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In model based object recognition, the primary objective is to 
effrciently match features which have been extracted from sensory data to 
corresponding features in object models; this being done with the constraint 
that relations between the features in the object models are m'rrored by the 
relations between the features extracted from the sensory data. A problem 
which confronts this process is the dificulty in extracting features and rela- 
tions from sensed data, and precisely determining the values of their 
relevant attributes. Furthermore, it is o fen  the case that the features which 
are visible from a single viewpoint are not sufficient to uniquely identib the 
object and its pose. In each of these cases, a system is needed which can 
formulate and associate credibilities with hypotheses about the possible 
ia'entities and poses of the objects in the scene. 

This paper describes an architecture for reasoning with uncertainty 
about the identities of objects in a scene. The main components of this 
architecture create and assign credibility to object hypotheses based on 
feature match, object. relational , and aspect consistencies. We use the 
Dempster-Shafer formalism for representing uncertainty, so these credibili- 
ties are expressed as belieffunctions which are combined using Dempster's 
combination rule to yield the system's aggregate belief in each object 
hypothesis. One of the principal objections to the use of Dempster's rule is 
that its worst case time complexity is exponential in the size of the 
hypothesis set. We will show how the structure of the hypothesis sets 
developed by our system allow for a polynom'al time implementation of the 
combination rule. 

1. Introduction 
One of the key problems in computer vision today is that of recogniz- 

ing objects from sensory data, given a set of models for the objects which 
might be in the scene. This model based object recognition consists of 
matching features extracted from sensory data to model features, subject to 
the constraint that the relations between the features extracted from the 
sensed data mirror the relations between the corresponding model features. 
One problem that arises during this matching process is that neither the 
sensed features, nor the measured relationships between those features, will 
be perfectly accurate. A second problem is that often the features which are 
visible from a single viewpoint are not sufficient to uniquely identify the 
object. In each of these cases, we would like for the reasoning system to be 
able to formulate a set of hypotheses about the possible identities of the 
objects in a scene, and to then associate credibilities with each of those 
hypotheses. 
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In this paper, we present a reasoning architecture which formulates, 
and assigns belief values to, hypotheses about the identities of objects in a 
scene. These belief values reflect the similarity of the matched sensed and 
model features, as well as the similarity of the relations between sensed 
features and the corresponding model relations. There are two main com- 
ponents in OUT current system: a 3D vision system (which extracts features, 
attributes and relations from sensed range data), and a reasoning system 
(which formulates, and distributes belief among, hypotheses about the iden- 
tities and poses of objects). Fig. 1 shows a diagram of the vision system, 
and Fig. 2 shows the reasoning system. 

Since the focus of this paper is the application of uncertainty reason- 
ing to the problem of model based object recognition, we will not discuss 
the specifics of the vision system. We will, however, describe the part of 
the vision system which classifies surfaces according to their 3D shape (e.g. 
planar, cylindrical), and assigns confidence values to those classifications. 
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Fig. 1: Block diagram of 3D vision system. 

Fig. 2: Block diagram of reasoning system. 
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There are four main reasoning modules. The first of these creates, 
and assigns belief to, an initial set of hypotheses based on the goodness of 
matches between sensed and model features. The second module elim- 
inates hypotheses in which sensed features are matched to model features 
that are not from the same object The third module evaluates each of the 
initial hypotheses on the basis of relational consistency. The resulting 
belief values are combined with the initial belief values to create a refined 
hypothesis set, with corresponding belief values that reflect both the quality 
of the feature matches and the relational consistency of the hypotheses. 
This refined hypothesis set is then used as input to the final reasoning 
module, which assigns belief using the criterion of aspect consistency. 

The system that we have developed uses the Dempster-Shafer (DS) 
formalism for representing uncertainty [7]. The main reason for this choice 
is the concept of refinement, which allows a number of distinct frames of 
discemment (or sets of hypotheses) to be combined into a single frame (or 
hypothesis set). ?his concept forms the basis for the method that we use to 
combine individual matches of sensed and model features into object 
hypotheses. One of the primary objections to the DS theory is that the 
worst case time complexity for the implementation of Dempster's combina- 
tion rule is exponential in the size of the hypothesis set Fortunately, the 
characteristics of the hypotheses generated by our system allow for a poly- 
nomial time implementation of the combination rule. 

The remainder of the paper is organized as follows. In Section 2, we 
review some of the fundamental concepts of the Dempster-Shafer theory, 
and show how the theory is applied to our domain. In Section 3, we 
describe how features are extracted from range data, how a maximum likel- 
ihood classifier is used to assign types and confidences to the 3D shape 
attribute of surfaces, and how belief functions are derived for individual 
feature matches. Section 4 describes how individual feature matches are 
combined to produce object hypotheses, and how the belief values for the 
individual feature matches are combined to give belief in these hypotheses. 
Section 5 describes the bpa based on object consistency. In Section 6, we 
discuss relational consistency, and show how the system assigns belief 
values based on spatial relations between features. Section 7 introduces 
aspect consistency, and discusses how the corresponding belief values are 
assigned. In Section 8, we show that the structure of the hypothesis sets 
which are developed by our system allow for a polynomial time implemen- 
tation of Dempster's combination rule. In Section 9, we present some 
experimental results for ambiguous range data. Finally, in sections 10 and 
11, we address possible future research in this area, and conclude the paper. 

