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Multi-Rate Analysis and Design 
of Visual Feedback Digital 
Servo-Control System 
This paper addresses the analysis and design of digital motion control system with 
machine vision as a feedback measurement in the servo loop. The camera vision is 
modeled as a discrete time-delayed sensor. A multirate formulation is proposed 
based on the fact that vision update rate is slower than the digital servo-control 
update rate and is analyzed through the lifting technique which converts the periodic 
time varying multirate system to a time invariant one. Some interesting properties 
of this specific multirate system are found and are utilized in control system design. 
An 1-7 norm optimal control problem is formulated to minimize the maximum time 
domain error, which has direct connection to camera field of view and mechanical 
tolerance. A numerical example is given to demonstrate the presented methods. 

1 Introduction 
The integration of computer vision with robot motion con

trol has steadily progressed, from early look and move systems 
in which vision was used to recognize and locate an object 
prior to its manipulation, to current systems in which visual 
feedback is incorporated into an outer control loop, closing 
the position feedback loop around the end effector (rather 
than around the joint encoders) (Allen et al., 1991; Feddema 
et al., 1989; Papanikolopoulas et al., 1991; Skaar et al., 1987; 
Weiss et al., 1987). To date these systems use vision feedback 
to generate set points that are sent to the low level joint con
trollers. None of the methods reported have used visual feed
back in the servo-level control. In order to enhance the speed 
and accuracy performance, it becomes necessary to address 
the dynamic interactions between the faster servo inner loop 
and the slower visual outer loop, and eventually to incorporate 
visual feedback in the servo-loop directly. This motivates us 
to look at the analysis and design of high performance visual 
feedback control systems, in which the dynamic characteristics 
of the visual sensing element cannot be neglected. 

Typically, a visual feedback system has components evolving 
at two different rates, hence, giving rise to a multirate system. 
Multirate sampling theory has been studied well in connection 
with multirate digital filter design. Meyer et al. (1975) showed 
that multirate systems are special cases of periodic systems. In 
terms of multirate control problems, Rahmani et al. (1990) 
solved the LQR problem for continuous-time multirate sam
pling systems under the assumption that the control input is 
piecewise continuous, and obtained a periodic state feedback 
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solution by solving a discrete algebraic riccati equation. They 
pointed out that even when the measurements are obtained at 
a slow rate relative to the control input rate, the multirate 
strategy leads to improvements in the performance index when 
compared with single rate sampling systems. However, their 
assumption that system state was available for measurement 
is generally not the case in vision measurement. Dahleh et al. 
(1992) solved for the optimal controllers for periodic and hence, 
multirate systems using the "lifting technique," which has been 
studied in detail by Khargonekar et al. (1985), Francis et al. 
(1988) and Bamieh et al. (1992), to convert a periodic system 
into a higher dimensional time invariant system. They proposed 
a method by which the causality constraints on the controller, 
which come from the lifting, can be converted into linear 
constraints. In this paper we will utilize the lifting technique 
for a special class of multirate problems—the visual feedback 
systems and gain specific insights not addressed previously. 

Once the original time varying multirate problem has been 
reformulated as a time invariant problem by the lifting tech
nique, any known linear design technique can be applied to 
the lifted problem. In this paper, we choose to solve an M 
optimal control problem based on two reasons. First, the vision 
sensor unlike other sensors has a bounded field of view, i.e., 
the object must always (at all times) remain within the camera 
field of view. This implies that the maximum position error 
between the object and the camera must always lie within a 
certain limit. Second, the tolerance of mechanical motion sys
tems, such as robots or machine tools, is specified in terms of 
the maximum error. Also, effects due to uncertainties in the 
measurement of the position of the object by the camera (due 
to limited resolution of vision systems) and errors due to image 
processing are naturally incorporated since a worst case design 
is performed. Minimizing the maximum tracking errors for 
the whole class of signals corresponding to the object motion 
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leads to the /-l optimal control problems, which has been 
studied by Vidyasagar (1986), Dahleh et al. (1987), McDonald 
et al. (1991), Diaz-Bobillo (1992). 

The contributions of this work are summarized as follows: 
(a) We model the vision feedback control system as a mul-

tirate system, in which the vision element has been modeled 
as a sampled-data sensor with a gain and a delay and the 
controller is updated at a faster sampling rate than the vision 
element. 

(b) We utilize the lifting technique for the analysis and 
design of the multirate control system and show that the control 
problem can be formulated as a two-block problem; that the 
causality constraints on the controller are automatically sat
isfied and need not be explicitly accounted for; and that any 
periodic controller in the lifted domain can have a time in
variant realization. 

