
Robotics and Autonomous Systems 54 (2006) 314–331
www.elsevier.com/locate/robot
Planning exploration strategies for simultaneous localization and mapping

Benjamı́n Tovara, Lourdes Muñoz-Gómezb, Rafael Murrieta-Cidb,∗, Moisés Alencastre-Mirandab,
Raúl Monroyb, Seth Hutchinsona

a University of Illinois, Urbana, IL 61801, USA
b Tec de Monterrey, Edo de México Campus, Mexico

Received 15 July 2004; received in revised form 28 November 2005; accepted 29 November 2005
Available online 31 January 2006

Abstract

In this paper, we present techniques that allow one or multiple mobile robots to efficiently explore and model their environment. While much
existing research in the area of Simultaneous Localization and Mapping (SLAM) focuses on issues related to uncertainty in sensor data, our work
focuses on the problem of planning optimal exploration strategies. We develop a utility function that measures the quality of proposed sensing
locations, give a randomized algorithm for selecting an optimal next sensing location, and provide methods for extracting features from sensor
data and merging these into an incrementally constructed map.

We also provide an efficient algorithm driven by our utility function. This algorithm is able to explore several steps ahead without incurring
too high a computational cost. We have compared that exploration strategy with a totally greedy algorithm that optimizes our utility function with
a one-step-look ahead.

The planning algorithms which have been developed operate using simple but flexible models of the robot sensors and actuator abilities.
Techniques that allow implementation of these sensor models on top of the capabilities of actual sensors have been provided.

All of the proposed algorithms have been implemented either on real robots (for the case of individual robots) or in simulation (for the case of
multiple robots), and experimental results are given.
c© 2005 Elsevier B.V. All rights reserved.

Keywords: Exploration strategies; SLAM; Utility functions
1. Introduction

Autonomous robots must possess the ability to explore their
environments, build representations of those environments,
and then use those representations to navigate effectively in
those environments. Collectively, these requirements define
the problem of Simultaneous Localization and Mapping
(SLAM) [5,9,24,32], which has become a very active topic of
research in the last decade.

To date, work on SLAM has focused primarily on issues
related to uncertainty in sensing. Early research on SLAM [32]
used a Kalman filtering approach to manage uncertainties
that accumulate during robot motion, simultaneously providing
∗ Corresponding author. Fax: +52 55 5864 5751.
E-mail addresses: btovar@uiuc.edu (B. Tovar), lmunoz@itesm.mx

(L. Muñoz-Gómez), rafael.murrieta@itesm.mx (R. Murrieta-Cid),
malencastre@itesm.mx (M. Alencastre-Miranda), raulm@itesm.mx
(R. Monroy), seth@uiuc.edu (S. Hutchinson).

0921-8890/$ - see front matter c© 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.robot.2005.11.006
an estimate of robot position and landmark locations. More
recently, generalized Bayesian approaches have been proposed
(see, e.g., [24]) for the SLAM problem, relaxing the restrictive
conditions imposed by Kalman filtering methods.

In this paper, we address issues related to uncertainty in
sensing and control, but our primary focus is on the problem
of planning optimal exploration strategies. In particular,
we develop a formalism for planning exploration strategies
that optimize criteria such as information gain, uncertainty
reduction, etc. We then present methods for extracting features
from sensor data (predefined landmarks and geometric features
such as corners), and fusing these features into a common,
global map. The result is a robot that autonomously explores
its environment, optimizing the exploration at each stage and
merging newly acquired sensor data into its existing map.
Preliminary versions of this work appeared in [35] and [36].

Our proposed utility function is constructed in such a
way that it balances the desire to see as much of the

http://www.elsevier.com/locate/robot
mailto:btovar@uiuc.edu
mailto:lmunoz@itesm.mx
mailto:rafael.murrieta@itesm.mx
mailto:malencastre@itesm.mx
mailto:raulm@itesm.mx
mailto:seth@uiuc.edu
http://dx.doi.org/10.1016/j.robot.2005.11.006

B. Tovar et al. / Robotics and Autonomous Systems 54 (2006) 314–331 315
as-yet-unseen environment as possible, while at the same time
having enough overlap and landmark information with the
already scanned part of the indoor environment to guarantee
good map registration and robot localization. The exact form of
this utility function (which is presented in Section 3) is fairly
complex, which precludes solving the optimization problem
in real time. Therefore, optimization of the utility function is
achieved by a randomized sampling scheme.

Computer vision is used to recognize landmarks using
a Bayesian approach. A laser range finder is used to find
straight lines in the environment (using least squares fitting),
and lines obtained in consecutive sensing operations are
fused by minimizing a partial Hausdorff distance. The final
result of the exploration is a multi-representational map
consisting of polygons and landmarks, and including a roadmap
(backtracking graph) constructed from the trajectory followed
by the robot.

All of the proposed algorithms have been implemented. For
the case of a single robot, the algorithms have been tested
on a real robot, and experimental results are included in this
paper. Algorithms for multi-robot map building have been
implemented and tested via simulation.

The remainder of this paper is organized as follows. Previous
research is discussed in Section 2. The utility function that
is used to evaluate candidate sensing locations is presented
in Section 3. In Section 4 we briefly describe the landmarks
and features that are used by our system. In Section 5 we
give the map building algorithm. A planner for multi-robot
map building is presented in Section 6. The robot architecture,
experiments and results are described in Section 7. In Section 8,
we compare our approach with other works devoted to map
building and exploration. Conclusions and future work are
given in Section 9.

2. Related research

Automatic model building is an important problem in mobile
robotics [4,6,10,34]. Three types of models have been mainly
proposed: (i) topological maps [7], (ii) occupancy grids [10]
and (iii) feature-based maps [6,21,33].

Topological maps can be expressed as a graph, where the
nodes represent places and the edges represent adjacency, or
direct connectivity. Occupancy grids use a 2D array to represent
the environment. There, each cell takes one of three values:
free space, occupied space or unknown space. Grid-based
algorithms have proved to be very simple and quite useful
for obstacle avoidance and planning purposes [10]. However,
when the size of the environment is large, these models become
difficult to handle.

Feature-based maps [21] may portray a 2-D [6] or 3-D
model [33]. They are another way to represent the environment
by using geometric primitives. The most popular geometric
primitive is the segment, which can be extracted from ultrasonic
data [8], laser range-finder data [14], or vision data [3,17].

Most previous research has focused on developing
techniques to extract relevant information from raw data and to
integrate the collected data into a single model; a robot motion
strategy is, however, typically not developed. In this work, we
deal mainly with this latter problem. An account of the field
follows.

In [13,15] a map building motion planning strategy is
presented. That research has shown that it is possible to
find a function that reflects intuitively how the robot should
explore the space. In a simple scheme, the evaluation function
should assign a greater value to the position that best fits the
compromise between possible elimination of unexplored space
and traveled distance.

The approach presented in [22] proposes an exploration
strategy for map building and localization. The exploration
strategy makes use of a utility function that evaluates the next
robot sensing location. This utility takes into account three
elements: the information gain, the distance to sensing location
(cost) and the utility of localizability based on a covariance
matrix.

In [27] an algorithm for feature-based exploration of an
unknown environment is proposed. In that approach the
candidate next robot locations (goals) are associated with all the
geometrical features of the environment. One major objective
in [27] is to locally explore spare regions. To obtain that
objective, the following procedure is proposed. First, for each
goal generated, sample points are regularly scattered around it
at a constant radius β. A circle of radius α centered on each
sample is then drawn. The final size of the sampling set is the
number of sample points for the goal at hand that satisfy these
conditions: (i) each point has a clear line of sight to the goal,
and (ii) it has no line of sight to any other circle of radius α.
The score η ∈ [0, 1] for evaluating a goal location is set to be
the ratio of the final and initial sizes of the sampling set.