2. The Dempster-Shah Theory 
The reasoning process used by our system requires a formalism for 

representing beliefs in hypotheses about an object's identity and position. 
Furthermore, since these beliefs will come from a number of independent 
sources, the formalism must include a method of combining beliefs from 
distinct sources to obtain a set of aggregate beliefs. The Dempster-Shafer 
(DS) theory provides such a formalism. In this section, we will provide the 
reader with a brief introduction to the DS theory and develop a connection 
between the terminology of the DS theory and that used in the context of 
this paper. 

2.1. An Introduction to the Dempster-Sharer Theory 
In the DS theory, the set of all possible outcomes in a random experi- 

ment is called theframe of discernment (FOD), usually denoted by 8. For 
example, if we roll a die, the set of outcomes could be described by a set of 
statements of the form: "the number showing is i," where 1 5 i 5 6 ;  there- 
fore, 0 = (1.2.3.4.5.6). The 2'" subsets of 8 are called-propositions and 
the set of all the propositions is denoted by 2e. In the die example, ~e pro- 
position "the number showing is even" would be represented by the set 
(2,461. 

In the DS theory, probabilify masses are assigned to propositions, i.e., 
to subsets of 8. This is a major departure from the Bayesian formalism in 
which probability masses can be assigned only to singleton subsets (i.e. ele- 
ments) of 8. The interpretation to be given to the probability mass assigned 
to a subset of 8 is that the mass is free to move to any element of the sub- 
set. Under this interpretation, the probability mass assigned to 8 represents 
ignorance, since this mass may move to any element of the entire FOD. 
When a source of evidence assigns probability masses to the propositions 
represented by subsets of 8, the resulting function is called a basic proba- 
bility assignment @pa). Formally, a bpa is function m:2'+[0,1] where 

0.0 < mO I 1.0, m ( 0 )  = 0 and m(X) = 1.0 
XCe 

Subsets of 8 which are assigned non-zero probability mass are said to 
be focal elements of mO. The core of mO is the union of its focal elements. 

Dempster's rule of combination states that two bpa's, m 1 0  and mzO, 
corresponding to two independent sources of evidence, may be combined to 
yield a new bpa mO via 

m(x)  = K Z m i G 1 ) m A x ~ )  
x , n q = x  

where 

K-' = 1 - ml(Xl)mz(Xz) 
X , f 7 ¶ " a  

This formula is commonly called Dempster's rule or Dempster's orrhogo- 
nal sum. In this paper, we will also use the notation 

m = m l Q m z  

to represent the combination of m10 and mzO. 
Since Dempster's rule may only be applied to bpa's which have the 

same domain (i.e. bpa's which discem the same frame), if m 1 0  and mzO 
discem different frames (i.e. el&& they must be mapped to a common 
frame before they can be combined. As will be clear from the next section, 
each sensory operation will have a unique frame of discemment. There- 
fore, before beliefs in pose/identity hypotheses can be modified by combin- 
ing the results of different sensory operations, their individual frames of 
discemment must be mapped to a common frame. The process of mapping 
disparate frames of discemment to a common frame is called refining by 
Shafer and the common frame thus obtained is called a refinement. 

Refining the frames of discernment, €4' , e, ..., to a common frame, 
R, is accomplished by specifying the mapping functions: 

cy: 2'4 + 2" 

which must possess the following properties: 

q ( ( e ) ) # 0 ,  forallOE e, 
wi((e)) n q((e')) = 0, for e f e' 

U we))=n 
B E  q 

The first property says that any proposition that is discemed in 8, must also 
be discernible in R. The second property requires that the mapped proposi- 
tions in R be disjoint. Finally, the third property specifies that if R is a 
refinement of 8,. then no proposition in R be outside the range of mappings 
corresponding to the different propositions in 8,. 

To assess the belief in a proposition in R, the beliefs represented by 
miO must be mapped to beliefs in subsets of R. This is accomplished using 
the equation: 

mi'(wi(A)) = mi(A) 
where the bpa mi'O maps q o ' s  belief in a subset of €9, to belief in the 
corresponding subset of Q. 

2.2. Applying DS to Object Recognition 
In our application, an experiment consists of extracting features from 

sensory data and matching those sensed features to features of model 
objects. The possible outcomes of such an experiment are sets of possible 
matches between sensed and model features. For example, if N sensed 
features, S1 . . . SN. have been extracted, the possible outcomes are of the 
form: 

ei = ( s 1 / ~ 1 ~ & / & ~  ' '  ' SN/fNI 

where the jth element of e, indicates @at the sensed feature Sj is matched to 
model feature f ; .  In other words, fj denotes the model feature which is 
matched to sensed feature Sj in object hypothesis 0,. For example, if two 
edges have been found, S 1  and S2, the following represent object 
hypotheses: 

el = [Sl/l,S2/2], ez = (Sl/a,S2/b) 
The hypothesis el indicates that sensed edge S1 is matched to model edge 1 
and that sensed edge S2 is matched to model edge 2. The hypothesis Oz 
indicates that sensed edge SI is matched to model edge a and that sensed 
edge S2 is matched to model edge b. 

In our system, such a set of feature matches defines an object 
hypothesis. This representation for an object hypothesis is explicit about 
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the identity of the object -- the model features matched in the hypothesis 
must belong to the object -- and is implicit about the pose of the object, 
assuming of course that the hypothesis contains a sufficient number of 
feature matches to estimate the pose (this will be discussed in Section 6). 