(c) We demonstrate the design methodology, i. e., the lifting 
and /-l optimal control, with a numerical example on an ex
isting mechanical system and compare the performance with 
conventional PD controller at different sampling rates. 

The rest of this paper is organized as follows: Section 2 
briefly describes the lifting technique in brief; Section 3 models 
the vision sensor and formulate the multirate control problem; 
Section 4 formulates the /-l optimization problem; Section 5 
gives state space realization for the lifted system; Section 6 
presents a numerical example and discusses the results followed 
by the conclusions in Section 7. 

2 The Lifting Technique 
We briefly discuss the Lifting technique presented in Francis 

et al. (1988). The following notations are adopted, g (lower 
case) is a signal and G^upper case) is a system in the continuous 
time domain, g and G are in the discrete time domain, and 
g and G are in the lifted domain. ST refers to a sampler with 
sampling time T, and HT refers to a zero-order hold with 
sampling time T. 

Consider a complex space S ( C ) of C values sequences 
defined on the set [0, 1,2, . . . ] . The direct sum of m copies of 
S is represented as S'". The subspace of square summable 
sequences on S is represented as h2 and similarly on Sm by 
hT. 

Every linear transformation has a matrix representation with 
respect to basis vectors of S. The right shift operator A shifts 
a discrete sequence u(k). Such that 

J = A77 

y(k+l) = u(k) k>Q 

?(0) = 0. 

Its adjoint A* shifts a discrete sequence u{k) s.t. 

y = A*u 

y(k-l) = u(k) k>0 

Notice that AA* = A*A = I. A system G is said to be shift in
variant iff 

A*GA = G (2.1) 

and is n periodic iff 

A*"GA" = G (2.2) 

Notice the difference between n periodicity and shift invar-
iance. A shift invariant system is n periodic for any n but a n 
periodic system satisfies (2.2) only for a particular n and its 
multiples. 

Two adjoint linear transformations are defined: 

y = Smu*=>y(k) = u(mk); where m is an integer. 

y = Smu<=>y(k) = 
u(k/m) if m divides k 

Given a particular discrete sequence 77 (k) , one interpretation 
of Sm and S„ could be that Sm is a slow sampling of 77, i.e., 
it picks up only those impulses which .are multiples of in, 
whereas S,*, could be considered to be a fast sampling of the 
sequence H(k), i.e., it inserts zeroes between samples. Some 
facts which are a natural consequence of the definitions are 

ASm = SmAm (2.3) 

A*Sm = SmA*m (2.4) 

S X = / ( & * / ) (2.5) 

This result shows the noncommutative property of the oper
ators S„, and S,*,. Roughly speaking, this means that the original 
signal can be obtained by first sampling it fast and then sam
pling it slow but not vice versa. Also 

SraA'S*=0 for ; = l , 2, ... ( w - 1 ) (2.6) 

The lifting technique provides a method by which periodic 
systems can be converted into a higher dimensional time in
variant system. Consider the linear transformation 

W: S - S m 

77(0) \ / u(m) 

W: (17(0), 77(1), 
17(1) u(m+l) 

\u(m-l)/ \u(2m-l) 

(2.7) 

The operator W groups the first m elements of the sequence 
into a single vector, the next m elements into another vector 
and so on, i.e., 

W: = 
SmA* 

S„,A„ 

(2.8) 

The first row of operator W picks up elements of (17) which 
are m time units apart. The second row picks up the elements 
of a signal, obtained by time shifting (17) to the left by one, 
which are m time units apart, and so on. 

The adjoint operator W*\ S m - S , i.e., 

77(0) \ 

W*: = 
77(1) 

u(m) 

u(m + 1) 

\u{m-\)J \u{2m-V)J 

- (17(0), 77(1), 77(2), 

W*: = {S*mAS*m...A'"-lS*m]-

(2.9) 

(2.10) 

Hence, W* does the opposite of W. Intuitively, we expect 
WW* =1. This can be verified as follows. 

WW*: = 
SmA* 

— * 
—-* 

is;As,;...Am-is;,] 

SmS m — SmA ASm —... — SmA A Sm — I 

Also, note that 

Hence, we get 

Similarly, 
0 else 

SmA*S*m = 0 

WW* = I 

W*W=I. 

(2.11) 

(2.12) 
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Fig. 2.1 Commutative diagram 

This is a useful result and will be used extensively in Section 
3. Noting that 

WA'" = AW (2.13) 

In general, if G is m-periodic, i.e., 

A'"G = GA'" (2.14) 

it can be lifted to a shift invariant system of higher dimension. 
This can be seen in Fig. 1. 

