial Intelligence.
2005, pp. 1232-1237.

[22] S. Candido, "Motion planning for bipedal walking robots." Master's
thesis, University of Illinois at Urbana-Champaign, 2007.

[23] T. Cormen, C. Leiserson, R. Rivest, and C. Stein, Introduction to

Algorithm\', 2nd ed. Cambridge, MA: MIT Press/McGraw-Hill, 2001.

661