A frame of discernment will be the set of all possible object 
hypotheses for a particular set of sensed features. 

e=(el,ez,...l 
Clearly, if there is only a single sensed feature, say s k .  the frame of discem- 
ment reduces to 

e= ( [ s k / f ~ ] ~ ( s k / f ~ l  ” ’  (sk/cll 
where each element of 8 indicates a possible match of sensed feature Sk to 
some model feature fi.  In the case of a single sensed feature, we simplify 
this notation to the form 

To illustrate, consider the cube shown in Fig. 3a, which has two faces 
with large holes, and a third face with a small hole (we will assume that the 
remaining faces have no holes). Suppose that two sensed features, SI  and 
Sz are found, as shown in Fig. 3b. In this case, for sensed feature S1 we 
might assign the bpa ml 0 as: 

m,((S,/a]) = 0.7 

ml((Sllb,Sl/cl) = 0.3 

mz((Sda1) = 0.2 
m2([S2/b,S2/c]) = 0.8 

and for Sz, the bpa mzO as: 

based on the similarity between the sensed and model faces. 
In order to combine the evidences generated by these two measure- 

ments, we first construct a refinement of the two frames discemed by ml 0 
and m20. The following is a valid refinement which obeys the above three 
properties: 

= [ [Sl/a, Sz/a), [Sda, Sfi), ( S h  Sdc], 

(Sib, Sz/a], (Sllb, S ~ l b l ,  ( S A  Sdcl ,  

(Sl/c, Sdal ,  (Sl/c, Sz/bl, (Sl/c. Sdcl 1 
Note that some of the elements in this frame are nonsensical, for 

example, those which assign distinct sensed features to the same model 
feature. In Section 5 we will describe how object consistency is used to 
eliminate such propositions from -. %me (by assigning zero belief to the 
proposition). 

Fig. 3: Object model of cube with holes in three sides (a), and two features 
extracted from sensed data (b). 

3. Evaluating Feature Matches 
In this section of the paper, we will discuss how bpa’s are associated 

with individual matches between sensed and model features. First we give 
an overview of the range data processing that is used to extract features 
from the sensed data. We then discuss the maximum likelihood classifier 
which the system uses to make 3D shape hypotheses for surfaces, and to 
associate confidence values with those hypotheses. Finally, we discuss how 
the bpa’s are derived which represent the system’s belief in matches 
between sensed and model features. 

3.1. Overview of Range Interpretation Steps 
The tint step in assigning belief to feature matches is the extraction 

of features from sensed data. This proceeds as follows. First, the scene is 
scanned by a range sensor to obtain a range map. Window convolutions are 
then performed on this range map to produce a surface normal map and a 
curvature map, as described in 191. Entries in the surface normal map are 
vectors describing the local surface normal at the corresponding points in 
the range map. The curvature map contains the values of the mean and 
Gaussian curvature for each point in the range map. 

The range, surface normal, and curvature values are then examined in 
the neighborhood of each point to identify edge points, as described in [2]. 
Once edge points have been identified, the remaining points are grouped 
into contiguous regions, which correspond to the surfaces visible in the 
scene. A number of attributes are then found for each surface, including: 

3D shape - The 3D shape of the surface: planar, cylindrical, spheri- 
cal, etc. 
Area - The area of the surface. 
Location -The centroid of the surface. 
Orientation - The normalized average of the surface normals of the 
surface’s constituent points. 
Several other atmbutes and relations are also found. They are 

described in detail, along with the-algorithms used, in [21. 

3.2. 3D Shape Classification by Surface Normal‘Distribution Analysis 
Analysis of the distribution of surface normals provides a robust 

approach for the classification of the 3D shape of a surface. At the present 
time, we use this method to initially classify surfaces as planar, cylindrical, 
and spherical. A further examination of the characteristics of the surface 
allow the cylindrical surfaces to be firther classified as circulurly- 
cylindrical, elliptically-cylindrical, and irregular; while the spherical sur- 
faces can be further classified as spherical, ellipsoidal, and irregular. 

3.2.1. Overview of the 3D Shape Classification Method 
The first step in analyzing the surface normal distribution for a partic- 

ular surface is the conshuction of a Gaussian sphere for that surface. This 
is a unit sphere, with each surface normal of the surface mapped to the 
corresponding point on that sphere. It is well known that Gaussian spheres 
do not provide unique representations of nonconvex objects, however, we 
are only trying to classify the 3D shape. of a single surface. While it is hue 
that there is still ambiguity involved, (e.g. concave and convex cylindrical 
surfaces will produce the same distribution of surface normals, as will a sur- 
face with irregularity mainly in one dimension, such as a corrugated sur- 
face) an additional step is used to disambiguate these cases (this will be 
described shortly). 

Since the surface normals are unit vectors, there is no work involved 
in “constructing” the Gaussian sphere; the surface normal vectors for a 
given surface are already in an appropriate representation. For this reason, 
the distribution of surface normals on the Gaussian sphere is continuous; 
there is no quantization (or tessellation) of the sphere. 

The distribution of the surface normals on the Gaussian sphere will 
be distinct for each of the major 3D shapes. A planar surface will produce 
a very small distribution, a single point in the ideal case. The cylindrical 
surfaces will produce elongated distributions, which, in the ideal case,, are 
portions of great circles. (A “great circle” is the intersection of a sphere 
with a plane passing through its center.) Finally, the spherical surfaces will 
produce distributions of relatively large area, but round in shape. The prob- 
lem is to classify the shape of the distribution as one of these. The method 
that we use is to produce an equidistant-azimuthal mapping of the sphere, 
with the origin at the centroid of the distribution. This mapped distribution 
is then analyzed. 