G: S'"-S'" (the lifted plant) 

G=WGW* (2.15) 

These relationships are illustrated in Fig. 2.1. 
_ I t can be shown that G, which corresponds to the lifting of 
G, is shift invariant. Therefore, known design techniques can 
be applied to G. Another important feature of lifting is that 
it is an isometry, i.e., the norm of the system is preserved by 
lifting. This can be verified as follows: We know from (2.15): 

G=WGW* 

It can be easily verified by definitions that II WW = IIW* II. Also, 
from (2.11) and (2.12) WW*=W*W=I, we have II WW 
= IIW* 11 = 1. 

=>WG\\ = WWG~W*W<W~G\\ 

Also, G=W*GW 

=>IIGII<IIGII 

Combining (2.16) and (2.17) we get 

IIGI1 = IIGII 

(2.16) 

(2.17) 

(2.18) 

3 Vision System Modeling and Multirate Problem 
Formulation 

The block diagram of the plant with the camera in the feed
back loop is shown in Fig. 3.1. The plant of concern here is 
assumed to be linear time invariant. The camera normally used 
in vision systems is a CCD camera. It has an inherent property 
of generating a discrete output. It is generally not associated 
with any dynamics and it essentially converts visual infor
mation into electrical signals. Associated with the camera is 
the vision unit which computes the relative position and the 
orientation of the object with respect to the camera by proc
essing the image. Henceforth, the camera with the vision unit 
will be referred to as the camera. If the mapping from the 
object space to the image plane were unique and independent 
of the orientation of the object, the transformation from the 
input to the output of the camera would be the identity matrix, 
i.e., the gain of the camera unit is /(identity). However, this 
is typically not the case as the mapping is position dependent 
and is non unique with respect to the depth of the object. Also, 
there is a significant delay associated with the image processing 
unit, as image processing is computationally intensive. Here, 
we assume that the depth of the object with respect to the 
camera remains unchanged. This allows us to assume that the 
camera gain is / . Hence, the camera in our case has been, 
modeled as a gain multiplied by a delay. In Fig. 3.1 thesampler, 
ST, which precedes the camera is introduced to account for 
the inherent discrete nature of the camera. The controller is 
assumed to be discrete with a sampling rate T/m, where Tis 

" 

H T ; „ 

*J 

c _ m 

$s\_)—"-fiN ST ©» Camara 

ST / <$-

Fig. 3.1 Block diagram of the vision system 

w, 

•&> P K D T K > 

H r S , 

Fig. 3.2 Block diagram after substitution of camera model 

the sampling rate of the vision system (which is also the delay 
associated with the camera). 

The problem setup involves sampler and hold functions op
erating at two different sampling rates, i.e., the problem is 
multirate by nature. As it is intended to make the robot grasp 
a moving object the design objective is to minimize the tracking 
error, which is the relative error between the object and the 
robot end effector, given by z. The motion of the object is 
assumed to be unknown. Hence, the design problem turns out 
to be a worst case design as it is intended to keep the error to 
as small a value as possible irrespective of the motion of the 
object. 

In Fig. 3.1 it is shown that the exogenous input, d, enters 
the system through a filter. But, in reality this is not the case. 
The reasons for introducing the filter are the following: (a) A 
strictly causal filter would make the design problem feasible 
as will be noted later, (b) The filter allows us to weight the 
signals in the desired frequency range, which here would be 
the low frequency range. 

The problem deals with signals of both continuous and dis
crete nature. Strictly speaking one should minimize the error 
in continuous time. But here we minimize z in discrete time. 
This means that the controller which is optimal in the discrete 
domain is only suboptimal in the continuous sense. But, we 
can make the difference (in the performance) as small as pos
sible. This is achieved by sampling the error as closely as 
possible. This, in our problem, manifests itself as generating 
discrete control signals as fast as possible. 

Figure 3.1 can be redrawn as shown in Fig. 3.2. Notice that 
the delay operator (which corresponds to the delay of the 
camera) commutes with sample and hold operators as long as 
it is an integral multiple of the sampling times of the sample 
and hold operators. This is because the sample and hold op
erators are periodic with respect to T/m. From now on P will 
refer to PDT, where DT refers to a delay of T seconds. Note 
that DT comes from the camera and due to its commutative 
property can be absorbed into the plant. 