The work presented in [31] deals with the problem of
exploration and mapping of an unknown environment by
multiple robots. A probabilistic grid is used to represent
the environment. The cells of the grid are of three types:
Obstacle (probability of occupancy above a given threshold
po), clear (probability below a threshold pc) and unknown
(either never been sensed or probability between po and pc).
The distance between the robot and the frontier between known
and unknown environment is used as an exploration cost. The
number of unknown cells that fall within the robot sensor range
(for a possible next location) is used as the information gain of
sending the robot to that location. The utility of a candidate
sensing location is equal to its information gain minus its
exploration cost. A central executive tries to maximize the total
utility. To coordinate the robots (relate robots with sensing
locations) the information gain is used.

Another robot motion exploration strategy is presented
in [11]. There a metric for adaptive sensing that is defined in
terms of the Fisher information is proposed. This metric is used
to choose among discrete robot actions that given the current
state would locally maximize the information gained in the next
measurement. As a result of applying that algorithm the robot
tends to explore selectively different objects in the environment.

Other approaches have been proposed that are related to
our research, even though they are not directly intended for
planning exploration strategies for SLAM.

316 B. Tovar et al. / Robotics and Autonomous Systems 54 (2006) 314–331
In [12], software tools applied to multi-robot, distributed-
robot and sensor network systems are proposed. That software
is composed of two main elements: Player and Stage. Player
is a robot device server that provides sensing and control
algorithms. Stage is a multiple robot simulator that provides
a population of simulated robots and sensors operating in a
bitmapped environment. The main goal of the Player/Stage
project is to provide Open Source software interface to support
experimental research with multi-robot systems.

In [19], the CentiBOTS project is presented. In that project
the authors envisage a system of a large number of robots
able to explore, map, and surveil the interior of a building.
One major contribution of that work is a distributed robot
architecture, that is adaptive and fault tolerant.

3. Evaluating candidate sensing locations

In this section we describe a utility function that can be used
to evaluate the quality of a proposed next sensing location. We
begin with a general discussion of the desirable attributes of
such a function, and then present the specific utility function
that we use.

A good utility function should prefer those positions from
which the robot can recognize a landmark that can be used
either to reduce uncertainty in position [29] or to perform
navigation tasks [20,25]. Here, we define a landmark as a
predefined, recognizable object in the work space. We do
not assume that landmarks can always be recognized without
error by our computer vision system. Rather, we assume
that recognition will be performed by a Bayes classifier,
and that this classifier will provide both a classification and
an error probability. Thus, our utility function should prefer
landmarks with high probability of recognition to those with
low probability of recognition.

In addition to landmark recognition, the robot’s sensors are
also used to extract features (e.g. corners) that can be used
to facilitate the fusion of data obtained from distinct views.
Therefore, in addition to maintaining landmark visibility, the
utility function should prefer sensing locations that maximize
the number of visible and readily discernable features. In our
work, we have used corners in the environment as features, and
thus the utility function should prefer sensing locations from
which a maximal number of corners are visible.

To explore the environment as quickly as possible, sensing
locations that provide maximal views of unexplored areas
should be preferred. Unfortunately, without an existing map
of the environment, it is not possible for the robot to know
where the unexplored areas lie. One way to approximate the
size of the unexplored space is to use the size of the free edge
near it. A free edge is defined as the border between regions of
explored and unexplored space. Thus, our utility function will
prefer sensing locations that lie near long free edges.

As SLAM research has shown, one of the principal
difficulties in constructing maps of large environments is
that odometry is typically imprecise, and that localization
error grows as the robot moves. This complicates the process
of fusing new sensor data with existing representations. A
good utility function should therefore prefer trajectories that
minimize localization uncertainty. We use a simple model of
uncertainty. The robot position uncertainty grows in proportion
to the square root of the distance traveled. In this uncertainty
model we also include a term that penalizes rotation, reflecting
a preference for straight line trajectories.

In the exploration process, at a given position, the robot may
have more than one area to explore. Thus, some unexplored
areas are postponed to be explored. To come back to those
unexplored areas the robot travels a road-map built during
exploration. Every node in the graph is a previous sensing
location where the robot stopped and built the map. Only at
those locations is the robot allowed to turn. In our experiments,
we have found out that robot acceleration and decelerations
will increase the robot position error. Thus, minimizing the
number of stops to arrive at an unexplored area amounts to
minimizing the robot position error. Our utility function is so
that the robot moves back to an unexplored area traveling the
road-map portion that requires the minimum number of stops—
nodes. Put another way, our utility function was designed to
give a better score to the robot trajectory with the minimum
number of stops.

Power consumption is another problem that confronts
autonomous mobile robots. To minimize power consumption,
a good utility function should prefer trajectories that minimize
the total distance that the robot must travel.

Our utility function integrates all of these features, preferring
positions combining proximity to the robot, proximity to a
free edge, small robot configuration uncertainty, high landmark
identification probability and ability to see features like corners.
Furthermore, positions near walls and objects will be discarded
because many sensors become blind when the objects are very
near.

We have chosen a utility function with a multiplicative
form. A configuration with a very low value on at least one
of these measures will be discarded even though it could have
a very good value on the others. For instance, a position very
close to a free edge (with great chance of discovering new
space) must be discarded if the robot has no information to
integrate this new area to the explored space. Similar forms of
this utility function have been presented in [35,36]. The main
difference between our previously proposed utility functions
and the one presented in this paper is that now our utility
function can be used to measure the utility of a single robot
location or a path associated with a sequence composed by
several sensing locations. The utility of a sequence of sensing
locations will be simply the summation of the utility of each
location. Consider the variable definitions given in Table 1, then
our utility function Ti is given by the following expression:

Ti =

m∑
i=1

(
e(lvi −svi)

qi∏
j=1

(
e−|θ j |

√
s j + 1

)

×

(
1
ni

ni∑
k=1

pk + Nei

)
fmini (dl)

)
. (1)

The function fmini is used to map the distance from
an obstacle edge to a utility value. To minimize effects of

B. Tovar et al. / Robotics and Autonomous Systems 54 (2006) 314–331 317
Table 1
Definitions of variables used in the utility function (1)

i Location where a sensing operation is done
m Total number of sensing operations
qi Total number of robot stops to reach location i
lvi Length of the closest free edge at location i
si Distance from the robot to the next possible location i
svi Distance from the next possible location i to the closest free edge
j Index for a robot configuration
θ j Orientation change to reach the next configuration j
pk Identification probability of landmark k at location i
k Index for a given landmark
ni Number of landmarks inside a visibility region at location i
Nei Number of corners inside robot visibility region at location i
fmini A function that penalizes location i
dl Minimum distance from a full edge

Fig. 1. The function fmin, which penalizes sensing locations that lie near an
obstacle.

Fig. 2. Parameters of the utility function.

occlusion, it is desirable to maximize the distance to obstacles.
On the other hand, sensors such as sonars have a finite range.
Therefore, beyond some threshold distance, no advantage is
gained by moving further from an obstacle. For this reason, we
have chosen for fmin the mapping shown in Fig. 1. When the
distance to the nearest obstacle is less than a threshold distance
t the function takes a low value, discriminating those positions
near the objects. Once this threshold distance is exceeded, fmini
takes the value of 1, allowing the remaining parameters to
influence the value of T .
Fig. 3. (a) Three different paths. (b) Score given by the objective function.

The parameters of the utility function are graphically
described in the scheme presented in Fig. 2.

Our utility function quantifies different a sensing location
depending on the path that the robot has traveled to reach that
location. We assume that the amount of uncertainty will vary
according to the controls applied to the robot. To better clarify
our statements about the uncertainty induced by the types of
paths traveled by the robot, we show below the score that our
utility function gives to different robot paths.

Fig. 3(a) shows three different types of paths. The first path is
a straight segment indicating that the robot goes from an initial
to a final configuration in only one step. The second path is
also a straight segment, but in this case the robot stops at the
vertical black lines and then continues. Finally, in the third path
the robot moves in a zigzag, changing its angle at each step.
Note that to come back to unexplored areas through the road-
map, a sensing location may be reached in more than one single
step. The utility of each path is calculated using the second term
of our objective function:

q j∏
j=1

e−|θ j |/λ

√
s j + 1

(2)

where:

• j is the the step index;
• q j is the total number of steps;
• θ j is the angle the robot must turn, given in radians;
• s j is the distance the robot will travel in the current step; and
• λ is a constant.