The average of the normals for a surface is a vector which 
corresponds to the centroid of the distribution of the normals on the surface 
of the Gaussian sphere. An equidistant-azimuthal @-A) mapping, also 
called a greatcircle mapping, is a 2D mapping of the distribution, with 
equally low distortion for any arbitrary origin on the sphere. The E-A map- 
ping for each surface has its origin at the centroid of the distribution. A 
more detailed description of this method may be found in [2]. Let it suffice 
here to say that this step produces a 2D distribution of points which have 
the same correspondences between 2D dismbution shape and 3D surface 
shape as discussed earlier. In this new distribution, each point corresponds 
to a surface norinal, and is assigned the coordinates (e,, ez), where 8, may 
be thought of as degrees-nonh, and 82 may be thought of as degrees-east. 
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Given these 2D mappings, the following rule will produce the desired 
first level of 3D shape classification, when applied to the urea and 
eccenfricify of the distribution: 

the surface is planar, 

the surface is spherical, 

the surface is cylindrical, 
All that remains to be done for the initial classification is a measurement of 
the area and eccentricity of the distribution. 

Once the initial classification has been made, a final step provides 
finer classilication. The hypothesized cylindrical axis is used in an attempt 
to measure the radius of the surface. The measurements made here allow 
the detection of concave surfaces, as well as the further classification of 
cylindrical surfaces as circularly-cylindrical, elliptically-cylindrical, or 
irregular; and generally spherical surfaces as spherical, ellipsoidal, or 
irregular. 

3.2.2. Associating Confidence Values With the 3D Shape Classification 
The classification strategy described above can be implemented by 

making measurements of the mapped distribution of surface normals, and 
applying empirically determined thresholds. However, this approach fails 
to provide any information about the system's certainty in the classification. 
Furthermore, if the surface normals are sufficiently noisy. an incorrect 
classification may result. For this reason, rather than making a single 
classification of a surface's 3D shape, we use a statistical pattem classifier 
to assign confidences to the various classifications which are. possible, given 
the distribution of surface normals. In order to do this, we measure a 
number of characteristic features of the distributions (which estimate the 
size and shape of the distribution of points), and then use a Gaussian density 
function to approximate the distribution of these features for each class. 

3.2.2.1. Features that Describe a 2D Distribution of Points 
The desired features describe the overall area and the eccentricity of a 

2D dismbution of points. To find these features, we first find the eigen- 
values of the covariance matrix of the 2D distribution. For each of the sur- 
face normal vectors belonging to the distribution of surface i, [eli, B2lT 
describes the transformation of the vector into the 2D space. The mean 
vector is then estimated as: 

if the area is low, then 

else if the area is high, and the eccentricity is low, then 

else if the area is high, and the eccenfricity is high, then 

r i  

& = 

L J  

where 

. . A . .  

ail1 Oil2 %3 
^ . . A  

ai21 cr, 0 2 3  
A A A  

ai31 Oi32 Oi33 

The covariance matrix is: 

where 

We have considered a number of features based on the eigenvalues of 
(where hl > b), and the features that we have chosen to M, hl and 

characterize the size of the distribution are the following: 

fl = 1, 

f2 = 

The feature fi describes the length of the major axis of the distribution. For 
elongated distributions, f2=f,, becoming significantly larger for more com- 
pact distributions where & approachs hl. 

For the eccentricities, we use the feature: 

hl + h2 f3 = __ 
hi - 1L2 

The feature f3 will be larger for more compact dismbution, and show 
greatest variation when & approachs hi. 

3.2.2.2. Building a Classifier To Assign Confidence Values 
Given the features described above, using N training samples for 

each class (N = 50 in our current experiments), we constructed a classifier 
as follows. Fist, surfaces were selected from a number of scenes, and 
classified as being planar, cylindrical, or spherical. For each surface, the 
values of the feature vector [fl, fi. f31T were determined. Then, the mean 
vector and covariance matrix were estimated for each class. The mean vec- 
tor for class i is: 

ui = i,il 
where the entries ij are estimated as: 

where 0, is the estimated covariance between feature j and feature k for 
the ih class. 

We make the assumption that samples of the different classes exhibit 
a Gaussian distribution in the feature space, with the mean vector of U, and 
covariance matrix 4. Given these values, and given the feature vector of 
the unclassified surface, denoted by X, the probability that a surface with 
feature vector X is of a particular class m, is defined by: 

where 

3.3. Assigning Belief Values to Individual Feature Matches 
When a set of features is exaacted from sensory data, the first step in 

generating a hypothesis set (or refining the current hypothesis set. if it 
exists) is to match those sensed features to model features and derive a 
belief function which expresses the belief in each object hypothesis that can 
be derived from those matches. We do this in two steps. First, individual 
belief functions are derived for each sensed feature. These belief functions 
define the possible matches between sensed and model features, and the 
corresponding evidence which supports those matches. These individual 
belief functions are then combined to form object hypotheses which 
represent possible combinations of the feature matches. 

The process of assigning belief to individual feature matches consists 
of comparing attributes of the sensed features to attributes of the model 
features. It is possible that a number of model features will have attributes 
that are exactly the same, for example, faces b and c of the block shown in 
Fig. 3a. Our system groups together model surfaces which appear 
equivalent, each such grouping corresponding to one unique model feature. 
Each unique model feature is given a label. The set of labels for all unique 
model features is denoted by U. The set of al l  model features is denoted by 
M. A function, U :U + zM is used to map unique model features onto the 
appropriate subsets of M. 

For each sensed feature, S,,  we construct a bpa, m,O, which 
represents the system's belief in the possible matches for S,. This bpa is 
constructed as follows. If u(F) = (MI, . . . Mk) , then for 

e =  ( & / M I ,  ' ' ' si/Mk 1 
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we define mi() as: 

where, 

C(F,%) = c S @ ~ s ~ ) c A @ ~ s ~ )  

The value for Cs(F,S,) is the value for p(X I w) (determined by the 3D shape 
classifier discussed above), where w is the 3D shape of the unique model 
feature F, and X is the feature vector computed for the sensed surface S,. 
The value for CA is based on the difference between the area of the sensed 
surface and unique model feature, and is calculated by: 

IA,-A, I 
I- 

CA@s,)=e .% 

where AF is the area of the unique model feature F, As, is the area of sensed 
feature S,, and T is a weighting factor which is chosen based on empirical 
data. Note that it is possible that m,O will assign nonzero belief to non- 
singleton subsets of M. When this occurs, it reflects the system’s ignorance 
a b u t  which match for a particular sensed feature is best. 

4. Generating Object Hypotheses from Feature Matches 
Once bpa’s have been assigned to represent belief in individual 

feature matches, the next step is to combine the feature matches to create 
object hypotheses, and to combine the bpa’s to determine the belief in those 
object hypotheses. Unfortunately, as discussed in Section 2, this cannot be 
done by simply invoking Dempster’s combination rule, since the individual 
bpa’s do not discem the same frame. Recall, for each sensed feature, Si, we 
have a bpa, WO, which defines our belief in propositions of the form 
“sensed feature Si matches model feature f.” In other words, e,, the frame 
of discemment for a particular mi() only includes propositions about the i* 
sensed feature. In order to combine these individual bpa’s, we must first 
combine the feature matches represented by each 9 i  

Given N sensed features, we construct R as follows: 
R =  {(ei,02, ... e,) I e i E  ei] 

That is, each element of R is a collection of feature matches, and each pos- 
sible combination of feature matches (for the N sensed features) is 
represented in R. 

We can also define CO,, the refining from (3, to R as: 
wi((SiFrj])= (0 I @ E  RandSiFr, E $1 

for singleton subsets of ei, and 

NA)= U w e i )  
t l ~  A 

for A c 8. In other words, o,({Si/Mj]) is the subset of R that contains all 
object hypotheses which match sensed feature Si to model feature M,. 

Now, we can apply Dempster’s rule: 

mf=mi’0m2’@ . . . m n ’  
where mi’() is computed as in Section 2. 

5. Object Consistency 
It is quite likely that some of the hypotheses in the kame discemed 

by mr() will match sensed features to model features that are not in the 
same object. Since we do not currently deal with occluding objects, we do 
not allow such matches. (This restriction will be removed if we later allow 
for occlusion.) This constraint is enforced by combining the bpa mfO with 

We want m,() to place all of its belief in the subset of hypotheses 
which contain only consistent matches, and no belief in any hypothesis 
which contains an inconsistent match. A hypothesis contains an incon- 
sistent match if any two sensed features are matched to model features from 
different objects. Thus, for a hypothesis set R, we define 

moo. 

1 : the largest e c C2 s.t. 8 has no inconsistent matches 

6. Relational Consistency 
Further pruning of the set of object hypotheses can be achieved by 

enforcing relational constraints. An example of a relational constraint 
would be the equality of the dihedral angles between planar features in the 
scene and the corresponding model features in an object hypothesis. Most 
previous approaches to robot vision have mated such constraints in a deter- 
ministic manner, meaning that a relational constraint is considered either 
satisfied or not satisfied depending upon whether or not the value of the 
relation between the scene features is within a prescribed range (which 
depends on the value of the relation in the model). The system presented in 
t h ~ s  paper is more general, in that the belief it associates with a given object 
hypothsis is made to depend on the degree of similarity between the Scene 
relations and their corresponding model object relations. 

We enforce relational constraints by constructing a new bpa, m,O, 
which is a combination of a number of bpa’s, one for each type of relation. 
For example, one component of mJ) is the bpa m,O which assigns beliefs 
on the basis of the similarity of the angle between the surface normals for 
two planar Scene features and the angle between their corresponding model 
features. 

When such an m,O is combined with mfOm,, the result is a weaken- 
ing or elimination of object hypotheses in which the relations between 
sensed features do not match well with the relations between the 
corresponding model features. 

The first relation we use is based on the angles between surfaces. In 
particular, since the range data processing produces an average surface nor- 
mal for each surface in the sensed data, and since each surface in the object 
model has an associated surface normal, we can compare the angle between 
the surface normals of sensed surfaces to the angle between the correspond- 
ing model surfaces. In order to do this, we need to define two additional 
functions. For a feature match @, ns($) returns the surface normal of the 
sensed feature matched in Cp, and nM($) returns the surface normal of the 
model feature.matched in @. Note that @ corresponds to a feature match in a 
hypothesis (i.e. each element of R corresponds to a single object hypothesis 
which contains a number of matches between sensed and model features). 
Using these two functions, we can compute. the magnitude of the difference 
in dot products of sensed and model surface normals as: 

E(@,Y) = I nS($)%(\lr) - nM(@)’nM(v) I 
for @ and w in 9, and 0 E R. Since EO is the magnitude of the difference in 
two values which are in the interval [OJ], its value will lie in the interval 
10.21, with EO=O corresponding to an exact match, and EO=2 caespond- 
ing to the worst possible error. In order to capture the notion of conjunc- 
tion, for a particular object hypothesis 8 which contains N feature matches 
(i.e 0 = . . . b]), we define C,(9) as: 

N-1 N 

*=1 J = i + l  
w e )  = n n (2 - I ns(~,).ns(@~) - nM(gl).nM($,) 1 )  

Finally, we transform C,, into a valid bpa by normalization: 

The second bpa that we use to consmxt m,O is based on the fact that 
we can determine the correct location of a feature once a pose transforma- 
tion for the object has been computed. If we have enough feature matches 
in a hypothesis, we can derive a pose transformation for that hypothesis, 
T,,, as described in [ 5 ] .  We can then use this transformation to measure 
the quality of a match between sensed and model features based on the 
proximity of the sensed feature to the location at which we expect to find it 
based on Thj. For a particular feature match @, the function Ls(@) returns 
the location of the sensed feature matched in @, and LM(@) returns the loca- 
tion of the model feature matched in $. Therefore, the distance between the 
points Ls(@) and T,,blL~($) is a measure of the quality of the match 
expressed in $. Since this distance is essentially unbounded, we place it in 
the exponent of a decaying exponential function to obtain: 

where T is empirically determined. We combine the to's to obtain a 
confidence in the proposition 8 by taking their product over the feature 
matches in 8. 