We have plotted the utility values of each path. For path 1,
there is only one single value calculated after the robot has
reached the final configuration. For paths 2 and 3, there are
several values, one for each time the robot stops. These plots are
shown in Fig. 3(b). Note that the more times the robot stops, the
lower the utility value of the path. The lowest score is obtained
when the robot stops several times and then turns to change its
heading.

318 B. Tovar et al. / Robotics and Autonomous Systems 54 (2006) 314–331
To our knowledge, the effect of applying different types of
controls to estimating the uncertainty in robot position has not
been considered before. Integrating this information we better
assess the utility of a robot path.

4. Landmarks and features

In our work, we distinguish between landmarks and features.
Landmarks can be uniquely identified by the robot, while
features are geometric entities without specific identities. For
example, corners are used as features, while artifacts such as
posters can serve as landmarks. Below we briefly describe how
landmarks are used by our system, and how line fitting and
model matching are used to extract line segment features and
to fuse these into a single representation.

Landmark detection and identification are useful to both,
localize the robot and merge different environment views. The
merging becomes easier because these landmarks work as
pivotal features to align these partial views [25]. Landmarks
are also useful to determine the robot position relative to one or
several of them [29].

Our utility function will prefer sensing locations from which
corners or landmarks are visible, so making it easier for a
registration procedure (in our case the Hausdorff distance, see
Section 4.3) to align the maps. To our knowledge this is the first
attempt where the ability to see landmarks or features is applied
to estimate the utility of a sensing location.

4.1. Landmarks

We assume that the robot is provided with a library of
landmarks that can be recognized from sensor data or that it
can build such a library as it explores its environment (note that
this is not a requirement, as our utility function and the resulting
exploration strategy can easily be modified to eliminate the use
of landmarks). A good landmark is one that is easy to recognize
and that provides good localization accuracy. Landmarks in
indoor environments can be defined as structured elements such
as posters, doors, or columns.

Recently, an indoor landmark detection method for robot
navigation was proposed on [16]. The algorithm takes
advantage of the geometry of indoor scenes and uses vanishing
points to reduce the landmark detection complexity. This
method is based on edge detection and texture measurement.
The algorithm computes an edge segment image and applies
two relaxation processes to match segments and segment pairs
in order to detect landmarks. Our landmark detection software
is still in its early stages. We plan to integrate it as a landmark
extraction module in our robot architecture. We will use an
algorithm similar to that proposed in [16].

Landmarks in an image can be identified using a hierarchical
approach. A first step identifies the environment type, and a
second step the landmarks in the image [26].

The learning database is a function of the environment type.
Techniques for image classification as a whole can be used as
environment recognition methods. In the first step the type of
environment is determined (i.e., an office, a lab, etc.), and in the
second step an appropriate database (which corresponds to the
environment type) is used; making it easier to label the elements
in the image with a reduced number of classes.

Once an image region has been detected as a potential
landmark, a Bayes classifier can be used for recognition of
the landmark. In particular, a region in the image is labeled
as a landmark if its probability of belonging to a given class
is greater than a specified threshold and if it has distinct
characteristics (color, shape, etc.) from surrounding objects
(regions) [25]. Furthermore, the classifier provides an estimate
for pk , the probability of correct classification of the landmark.

4.2. Extracting line segments to be stored

Since we use a laser range finder as our sensor, we recover
lines that form the actual visibility region from the points
that the laser gives. In particular, we generate polylines with
the laser data obtained as an ordered list (by angle) of polar
coordinates (r, θ) where obstacles are found. We suppose that
θ is an error free coordinate. The line fitting is done in
two steps. First we find clusters of points where the distance
between two consecutive points is similar. Then we apply the
transformations u = cos(θ)/ sin(θ), v = 1/r sin(θ) as in [13].
We fit lines to the laser data applying to each cluster a divide-
and-conquer technique combined with a least squares method.

The least squares technique has the advantage of removing
noisy measurements. However, it is not efficient in the number
of lines it generates. For this reason we use a divide-and-
conquer approach. We convert the generated vertices in the
(u, v) space to a Cartesian space. Then, we apply a classical
divide-and-conquer recursive technique to the vertices of each
cluster to find the lines that fit the set of vertices. Thus,
unnecessary vertices are eliminated. A cluster with a stand
alone point or with very few points should be considered as
a small object [13], a sensor error or the result of a small free
space between two occlusions. In any case, those should not be
taken into account when the divide-and-conquer algorithm is
applied.

The lines generated are considered as full edges, while the
line that may be formed between two consecutive clusters is
considered as a free edge.

4.3. Fusing data from multiple views

The partial Hausdorff distance is used to find the best
alignment between the previously explored region and the new
one. The Hausdorff distance is computed on the original laser
data of the polylines previously computed.

Given two sets of points P and Q, the Hausdorff distance is
defined as (see [18]):

H(P, Q) = max(h(P, Q), h(Q, P)) (3)

where

h(P, Q) = max
p∈P

min
q∈Q

‖p − q‖ (4)

and ‖.‖ is a norm for measuring the distance between two points
p and q. The function h(P, Q) (distance from set P to Q) is a

B. Tovar et al. / Robotics and Autonomous Systems 54 (2006) 314–331 319
measure of the degree to which each point in P is near to a point
in Q. A small value of h(P, Q) implies that every point in P is
close to a point in Q. The Hausdorff distance is the maximum
among h(P, Q) and h(Q, P). The Hausdorff distance measures
the degree to which each point of P is near a point in Q and vice
versa. By computing the Hausdorff distance in this way we are
obtaining the most mismatched point between the two shapes
compared, consequently, it is very sensitive to the presence of
any outlying points. For this reason it is often appropriate to
use a more general measure, which replaces the maximization
operation with the calculation of the mean of the values. This
measure (partial Hausdorff distance) is defined as:

hk = Mp∈P min
q∈Q

‖p − q‖ (5)

where Mp∈P f (p) denotes the statistical mean value of f (p)

over the set P .
One interesting property of the Hausdorff distance and the

“partial Hausdorff distance” is the inherent asymmetry in the
computation. The fact that every point of P (or subset of P) is
near some point of Q says nothing about whether every point
of Q (or subset of Q) is near some point of P . In other words,
hk1(P, Q) and hk2(Q, P) can attain very different values. In
fact each one of the two values gives different information.

The term hk1(P, Q) is the unidirectional partial distance
from the previously explored region to the current perception,
and hk2(Q, P) is the unidirectional partial distance from the
current perception to the previously explored region. The
maximum of these two values defines the partial Hausdorff
distance. The partial Hausdorff distance is function of a
transformation composed by translation and rotation. The
transformation that maximize the metric will determine the best
alignment.

5. Map building algorithm

Algorithms 1 and 2 show our map building procedure. In
Algorithm 2, T is given by Eq. (1). As mentioned above,
visibility is used to bias the sampling process. For a point
robot, visibility is enough to guarantee a free path. If the
robot is inside its visibility region, it is collision free. In real
experiments, given that the actual robot occupies finite area,
that is not enough to guarantee a free path. This area has to
be subtracted along the boundary of the computed visibility
region to determine if the robot can traverse through the sensed
environment. The remaining region is guaranteed to be collision
free. The samples are generated close to the free edges. Only the
samples inside the observer visibility regions are considered.
Thus, the generated samples will have a better chance to be
useful. Since the samples are inside the visibility region of
the robot, it is guaranteed that a straight line path between the
current and next robot positions is collision free. Additionally,
the samples generated close to the free edges will have a
good chance of seeing unknown environment, because they
are close to the border between the explored and unexplored
environment. If the robot goes to those samples pointing
toward the free edges it will perceive unexplored environment.
Previously chosen samples are kept in the graph since they
could be reused to reach other new samples in the future. The
robot takes advantage of this by traveling in the backtracking
graph. Sampling generation is illustrated in Fig. 4.