We obtain m,() by normalizing CIO. 
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7. Aspect Consistency 
The final bpa which we consider in evaluating the quality of an object 

hypothesis is based on the idea that the system can determine which 
features should be observed if a pose transformation for the hypothesis has 
been determined. This bpa, m.0. is derived by accumulating positive evi- 
dence when expected features are matched. In order to determine which 
features should be observed, we use the concept of the aspect graph. 

The aspect graph was originally developed by Koenderink and van 
Doom [6] (who referred to it as the visual potential) to characterize the 
visual stimulus produced by an object when viewed from different relative 
positions. They developed a function for the “sensory inflow” produced by 
an object, in terms of the invariant properties of the object and the relative 
positions of the viewer and the object. An aspect is characterized by the 
structure of the singularities in this function for a single view. From most 
all vantage points, an observer may execute small movements without 
affecting the aspect. However, when the observer’s movement causes the 
structure of the singularities to be changed, an event is said to have 
occurred, and a new aspect is brought into view. An aspect graph is 
created by mapping aspects to nodes and mapping the events that take the 
viewer from one aspect to another to arcs between the corresponding nodes. 

In our work, we characterize aspects, not in terms of the singularities 
in the function which defines the visual inflow, but in terms of features 
which are visible to the range sensor. In particular, we define an aspect to 
be a set of features which can be observed simultaneously from a particular 
viewpoint. When a change of viewpoint causes a previously visible feature 
to no longer be visible, or a new feature to come into view, an event occurs. 

Aspect graphs for objects can be generated analytically or by an 
exhaustive examination of the object. Analytic techniques have been 
reported by Castore and Crawford [l] and Stewman and Bowyer [8 ] .  We 
generate our aspect graphs by exhaustive examination. This is done by 
creating a CAD model of the object, centered within a tessellated viewing 
sphere (we currently use 60 tessellations) The geometric modeler is then 
used to view the object from the center point of each tessellation, and the 
set of visible features is recorded. Using this information, it is a simple 
matter to generate the aspect graph. Tessellations from which the same 
feature set is observed are grouped together into nodes. The arcs between 
nodes are generated using tessellation adjacency. 

As we discussed in Section 6 ,  it is possible to derive a position 
transformation for an object hypothesis if enough features have been 
matched in that hypothesis. Using this transformation in conjunction with 
the viewpoint used in the sensing process, we can determine the aspect that 
would be observed fkom that viewpoint for a particular hypothesis 8. We 
will use the function A(8.V) to represent the aspect that would be observed 
for a given object hypothesis 8, from viewpoint V. 

A slight complication arises when an object hypothesis contains 
sensed features that were observed from different viewpoints. In such 
cases, each sensory operation conmbutes its own m,’O, based only on the 
features that it extracted. These individual m,’O’s are then combined to 
form ma(). 

The features associated with an aspect are given weights which 
reflect the likelihood that they will be found by a sensing operation. These 
weights are a function of how conspicuous the features are (and are 
currently assigned in an ad hoc fashion). We use w,(f,a) to represent the 
weight given to model feature f i n  aspect a. By using w,O in conjunction 
with the quality of the feature matches in an object hypothesis, we derive 
the aspect consistency. 

We use the function q(f,e,V) to represent the quality of the match for 
model feature f in the object hypothesis represented by 8, provided that 
feature f was observed from viewpoint V. Using the miO’s that were dis- 
cussed in Section 3.3, we define: 

mi($) : Si/f E 8, S,/f E $ and f observed from V 
s ( fAV)  = 0 : o*envise i 

Thus, to determine the value of 40. first, determine which sensed feature, 
Si, is matched to model feature f i n  the object hypothesis represented by 8. 
Then, examine WO (the bpa which assigned belief to feature matches for 
the the i* sensed feature) and determine how much belief is placed in the 
proposition which includes the match of S, to f. This is the value for q(). 
provided Si was observed from viewpoint V. 

Finally, given a function F,(x), which returns the set of features visi- 

ble in aspect x, we define the aspect confidence in an object hypothesis to 
be: 

Essentially, this equation says that the aspect consistency is obtained 
by summing the product of a feature’s likelihood of being extracted with 
the quality of the match for that feature, for each feature that we expect to 
find in the hypothesized aspect. We construct m,O by normalizing C.0. 

8. A Polynomial Time Implementation of the Combination Rule 
It is well known that a brute force implementation of Dempster’s 

combination rule has worst case behavior that is exponential in the sue  of 
the frame of discemment (or the size of the hypothesis set), s ing  all subsets 
of the frame must be examined. Fortunately, the structure of the belief 
functions which our system creates allows for a special implementation of 
Dempster’s rule. In this section, we prove that our use of Dempster’s rule 
can be achieved in polynomial time (in the size of the hypothesis set). 

In order to show this, we will introduce a class of belief functions 
which we will call disjoint belieffunctions. All belief functions that are 
created by our system belong to this class (which will be evident once the 
definition of disjoint belief functions is stated). We will then show that the 
combination of two disjoint belief functions produces a disjoint belief func- 
tion. Thus, all belief functions that are encountered by our system, whether 
created directly from sensory measurements or by combining two existing 
belief functions, will belong to the class of disjoint belief functions. 
Finally, we will show that the combination of any two disjoint belief func- 
tions can be performed in polynomial time. 

Def: We will say that a belief function, Bel, over the frame of discem- 
ment 8 is disjoint if its corresponding bpa is such that for all A,B 
c 8, if m(A) > 0, m(B) > 0, and AtB, then A n B = 0. 

This condition is equivalent to the statement that subsets of 8 with 
positive basic probability numbers form a disjoint partition of the core of 
Bel. (Remember that the core of Bel is the union of its focal elements, and 
that X is a focal element of Bel iff m(x) > 0.) It is clear that all belief func- 
tions derived by our system are disjoint belief functions, since the 
corresponding bpa’s are constructed by assigning confidence values to dis- 
joint subsets of a frame of discemment and then normalizing those 
confidence values. In particular, the system never constructs a bpa such 
that it assigns positive basic probability numbers to two non-disjoint subsets 
of the frame of discemment. 

Def: 
For convenience, we introduce one further definition. 

Given two belief functions with corresponding bpa’s ml and m2. 
we say that A and B form a supporting pair of C if A n B = C and 
ml (A) > 0, m2(B) > 0. 

This definition is a consequence of the fact that, in the combination rule, 
two subsets, A and B, contribute to the belief in exactly the subset C only if 
A n B = C, ml(A) > 0, and m2(B) > 0. 

We now state and prove a lemma which will be used in the proof of 
our basic theorems. 
lemma: Let Bel, and Bel, be two disioint belief functions. If their combi- 

Proof: 

QED. 

nation, Bel, has the corresponding bpa m, then if m(C) > 0 and 
C # 0, there is exactly one supporting pair of C. 
Let A, B and C be such that A,B is a supporting pair of C and C is 
non-empty. Now, also suppose that X,Y is a supporting pair of C. 
Since A,B is a supporting pair of C, then A n B = C  which 
implies that C is a subset of A. Likewise, C must also be a subset 
of X. But, since Bel, is disjoint, A n X  = 0 my the definition of 
disjoint belief functions, and since both A and X are focal elements 
of Bel). Thus, since C is contained in both A and X, C = 0 ,  which 
is a contradiction. 

We now state our central theorem. 
Thm: If two belief functions are disjoint, then their combination is 

also disjoint. 
Proof: We will prove the theorem by showing that, if Bel is the combina- 

tion of two disjoint belief functions, with corresponding bpa m, if 
m(X) > 0 and m(Y) > 0 then X n Y = 0 .  
If m(X) > 0, then there is exactly one supporting pair for X. Call 
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this pair A,, Bj. Similarly, if m e )  > 0, Y will have exactly one 
supporting pair, say 4, B1. Now, by the definition of disjoint 
belief functions and supposing pairs (in particular that any two 
non-identical focal elements of a disjoint belief function have a 
null intersection and that both elements of a supporting pair are 
focal elements of their respective belief functions) we can assert 
that either A i = 4 ,  or A i n 4 = 0 ,  and either Bj=B1, or BjnB1=O. 
Now, let us examine the intersection of X and Y. 

x n y  = ( A i n B j ) n ( A d % )  

Since set intersection is both associative and commutative, 

X n Y  = ( & n A k ) n ( B j n B i )  

If &#Ak, this intersection is empty since AinAk=O Similarly, if 
B.#Bl, the intersection is empty. If &=Ak and Bj=Bl, then X = Y. 
dus ,  ifm(x) > 0 and m(Y) > 0 either X = Y or X n Y = 0 ,  and 
therefore Bel is disjoint 

QED. 
One consequence of this theorem is that, provided the system creates 

only disjoint belief functions. all belief functions which it derives by com- 
bining two existing belief functions will also be disjoint. Thus, all applica- 
tions of Dempster’s rule in our system will be to combine disjoint belief 
functions. The following theorem states that such combinations can be 
achieved in time polynomial in the size of the frame of discernment 
Thm: If Bel, and Bel, are disjoint belief functions, then the basic 

probability numbers for every focal element of their comhina- 
tion, Bel, can be calculated in time polynomial in the size of the 
frame of discernment 8. 

Proof: We prove this theorem by showing that we can enumerate the focal 
elements of Bel in polynomial time and that we can find m(A) in 
polynomial time, for each A which is a focal element of Bel. 

By the lemma, m(C) > 0 implies that there is exactly one support- 
ing pair for C. Thus, we can find all C = A n B  with m(C) > 0 by 
examining every pair A,B such that ml(A) > 0 and mz(B) > 0. 
There are at most I8 I such pairs, since Bell and Bel, are dis- 
joint. Therefore, the focal elements of Bel can be enumerated in 
polynomial time. 

In order to show that m(C) can be found in polynomial time for 
any focal element of Bel, consider the form of the combination 
rule. We can evaluate the numerator by examining all pairs A B  
such that ml(A) > 0 and mz@) > 0 in order to find the supporting 
pair of C. AS above, this I d s  to at most 181’ set intersections. 
For the denominator, we must examine all pairs A,B such that 
A n B = 0  and m,(A) > 0 and m,@) > 0. Again, this can be 
accomplished in at most I8 I’ set intersections. 

QED. 