5.1. Several steps ahead exploration: An efficient algorithm

Suppose that at some time during the exploration, the robot
is at a certain position, rini = (xini, yini, θini), and there remain n
frontiers (free edges) to be visited. After the sampling process,
there will be several configurations for each free edge. The
robot has two options to define the motion strategy: either it
considers only one step ahead or considers more than one.

320 B. Tovar et al. / Robotics and Autonomous Systems 54 (2006) 314–331
Fig. 4. Sampling generation.

Fig. 5. Robot in front of three free edges.

If it considers only one step ahead, the robot will move
to the best evaluated configuration, according to the utility
function. In this case, after the robot has reached the desired
configuration, the robot will start the sampling process all over
again, considering the remaining free edges. Otherwise, the
robot will need to find a path for visiting the n free edges. In
this case, both an ordering for visiting the free edges and a
configuration for each free edge need to be established. This
visiting order yields the maximal utility. We illustrate how our
algorithm works for finding a visiting order through out an
example.

Fig. 5 shows a situation where the robot has three new free
edges to explore, denoted by A, B and C . We suppose there
are two configurations for each of the free edges. For the free
edge A the configurations are a1 and a2. In this case, the robot
is at rini, so in the next step the robot can visit one of the six
configurations from a1 to c2. Let us suppose that the robot goes
to b1 in the first step. Then the robot can go to configurations
a1, a2, c1 and c2 in the second step. Configuration b2 is thus not
an admissible configuration for this latter step, because the free
edge B has been already explored.

We can model all possible paths that the robot may pursue
to exploring the free edges using a tree. Each node represents
one robot configuration. Each node’s descendants represent the
configurations that can be visited. Each arc represents a step in
time. The tree for the running example is shown in Fig. 6. In this
case, there are three levels pending from the root node. Note
that in this case we have imposed one constraint for building
Fig. 6. Tree for searching a path.

the tree: the robot cannot return to a free edge that has been
explored on a previous step. This means that if a node labeled
p1 is at level 1 all the branches pending from this node will
not have the node p1 in the subsequent levels. Furthermore, the
branches pending for node p1 will not have nodes that represent
configurations lying in the same free edge of p1. The root node
will have n levels pending from it according to the n free edges
that will be visited.

This is not the only exploration strategy. There is also the
possibility to allow the robot to return to a previously visited
free edge for establishing an ordering. However we do not
consider this case.

For building a tree like the one shown in Fig. 6, we
need to know all the paths that can be possibly formed by
permuting every robot configuration without repeating visited
configurations. Our utility function is used to assign a cost to
every edge. Once found, the cost of each path between two
configurations in two different free edges is calculated using
the utility function. Once the tree has been built, we can use a
search algorithm for finding the configurations the robot must
reach in order to visit all the free edges at maximum utility.

We consider that the robot can be in one of two possible
states: sensing in the configuration previously reached and
traveling to the next configuration. Going back to our running
example, suppose that the robot has selected the following path
for visiting all free edges: rini, b1, a2, c1. In this case the robot
will have the following sequence of states during the execution
of the path: sensing at rini, then traveling to b1, then sensing at
b1, then traveling to a2, then sensing at a2, then traveling to c1
and finally sensing at c1. We can see here that for each node in
the path, we have two states for the robot, except for the root
node, in which there is only a sensing state. Considering this,
we can split each node in the tree in two nodes each one for
the corresponding state (traveling, sensing) and we will obtain
a tree like the one shown in Fig. 7. The notation used in Fig. 7
is the following: S−a1 means sensing at a1 and T −b1 means
traveling to b1. The cost calculated with the utility function will
be assigned to the edges going from a sensing state to a traveling
state, and the weight for an edge going from a traveling state to
a sensing state will be zero. So we are assuming that sensing
yields no cost, which is not always the case.

B. Tovar et al. / Robotics and Autonomous Systems 54 (2006) 314–331 321
Fig. 7. Searching tree considering the states of the robot.

The representation of the states in the tree may seem
unnecessary, but this scheme is useful for extending our
approach to the multi-robot case as will be shown below (see
Section 6.1).

5.1.1. Branch reduction heuristic
Suppose that at some time, the robot has n free edges to visit

and there are exactly m configurations for each free edge. There
will be n · m nodes pending from the root node. For the second
level of the tree, there will be (n −1) ·m children for each node,
because the robot has already visited a free edge. So at level
two the robot has to choose from the n −1 unvisited free edges.
For the third level of the tree, there will be (n − 2) · m children
for each node, and so on and so forth.

We can see here, that the tree grows exponentially according
to n and m, so as n and m are larger, the search for the optimal
path is intractable. Note that the whole tree has n levels, this
is the maximum depth. In this case, we can reduce the search
space pruning the tree using a branch and bound algorithm [1].

The idea with the branch and bound algorithm is to build
the tree to a level w < n. At this point, we select the leaf with
the maximum utility and continue expanding the tree only from
that leaf on. This idea is represented in Fig. 8.

6. Multi-robot map building

We have developed, implemented and simulated a planner
for multi-robot map building. Our approach consists in a
centralized planner. The position and current visibility from
every robot is assumed to be known by the planner.
Fig. 8. The big triangle represents the whole tree until max. depth, the gray part
represent the reduced tree.

We denote by V (qk) the visibility polygon of a robot at
configuration qk . A robot is free to move in the interior of
its visibility polygon, so long as it does not collide with an
obstacle. We denote by F(qk) the visibility polygon reduced
by the robot radius, i.e., F(qk) is a safe region for navigation
that is visible from configuration qk . We define Vtot as the total
visibility region for the ensemble of robots, and Ftot as the total
visible region in which any robot can move, i.e.,

Vtot =

⋃
k

V (qk) and Ftot =

⋃
k

F(qk).

In our multi-robot map building strategy a robot at
configuration qk has as a priority to visit those free edges that lie
within F(qk). Associating each robot with its visibility region
reduces the complexity of the problem. If there are no free
edges visible from qk , then the robot is free to explore free
edges that lie in Ftot. In this case, a sampling-based evaluation
determines which free edge will be visited by the robot. In all
the cases, the decision is taken by evaluating Eq. (1). Since
Eq. (1) estimates the size of the unexplored space by using
the size of the free edges, exploring the unknown space is
equivalent to sending a robot to visit a free edge.

6.1. Multi-robot several steps ahead exploration

The proposed exploration strategy described in Section 5.1
has been extended to the multi-robot case. We have a search tree
to find a plan for all robots. This plan consists in finding which
robot should visit a free edge i considering it is at configuration
xi , yi , θi at some time. We consider that only one robot is
moving at any time while the rest are sensing. The state of the
multi-robot system is defined as a vector having the states of
each robot. For example one possible state of the system can
be: (Robot 1 traveling, Robot 2 sensing, Robot 3 sensing). We
also consider that once a free edge has been explored by one
robot, none of the others will go to that edge.

Fig. 9 shows an example of a search tree for two robots
with three free edges. We suppose that there is only one
configuration for each free edge, so there are in total three
configurations, denoted a1, b1 and c1. As an example of the
notation used for describing the state of the system consider
R1–T –a1, R2–S–c1. They respectively mean that Robot 1 is
traveling to configuration a1 on free edge A, and that Robot 2
is sensing at configuration c1.

The root node represents the initial state where all robots
are sensing at their corresponding initial configuration. After

322 B. Tovar et al. / Robotics and Autonomous Systems 54 (2006) 314–331
Fig. 9. Search tree for two robots having two free edges and only one
configuration for each free edge.

that, there are six different nodes in the first level: Either robot
can move to one of a1, b1 or c1 while the other one is sensing.
Suppose that the selected next state is Robot 1 traveling to b1
while Robot 2 remains sensing. After this move, there are two
possible states: Robot 2 traveling to a1 or Robot 2 traveling
to c1. In any case, Robot 1 will be sensing at b1.1 As only
one robot moves at a time, the cost assigned to any one arc
corresponds to the cost associated with the moving robot. For
example, if the system is at state (R1–S–a1, R2–T –b1) and if
the next state is (R1–T –c1, R2–S–b1) the cost for going from
one state to the other is the cost associated with moving Robot
1 from configuration a1 to configuration c1.