9. Experimental Results 
In order to demonstrate the utility of the methods that we have 

described, in this section we will present the results of one experiment in 
which the data is somewhat ambiguous. The belief values which are 
assigned by the system are intuitively pleasing, given the ambiguity of the 
data. 

A CAD model of the object which we used is shown in Fig. 4. The 
bottom face is Mlo, the face opposite M2 is MS. and the face opposite M5 is 
M7. The face M7 has no hole, and is therefore distinct from M5. Note that 
faces Mz and & are identical, and thus correspond to a single unique 
model feature, as do faces M8 and M,. Further, note that, unless one end of 
the object is visible (i.e. either M5 or M7), the pose transformation of this 
object cannot be uniquely determined. An aspect graph for this object was 
created by using the PADL2 system [4] to automatically view the CAD 
model of the object from each of 60 viewpoints (which correspond to the 
centers of the 60 tessels on a tessellated sphere), and then grouping together 
viewpoints which observed the same set of features. Feature weights were 
then assigned to each feature of each aspect based on the visible area of the 
feature in the aspect. Range data for the two experiments was acquired 
using a single stripe structured light scanner. 

In the experiment, the object was placed so that the range scanner 
could not observe either end of the object, and therefore could not 

make a unique hypothesis about the pose. The corresponding composite 
light stripe image is shown in Fig. 5a, and the results of segmentation are 
shown in Fig. 5b. Four surfaces were found (excluding the table), and the 
corresponding miO’s are shown in Table 1. When these individual feature 
matches were combined, the resulting common refinement contained 686 
possible hypotheses. After applying object consistency, the number was 
reduced to 420. This was subsequently reduced to 4 hypotheses using the 
location and dot product consistencies (note that in the experiments, we 
deleted hypotheses whose belief dropped below 1 percent of the maximum 
belief assigned to any hypothesis). The resulting m,O is shown in Table 2. 
Finally, aspect consistency was applied. In this particular experiment, 
aspect consistency did not provide much improvement. The resulting ma() 
is shown in Table 3. The final bpa is shown in Table 4. Note that the two 
hypotheses which account for better than 96 percent of the system’s com- 
mitted belief correspond to the two correct hypotheses which are indistin- 
guishable from this viemint .  

Fig. 4: Rendering of CAD model of experimental object 

Fig. 5a: Composite light stripe image of object as positioned in 6rst expen 
ment 

Fig. 5b: Segmented image for composite light stripe image shown in Fig. 
5a. 
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Matches Belief 

{ S 1/M2,S 1/M9) 0.10285 
{ S lM8.S 1/M1) 0.232255 

ISl/M5) 0.277249 
(Sl/M7] 0.277249 
(Sl/MlO) 0.1 10399 

(S2/M2,S2/M9) 0.409585 
(S2/M8,S2/M1) 0.0491467 

{S2/M5) 0.0285053 
I S2M7 1 0.0285053 

{S2/MlO) 0.484258 

{S3/M3) 0.957109 1 (S3/M6) 0.042891 1 

(s4F12,S4/M9) 0.0991155 
(s4/M8,S4/M1) 0.236474 

(S4N5)  0.278756 
{ s4m7 ) 0.278756 

I s4/M 10) 0.1069 

Table 1: Bpa's mi() for the object as shown in Fig. 5. 

0.481687 
M8 M2 M3 0.481653 
M8 M2 M3 M5 0.018331 
M1 M9 M3 M7 0.0183302 

Table 2: Bpa, m,(.) for the object as shown in Fig. 5. 

M9 M3 0.274548 
M8 M2 M3 MI 0.274548 
M8 M2 M3 M5 0.225452 

M9 M3 0.225452 

Table 3: Bpa ma(.) for the object as shown in Fig. 5. 

I SI S2 S3 S4 Belief 

M2 M3 0.0177653 
M1 M9 M3 M7 0.0177646 

Table 4: Final Bpa for the object as shown in Fig. 5. 

10. Future Work 
Although we have dealt with the complexity issues of Dempster's 

combination rule, there remain complexity issues related to the size of the 
hypothesis sets. In particular, the formation of a common refinement of the 
bpa's which represent feature matches results in a hypothesis set whose size 
is kN, where we have N sensed features which can, on the average, each be 
matched to k model features. Although this has not yet been a serious prob- 
lem for our system (since both k and N have been small in our experiments) 
we anticipate that it will become a problem as the number of models in the 
library continues to grow. 

It has been shown by a number of researchers (e.g. [3]) that enforcing 
relational consistency serves to greatly limit the number of hypotheses 
which a recognition system must consider. In order to lake advantage of 
this, we must delay the combination of all mi's into a common refinement 
until after we have enforced relational constraints. By initially giving the 
system only a small number of sensed features, we limit the size of the ini- 
tial hypothesis set. We can then feed additional sensed features to the sys- 
tem, and the resulting mi's are combined with the initial hypotheses in the 
common refinement module (via the feedback loop). In this way, relational 
consistency can be used to limit the number of hypotheses which are gen- 
erated based on feature matches. 

11. Summary 
In this paper, we have presented an architecture for reasoning with 

uncertainty about the identities of objects in a scene. We have described 
the three methods our system uses to assign belief to object hypotheses 
based on feature matches, relational consistency and aspect consistency. 
For each of these, we have also described how belief functions are derived 
from the sensory data. The system that we have implemented uses the 
Dempster-Shafer formalism for dealing with uncertainty, and we have 
shown that the structm of the hypothesis sets which our system develops 
allows for a polynomial time implementation of the combination rule. 
Finally, we have shown experimental results which a f k  the effectiveness 
of our method in assessing the credibility of candidate object hypotheses. 
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