Once the tree has been defined, we can apply any search
algorithm and also we can apply the branch and bound
algorithm to reduce the search space.

7. Robot architecture and experiments

We are using a Pioneer mobile robot (see Fig. 10) with an on-
board PC 400 MHz processor. It is equipped with a Sony EVI-
30 CCD moving camera for landmark identification. The robot
is also equipped with a Sick laser range sensor. This sensor uses
a time-of-flight technique to measure distances.

The software consists of several modules executing
specialized functions and communicating using TCP/IP socket
communications under a client/server protocol. The main
modules in our robot architecture are: frame server, Sick laser
server, line fitting module, model matching module, landmark
identification server, motion planner, motion controller, and
system coordinator.

We are currently developing and integrating the robot
architecture necessary to perform our whole approach in a real
robot. Up to now we have totally developed the frame server,
motion planner, line fitting, Sick laser server, model matching,
motion controller and system coordinator modules. We are
working on the landmark identification module.

A computer simulation of this planner has been done.
The software is written in C++ and uses geometric functions

1 Note that in Fig. 9, we have only developed the first two nodes of the second
level.
Fig. 10. Indoor mobile robot and sensors.

available in the LEDA 4.2 library. The simulation shows that
this approach produces good results for the model building task.

In our simulation landmarks are represented with dark disks,
the robot with a light square and the road-map with lines. The
robot is placed anywhere inside the map, and begins exploring.
As the robot moves across the map it takes every visibility
area from the positions selected by the utility function to
construct the model incrementally. The road map is constructed
at the same time. The final map is constituted by polygons
(which represent walls or obstacles), landmarks, and a road-
map, constituted by a graph. When the robot ends exploring an
area, it is able to go back since it remembers past unexplored
areas. This backtracking is based on navigation across the
backtracking graph.

Fig. 11 shows how the utility function works: in Fig. 11 the
robot has to take a decision between going to a large free edge,
which means seeing as much of the as-yet-unseen environment
as possible or going to a landmark to re-localize itself. In our
simulation, the robot chose to improve its localization by going
to the landmark (Fig. 11(b)) and then go back and explore the
unknown environment. In these figures the current visibility
region is showed by a dotted line semi-circle.

Genetic algorithms have been also used as an optimization
method in probabilistic based motion planning methods [2,23].
An implementation of the utility function here proposed has
been done using genetic algorithms. The genetic algorithm uses
the Vasconcelos deterministic model for individuals crossing
and the parameters like population size, crossing and mutation
probabilities are self-adapting. Results are shown in Fig. 12.

B. Tovar et al. / Robotics and Autonomous Systems 54 (2006) 314–331 323
Fig. 11. (a) Utility function selection of next view. (b) Robot going to the
landmark.

Fig. 12. Exploration result using genetic algorithms to optimize utility function
selection. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

The red lines indicate the robot path, the blue objects are
landmarks. This implementation gives as result fewer sensing
operations and rotations. However, this implementation takes
considerably more computational running time (several hours).

Fig. 13 shows multi-robot map building. The colors in
the map are used to associate a part of the map with the
robot that has explored it. It can be seen that the map is
uniformly distributed among the robots in the environment. The
landmarks are shown in the figure as a blue disk (a column)
Fig. 13. Multi-robot map building: (a) case of an omni-directional and
infinite range sensor; (b) case of 180◦ field of view and limited range. (For
interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Fig. 14. Multi-robot map building.

or blue segments on the walls which represent posters. In
Fig. 13(a) the environment is explored using a non-limited
range sensor and a 360◦ visibility capability. It can be seen
that with such conditions, the number of created milestones
for sensing operations is smaller and the robot trajectory much
simpler and shorter than in Fig. 13(b) where a limited range
sensor and a visibility of 180◦ was chosen.

Fig. 14 shows a simulation with eight robots in an
environment composed of a central hall and several narrow
corridors. It can be seen that every robot has explored a different
corridor.

324 B. Tovar et al. / Robotics and Autonomous Systems 54 (2006) 314–331
Fig. 15. One robot exploration.
7.1. One single step ahead versus several steps ahead
optimization

In this section, we compare a one single step optimization
scheme versus our partial greedy algorithm, capable of
exploring several steps ahead. We consider two scenarios: One
single robot and two robot exploration. The parameters used to
make the comparison are path length, number of robot turns,
number of robot stops and number of sensing locations. In
all these simulations the robots have limited range sensor and
omnidirectional sensing.

The robots’ paths and the perimeter of the current visibility
regions are shown in all figures. Fig. 15(a)–(c) show the
evolution of an exploration simulation with one robot and
an optimization schema with only one single step ahead.
Conversely, Fig. 15(d)–(f) show a simulation with one robot
and an optimization schema considering several steps ahead.
Similarly, Fig. 16(a)–(c) and (d)–(f) respectively show an
experiment with two robots and an optimization schema with
only one single step ahead and with several steps.

The robots’ paths are qualitatively more complex when
more than one step is used in the optimization. Table 2 shows
quantitative results in terms of path properties and number
of sensing locations. In general, the results are better with a
totally greedy exploration. That is, the path length is shorter,
the total angle turned by the robot, the number of robot stops
and the number of sensing location are smaller. In a several
steps ahead optimization, the robots make a long term plan.
That plan returns the ordering to visit all the current free edges.
The same strategy is repeated until all free edges are explored.
This planning process yields unnecessary motions.

As soon as new free edges appear (which have not been
considered in the original plan), the robot will need to come
back to locations near to other locations already visited. The
interpretation of these results is that making long term plans
with partial and dynamic information will result in a waste of
resources.

7.2. Experiments with real robots

Fig. 17 shows an experiment on the real robot. The robot
has chosen to go to the free edge in the front left because it
represents the next best view according to Eq. (1). Note that
the robot has not chosen to turn around to see the free edge
behind it, because this configuration has a low value according
to Eq. (1). Actually, this configuration is bad because it is not
possible to perform model matching and therefore deal with
robot localization. Fig. 18 shows the environment map at time
t and the robot location at times t and t + 1. Fig. 18 shows the
environment map and robot location at time t +2. In both cases,

B. Tovar et al. / Robotics and Autonomous Systems 54 (2006) 314–331 325
Fig. 16. Two robot exploration.
Table 2
One single step ahead versus several steps ahead optimization

Properties One robot/one single step One robot/several steps

Path length 517.0367 637.2925
Number of stops 51 58
Number of sensing locations 20 18
Total turn angle (degrees) 1406.735 879.578

Properties Two robots/one single step Two robots/several steps

Path length 260.71756 461.5974
Number of stops 27 57
Number of sensing locations 15 20
Total turn angle (degrees) 1323.924 1903.179
the visibility robot region is shown in yellow, the free edges in
red and the full edges in blue. Fig. 19 shows the laser data at
time t + 2 and Fig. 20 shows the robot going to the next best
view.

Currently our global architecture is not complete. For the
experiments performed on the robot, we are using only data
obtained from the laser. The camera is not used.

Fig. 21(a) shows a picture of a more complex map building
experiment. Fig. 21(b) shows the map built at time t , the robot’s
visibility region is shown in yellow, the free edges in red, and
the full edges in blue. In this figure is also shown the robot’s
location a time t (blue disk) and the next position where the
robot has to move at time t + 1 (red disk). This location has
been computed using Eq. (1), but taking into account only the
parameters related to the laser data.

Fig. 22(a) shows the laser data at time t and t + 1 without
registration. Laser data obtained at time t are in blue and those
obtained at time t +1 in red. Fig. 22(b) shows the map matching
obtained by using Eq. (4). The transformation (rotation and
translation) related to the matching is used to improve robot

326 B. Tovar et al. / Robotics and Autonomous Systems 54 (2006) 314–331
Fig. 17. Experiment on a real robot.

Fig. 18. (a) Environment map at time t . (b) Environment map at time t + 2.
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Fig. 19. Laser data.

localization. Fig. 23(a) shows the polygonal model of the
environment and the last two robot locations. The road-map
used by the robot is shown in the figure by using brown dotted
lines. When the robot gets back to a previous location (traveling
through the backtracking graph) a localization procedure is
executed at each graph node using the model matching result.
Fig. 23(b) shows the laser final map.
Fig. 20. Robot going to the next best view.

Fig. 21. (a) Experiment with a mobile robot. (b) The robot is going to explore
a free edge. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Our experiments were conducted in environments with
clear polygonal shapes. This is still of interest since we
are not proposing new algorithms to deal with complex
noisy data. We have focused on the problem of planning
optimal exploration strategies for SLAM. We believe that
our experiments show that our proposed algorithms go

B. Tovar et al. / Robotics and Autonomous Systems 54 (2006) 314–331 327
Fig. 22. (a) Laser data. (b) Model matching. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version
of this article.)

beyond unrealistic theoretical assumptions. More sophisticated
SLAM techniques can deal with more complex data. For
instance, for large and complicated noisy environments a global
optimization data matching would produce more precise maps.
In general, we believe that SLAM algorithms and algorithms
devoted to output exploration strategies solve two distinct and
complementary aspects of the model building problem. In this
vein, we claim that our algorithm makes it easier for a feature-
based SLAM algorithm to integrate the information collected
during navigation into the most accurate possible map.

8. Comparing our approach with other works about
exploration and mapping

In this section, we compare our approach with other works
devoted to map building and exploration.

8.1. González-Baños et al.’s approach

The exploration strategy presented in [15] is based on the
computation of the next best view and the use of randomized
motion planning. Our approach follows this research line.
In [15] the concept of the next best view is based mainly on two
factors: Estimated area of unexplored environment and distance
traveled for the robot to reach a new sensing location. Visibility
type methods [28,30] are used to estimated information gain.
Fig. 23. The multi-representational map. (b) The final model. (For
interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

There are three main improvements of our work over the
one presented in [15]. First, we consider the case of multi-robot
exploration.

Second, we have taken into account uncertainty (cost) due
to control errors. This is contrast with [15], where the cost of a
next sensing location is based only on the distance traveled by
the robot. Experimentally, we have found out that uncertainty
due to control errors (at least for our robots) increases faster
when the robot rotates than when it translates. Location errors
also increase faster when the robot changes its velocity. Thus,
minimizing the number of robot stops to arrive at an unexplored
area amounts to minimizing the robot position error. Our utility
function reflects these facts.

Third, overlapping between a local perception (local map)
and the current global map may be necessary (but not sufficient)
to merge a local map with the global one. In [15] the amount
of overlapping between a local map and the global one is
measured using the size of the common perimeter between
them. However, measuring overlapping as an estimator of the
ability of merging maps may not be enough. For instance, in
corridors bounded by parallel featureless walls, a matching
procedure only corrects positioning errors in the direction
perpendicular to the walls. Our approach will try to avoid

328 B. Tovar et al. / Robotics and Autonomous Systems 54 (2006) 314–331
sensing locations, where the environment has that unwanted
property. Our utility function will prefer sensing locations from
where corners or landmarks are visible making it easier for a
registration procedure (in our case the Hausdorff distance) to
align the maps.

8.2. Makarenko et al.’s approach

The work of Makarenko et al. [22] has proposed concepts
that are similar to ours. We underline that both approaches
have been proposed independently. Even though similar, these
approaches are also different in several senses. First, we
use a feature based modeling, as opposed to a grid. In our
approach obstacles are modeled as polygons, while in [22],
the environment is represented with a grid. We used original
laser data to align local maps with the global one. The best
transformation according to our metric (the Hausdorff distance)
is used to correct the robot position and merge the maps. But,
at the end the stored map is composed of polylines obtained
through line fitting of the original laser points. Thus, the
memory required to store the map is drastically reduced in
comparison with grid based maps. It is well known that when
the size of the environment is large, grid based models become
difficult to handle. Additionally, feature based maps are more
suitable for path planning and free space visualization. We
believe that our proposed environment representation is more
useful to several robotics tasks, specially visibility-based ones
such as target tracking and target finding.

Second, in our approach the use of landmarks is proposed to
better localize the robot and merge partial maps. We also use
landmarks as a pivotal feature to align partial maps. For any
given candidate robot destination, the more landmarks the robot
is able to sense in it, the more rewards it will get. We distinguish
between landmarks and features. Landmarks can be uniquely
identified by the robot, while features are geometric entities
without specific identities. In general a landmark should be
more useful than a feature to solve the data association problem.
By comparison, in [22] the use of landmarks is not integrated
to evaluate the utility of a next sensing location.

Third, our utility function is much better at balancing
opposite factors. This is because it has multiplicative form. The
utility function of [22], however, is a summation. Thus in our
approach a robot configuration with a very low value on at least
one of the factors will be discarded regardless of having a very
good value on the others.

Fourth, the approach presented in [22] does not consider
multi-robot exploration.

8.3. Simmons et al.’s approach

Similar to the work presented in [31] our approach also
defines a utility value over candidate sensing locations. For the
information gain we take into account two factors: (i) the size
of the frontier between explored and unexplored environments
and (ii) the distance between the obstacles and the robot.
By comparison, in [31] the information gain is based on
a probabilistic estimation of the frontier size, but does not
consider the distance between the robot and the obstacles. This
is a limitation as many sensors become blind when the objects
are very near to them. Thus, in this respect, our approach
surpasses Simmons et al.’s since it captures the information
gain better. The same as [13,15], in [31] the cost associated
with a sensing location is defined as the distance that the robot
would travel to reach that location. As argued before, we believe
that our utility function provides a more realistic estimation of
this cost. In [31] a central executive tries to maximize the total
utility minimizing the overlapping between the areas that will
be explored. In our approach the robot team coordination is
similar. Each robot is assigned to one unexplored area, but only
one robot moves at each time to avoid possible collision among
moving robots.

8.4. Newman et al.’s approach

The approach presented in [27] has some similarities with
ours. In both works visibility computation is used to estimate
the pertinence of a next robot sensing location and both
approaches use feature-based maps.

In our approach sensor parameters (range and field of view)
are input to the planner. The planner returns a path that depends
on those parameters. Thus, a plan for a robot with stronger
sensor capabilities will result in a smaller number of milestones
for sensing operations and shorter trajectories than a plan
for a robot with weaker sensor capabilities. This adaptation
capability is not presented in [27]. Furthermore, Newman et al.
do not consider either the distance or the control errors as a cost
to be integrated to the utility of a sensing location. Our work
does take into account that cost.

In contrast, in [27], it is assumed that the location of a feature
is uncertain and represented by a set of probability distribution
functions. Associating uncertainty with feature locations seems
to better capture real world situations. This is not considered in
our approach and has been left as part of our future research.

8.5. Feder et al.’s approach

The work presented in [11] proposes a metric for adaptive
sensing that is defined in terms of Fisher information. That
approach does not consider either path planning or obstacle
avoidance. In our work a road map is built as the exploration
progress. When the robot ends exploring an area, it is able to
go back since it remembers where the unexplored areas are.
This backtracking is based on navigation across the road-map.
We use the robot visibility polygon reduced by the robot radius
F(qk) to avoid robot collisions. F(qk) is a safe region for
navigation that is visible from configuration qk .

9. Conclusions and future research

In this paper, we presented a motion planning approach
for building a map of the environment. Our motion planning
algorithms are all based on sampling.

From the path planning point of view, the originality of
our work comes from the fact that the robot goal has to be

B. Tovar et al. / Robotics and Autonomous Systems 54 (2006) 314–331 329
determined at every single iteration of the algorithm. Unlike
classical motion planning techniques, ours does not assume to
know the exact robot position.

A planner that selects the next robot position is proposed.
It works by maximizing a novel utility function. This function
was especially designed to combine geometric information with
an intensive usage of the results obtained from perceptual
algorithms. The crux of our method is a sampling-based motion
planner algorithm that, given a partial map of the environment,
selects where to move the robot next. We balance the desire
to see as much of the as-yet-unseen environment as possible,
while having enough overlap and landmark information with
the scanned part of the building to guarantee good registration
and robot localization. The final result of the exploration is a
multi-representational map constituted by polygons, landmarks
and a road-map.

Our approach improves existing methods in that the robot
plans motions in such a way that its uncertainty localization
is minimized. At the same time, the motion strategy takes into
account that the robot must discover unexplored environment
regions minimizing energy consumption. The proposed robot
motion strategy generates a fast and reliable map building.

In the SLAM problem the main goal is to integrate the
information collected during navigation into the most accurate
possible map. In our work we want to provide a robot path
through sensing locations. These locations have been chosen to
provide both the best possible sensor inputs and the minimal
cost (both given maximal utility) to reach them in terms of
energy and induced uncertainty.

Our algorithm does take into account the chosen map
representation and sensor capabilities. Thus, our motion
strategy will prefer sensing locations with large overlap
between the partial and the global maps and from which corners
or landmarks are visible making it easier for a registration
procedure to align the local map with the global one.

The quality and success of the generated paths depend
significantly on the sensing robot capabilities. Studying the
plan’s dependency on the high level parameters describing
the sensors (e.g., max. distance sensed, field of view) is an
important part of our work.

Additionally, the uncertainty in the robot location will
depend on the controls applied to the robot. Some path
properties such as: path length, number of robot turns and
number of robot stops will directly influence the magnitude of
uncertainty in the robot location. Our algorithm will chose the
robot path that minimizes unwanted types of controls.

We have proposed an efficient algorithm driven by our
utility function. This algorithm is able to explore several steps
ahead without incurring too high a computational cost. We
have compared that exploration strategy with a totally greedy
algorithm that optimizes a cost function with a one-step-look
ahead. In general, the results are better with a totally greedy
exploration. The interpretation of these results is that making
long term plans with partial and dynamic information may often
result in a waste of resources.

In general our algorithms will output a set of sensing
location and robot path to reach them that makes it easier for
a feature-based SLAM algorithm to integrate the information
collected during navigation into the most accurate possible
map.

In summary, our work fills in some gaps between
exact geometrical approaches and approaches that consider
uncertainty by taking advantage of perceptual information—
from data registration up to scene understanding—to reduce the
robot position uncertainty.

Multi-robot coordination algorithms were presented as
well. The proposed algorithms have been implemented and
experiments on real robots are included. The quality of the plans
mainly depends on the number of generated samples and the
robot sensing capabilities.

While significant, our work leaves room for improvements.
Further work should consider a more sophisticated algorithm
for coordinating a team of robots to explore the environment,
specially one where more than one robot moves simultaneously.
Further work should also consider that a feature location is
uncertain and should be represented with a set of probability
distribution functions, as in [27]. We want to complete our
global robot architecture including a video camera to extract
landmarks from visual data. We want also to make multi-
robot map building experimentation. We are planning to use
our 2D model to help selecting “good” locations at which to
perform 3D sensing operations to construct a 3D model of the
environment.

Acknowledgments

The authors thank Jean Claude Latombe for his contribution
to the ideas presented in this paper. The authors also want
to thank Héctor González Baños for his suggestions on the
implementation of our algorithms, and Claudia Esteves for his
help in the development of the robotic system. This research
was partially funded by CONACyT project J34670-A and by
the ITESM Campus Ciudad de México, México.

References

[1] A. Aho, J. Hopcropft, D. Ullman, Data Structures and Algorithms,
Addison-Wesley, 1983.

[2] J. Ahuactzin, E. Mazer, P. Bessire, Using genetic algorithms for robot
motion planning, in: Proc European Conference on Artificial Intelligence,
1992.

[3] N. Ayache, O. Faugeras, Building registration and fusing noisy visual
maps, Journal of Robotics Research 7 (6) (1988) 45–65.

[4] H. Bulata, M. Devy, Incremental construction of landmark-based and
topological model of indoor environments by a mobile robot, in: IEEE
Int. Conf. on Robotics and Automation, 1996.

[5] J. Castellanos, J. Montiel, J. Neira, J. Tardós, The SPmap: A probabilistic
framework for simultaneous localization and map building, IEEE
Transactions on Robotics and Automation 15 (5) (1999) 948–953.

[6] R. Chatila, J.-P. Laumond, Position referencing and consistent world
modeling for mobile, in: IEEE Int. Conf. on Robotics and Automation,
1985.

[7] H. Choset, J. Burdick, Sensor based motion planning: The hierarchical
generalized voronoi diagram, in: J. Laumond, M. Overmars (Eds.),
Algorithms for Robotic Motion and Manipulation, Springer Verlag, 1997.

[8] J.-L. Crowley, World modeling and position estimation for a mobile robot
using ultrasonic ranging, in: IEEE Int. Conf. on Robotics and Automation,
1989.

330 B. Tovar et al. / Robotics and Autonomous Systems 54 (2006) 314–331
[9] G. Dissanayake, P. Newman, S. Clark, H.F. Durrant-Whyte, M. Csorba,
A solution to the simultaneous localisation and map building (SLAM)
problem, IEEE Transactions on Robotics and Automation (2001).

[10] A. Elfes, Sonar-based real world mapping and navigation, IEEE
Transactions on Robotics and Automation 3 (3) (1987) 249–264.

[11] H. Feder, J. Leonard, C. Smith, Adaptive mobile robot navigation and
mapping, International Journal of Robotics Research 18 (1999) 650–668.

[12] B. Gerkey, R. Vaughan, A. Howard, The player/stage project: Tools for
multi-robot and distibuted sensor systems, in: Int. Conf. in Advanced
Robotics, 2003.

[13] H. Gonzalez, E. Mao, J.-C. Latombe, T. Murali, A. Efrat, Planning
robot motion strategies for efficient model construction, in: Robotics
Research—The 9th Int. Symp, 1999.

[14] J. Gonzalez, A. Reina, A. Ollero, Map building for a mobile robot
equipped with a 2d laser rangefinder, in: IEEE Int. Conf. on Robotics and
Automation, 1994.

[15] H. H. González-Baños, J.-C. Latombe, Navigation strategies for exploring
indoor environments, International Journal of Robotics Research 21
(10/11) (2002) 829–848.

[16] J. Hayet, M. Devy, F. Lerasle, Visual landmarks detection and recognition
for mobile robot navigation, in: Int. Conf. on Computer Vision and Pattern
Recognition, 2003.

[17] S. Hutchinson, Exploiting visual constraints in robot motion planning, in:
IEEE Int. Conf. on Robotics and Automation, 1991.

[18] D. Huttenlocher, G. Klanderman, J. Rucklidge, Comparing images using
the hausdorff distance, IEEE Transactions on Pattern Analysis and
Machine Intelligence 15 (9) (1993) 850–863.

[19] K. Konolige, C. Ortiz, R. Vincent, A. Agno, M. Eriksen, B. Limketkai, M.
Lewis, E. Briesemeister, L. Ruspini, D. Fox, J. Ko, B. Steward, L. Guibas,
Centibots: Large scale robot teams, in: International Workshop on Multi-
Robot Systems, 2003.

[20] A. Lazanas, J.-C. Latombe, Landmark-based robot navigation, Algorith-
mica 13 (1995) 472–501.

[21] W. Lee, B. Kuipers, R. Froom, D. Pierce, The semantic hierarchy in robot
learning, in: IEEE Int. Conf. on Robotics and Automation, 1993.

[22] A. Makarenko, B. Williams, F. Bourgault, H.F. Durrant-Whyte, An
experiment in integrated exploration, in: IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems, 2002.

[23] E. Mazer, J. Ahuactzin, P. Bessire, The ariane’s clew algorithm, Journal
of Robotics Research 9 (1998) 295–316.

[24] M. Montemerlo, S. Thrun, D. Koller, B. Wegbreit, FastSLAM: A factored
solution to the simultaneous localization and mapping problem, in: Proc.
of the National Conference on Artificial Intelligence (AAAI), 2002.

[25] R. Murrieta-Cid, C. Parra, M. Devy, Visual navigation in natural
environments: From range and color data to a landmark-based model,
Journal of Autonomous Robots 13 (2) (2002) 143–168.

[26] R. Murrieta-Cid, C. Parra, M. Devy, B. Tovar, C. Esteves, Building multi-
level models: From landscapes to landmarks, in: IEEE Int. Conf. on
Robotics and Automation, 2002.

[27] P. Newman, M. Bosse, J. Leonard, Autonomous feature-based
exploration, in: IEEE Int. Conf. on Robotics and Automation, 2003.

[28] J. O’Rourke, Visibility, CRC Press, Inc., 1997.
[29] C. Parra, R. Murrieta-Cid, M. Devy, M. Briot, 3-d modelling and

robot localization from visual and range data in natural scenes,
in: H. Christensen (Ed.), First Int. Conf on Vision Systems, Springer
Verlag, 1999.

[30] T. Shermer, Recent results in art galleries, Proceedings of the IEEE 80 (9)
(1992).

[31] R. Simmons, D. Apfelbaum, W. Burgard, D. Fox, M. Moors, S. Thrun,
H. Younes, Coordination for multi-robot exploration and mapping, in:
AAAI National Conference on Artificial Intelligence, 2000.

[32] R. Smith, M. Self, P. Cheeseman, Estimating uncertain spatial
relationships in robotics, in: I. Cox, G. Wilfong (Eds.), Autonomous
Robot Vehicles, Springer Verlag, 1990.

[33] S. Teller, Automated urban model acquisition: Project rationale and status,
in: DARPA Image Understanding Workshop, 1998.

[34] S. Thrun, W. Burgard, D. Fox, Probabilistic mapping of an environment
by a mobile robot, in: IEEE Int. Conf. on Robotics and Automation, 1998.
[35] B. Tovar, R. Murrieta-Cid, C. Esteves, Robot motion planning for model
building under perception constraints, in: International Symposium on
Intelligent Robotic Systems, 2001.

[36] B. Tovar, R. Murrieta-Cid, C. Esteves, Robot motion planning for map
building, in: IEEE/RSJ Int. Conf. on Intelligent Robots and Systems,
2002.

Benjamin Tovar received the B.S. degree in electrical
engineering from ITESM at Mexico City, Mexico,
in 2000, and the M.S. in electrical engineering from
University of Illinois, Urbana-Champaign, USA, in
2004. Currently (2005) he is pursuing the Ph.D. degree
in Computer Science at the University of Illinois. Prior
to M.S. studies he worked as a research assistant at
Mobile Robotics Laboratory at ITESM Mexico City.
He is mainly interested in motion planning, visibility-
based tasks, and minimal sensing for robotics.

Lourdes Muñoz-Gómez received her B.S. degree
in electronic systems engineering from Tecnológico
de Monterrey (ITESM) Campus Ciudad de México,
Mexico in 1999, and the M.S. in computer science
from ITESM Campus Estado de México, Mexico in
2003. She was a research assistant at the Autonomous
National Univeristy of Mexico (UNAM) from 1998
to 1999. She was in a research stay at the University
of Illinois at Urbana-Champaign with Professor Seth
Hutchinson, in 2004. Currently she is pursuing a

Ph.D. at the ITESM-CEM, Mexico. Her work is about motion planning
strategies for map building.

Rafael Murrieta-Cid received the B.S. degree in
Physics Engineering (1990), and the M.Sc. degree in
Automatic Manufacturing Systems (1993), both from
Instituto Tecnológico y de Estudios Superiores de
Monterrey (ITESM) Campus Monterrey. He received
his Ph.D. from the Institut National Polytechnique
(INP) of Toulouse, France (1998). His Ph.D. research
was done in the Robotics and Artificial Intelligence
group of the LAAS/CNRS. In 1998–1999, he was
a postdoctoral researcher in the Computer Science

Department at Stanford University. From January 2000 to July 2002 he was an
assistant professor in the Electrical Engineering Department at ITESM Campus
México City, México. In 2002–2004, he was working as a postdoctoral research
associate in the Beckman Institute and Department of Electrical and Computer
Engineering of the University of Illinois at Urbana-Champaign. Since August
2004, he is director of the Mechatronics Research Center in the ITESM Campus
Estado de México, México. He is mainly interested in sensor-based robot
motion planning and computer vision.

Moisés Alencastre-Miranda got his degree in
Cybernetics and Computer Systems Engineering
from La Salle University at Mexico City (México),
in 2000, and received his M.Sc. degree in Computer
Science from Tecnológico de Monterrey Campus
Estado de México (ITESM-CEM), in 2003. He
has worked as a research assistant at La Salle
University Research Center from 1995 to 1998, at the
Visualization Laboratory, in Autonomous National
University of Mexico (UNAM), from 1998 to 1999,

and at the ITESM-CEM, from 2000 until now. From 2003, he is pursuing
the Ph.D. degree in Computer Science working in sensor-based navigation
with uncertainty for outdoor mobile robotics. He was a visitor scholar in
the Beckman Institute with Professor Seth Hutchinson in 2004 (University of
Illinois Urbana-Champaign).

B. Tovar et al. / Robotics and Autonomous Systems 54 (2006) 314–331 331
Dr. Monroy obtained a Ph.D. in Artificial Intelligence
in 1998 from Edinburgh University, under the
supervision of Prof. Bundy. He has been in Computing
at Tecnológico de Monterrey (ITESM), Campus
Estado de México, since 1985. In 1992 he was
promoted to Assistant Professor and in 2000 he was
promoted to Associate Professor. Since 1998 he is
a member of the CONACYT-SNI National Research
System. Dr. Monroy has held 6 research grants
from several funding agencies, including CONACYT

(holder), the national research council, BMBF (co-holder), FRIDA (holder)
and CONACyT-REDII (co-holder). He is the sole or joint author of over 20
published papers. He is programme co-chair for MICAI-2004 and MICAI-
2005 and has been on several programme committees. He has been Secretary
Treasurer to the Mexican Society for Artificial Intelligence since 2000.
Dr. Monroy’s research focuses on automating the use of theorem proving
to formal methods of system development. He is also interested in issues
of computer security. Currently, his research concerns: the discovery and
application of proof plans to automate the verification of security protocols;
the discovery an application of general search control strategies for uncovering
and correcting errors in either a system or its specification; and the discovery of
novel methods for anomaly detection in computer security.
Seth Hutchinson received his Ph.D. from Purdue
University in West Lafayette, Indiana in 1988. He
spent 1989 as a Visiting Assistant Professor of
Electrical Engineering at Purdue University. In 1990
Dr. Hutchinson joined the faculty at the University of
Illinois in Urbana-Champaign, where he is currently
a Professor in the Department of Electrical and
Computer Engineering, the Coordinated Science
Laboratory, and the Beckman Institute for Advanced
Science and Technology. Dr. Hutchinson is currently a

senior editor of the IEEE Transactions on Robotics and Automation. In 1996 he
was a guest editor for a special section of the Transactions devoted to the topic
of visual servo control, and in 1994 he was co-chair of an IEEE Workshop on
Visual Servoing. In 1996 and 1998 he co-authored papers that were finalists for
the King-Sun Fu Memorial Best Transactions Paper Award. He was co-chair of
IEEE Robotics and Automation Society Technical Committee on Computer and
Robot Vision from 1992 to 1996, and has served on the program committees
for more than thirty conferences related to robotics and computer vision. He has
published more than 100 papers on the topics of robotics and computer vision.

	Planning exploration strategies for simultaneous localization and mapping
	Introduction
	Related research
	Evaluating candidate sensing locations
	Landmarks and features
	Landmarks
	Extracting line segments to be stored
	Fusing data from multiple views

	Map building algorithm
	Several steps ahead exploration: An efficient algorithm
	Branch reduction heuristic

	Multi-robot map building
	Multi-robot several steps ahead exploration

	Robot architecture and experiments
	One single step ahead versus several steps ahead optimization
	Experiments with real robots

	Comparing our approach with other works about exploration and mapping
	González-Baños et al.'s approach
	Makarenko et al.'s approach
	Simmons et al.'s approach
	Newman et al.'s approach
	Feder et al.'s approach

	Conclusions and future research
	Acknowledgments
	References