Rearranging the elements in Fig. 3.2 and converting the 
problem into a standard form we obtain Fig. 3.3. One must 
note HjST is bounded only if it is preceded by a strictly causal 
filter. This implies that the filter we choose has to be strictly 
causal. The plant model we use is strictly causal. Hence the 
choice of a strictly causal filter guarantees the boundedness of 

Now, we will rewrite the elements as in Fig. 3.4, the rea
sons for which will be obvious as we proceed. The operator 
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Fig. 3.3 Representation in the standard problem form 
Fig. 3.6 Equivalent block diagram of Fig. 3.5 
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Fig. 3.4 Equivalent block diagram of Fig. 3.3 
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Fig. 3.5 Equivalent block diagram of Fig. 3.4 

STPHT/,„ maps discrete time signals to discrete time signals. 
But, the operator is not shift invariant. The operator STPHT/m 

can be rewritten as 

STPHT/m = SmST/mPHT/m (3-1) 

This follows from the fact that ST, which is a slow sampler, 
samples the continuous time output of the plant every T sec
onds and generates a discrete output. This is equivalent to 
sampling the continuous time output of the plant at T/m sam
pling rate and picking only those samples which are m steps 
apart. This is the function of the operator Sm defined in the 
previous section. Similarly, STWf can be rewritten as 

STWf=SmST/mWj f (3.2) 

Therefore, incorporating the aforementioned changes into Fig. 
3.4 yields Fig. 3.5. Using the transformations W and W* de
fined previously and noting that WW* = W* W= I from (2.11) 
and (2.12), rewrite the elements in Fig. 3.5 as 

Wf= W* WST/mHjSm W* WST/m Wf 

= W* (WST/mHrfm W*) (WST/m Wf) (3.3) 

Similarly, 

^T/mHjSm ( ST/mPHT/m ) 

= W* WST/mHrf„ W* W(ST/mPHT/m) W* W 

= W* ( WST/mH7Sm W*) (WST/mPHT/m W*)W (3.4) 

and 

PHT/m = PHT/mW* W= (PHT/mW*)W (3.5) 

Define 

H: = WST/mHjSmW* (3.6) 

Introducing these modified operators into their respective 
places, we get Fig. 3.6. One must note that the application of 

» HT„ 

_ 
r w 1 

[HWST„W, -HW(S„„PH T , JW' J 

wcw" 

_ 
s„. -

« 
Fig. 3.7 Discrete approximation of Fig. 3.6 

b W 
d 

— & HW(ST/mWfHT/n)W 

WCW* 

-W(ST/„PHT/1I1)W 

-HW(ST/mPHT/H)W'_ 

z 

Fig. 3.8 Block diagram in lifted domain for Fig. 3.7 

d 

u 

h 
rwf - p i 
[HW, -HPJ 

c 

z 

y 

Fig. 3.9 Block diagram for the lifted system when n = /n 

transformations has changed the measurement output from a 
scalar to a vector signal 

9= Wy (3.7) 

i.e., the measurement signal has been lifted. 
Similarly 

u= Wu (3.8) 

_ The controller WCW* is the lifted version of the controller 
C. Also, W(ST/mPHT/m)w* is the lifted version of the discrete 
plant ST/mPHT/m. 

It is important to note at this point that the problem rep
resented by Fig. 3.6 is the same as that represented by Fig. 
3.1. However, this problem involves mixed signals and one 
approach to solve it would be to perform a continuous time 
lifting on Fig. 3.6 (Bamieh et al., 1992). Another approach 
would be to solve an approximate discrete problem by intro
ducing a fictitious sample and hold with sampling rate T/n at 
signals z and d, respectively. This discrete problem, as n tends 
to infinity, converges to the original problem in Fig. 3.1 (Dul-
lerud et al., 1992). In this paper we adopt the second approach. 
With this modification Fig. 3.6 is redrawn as Fig. 3.7. By 
introducing the transformations W and W* we get 

d(k) = Wd(k), (3.9) 

z(k)=Wz(k), (3.10) 

48/Vo l . 116, MARCH 1994 Transactions of the ASME 

Downloaded 08 Sep 2010 to 130.126.137.86. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



where d and z are the lifted vector signals. The lifted system 
becomes as shown in Fig. 3.8. 

To summarize, Fig. 3.8 is equivalent to Fig. 3.1 as n tends 
to infinity. The solution for the problem represented by Fig. 
3.8 can be obtained using the approach of Meyer (1990). For 
the case when n is an integer multiple of m, the system in Fig. 
3.8 can be lifted to a I/O space corresponding to T/n. To 
simplify the presentation we perform the design for the case 
n = m. In that case, we obtain Fig. 3.9. 

Let, 

(ST/mWfHT/m) = Wf 

then the lifted equivalent of W/ is 

WWfW*=Wf (3.11) 

Similarly, 

W(ST/mPHT/m)W*=P (3.12) 

So, the modified problem is given by Fig. 3.9 where C is the 
lifted equivalent of C 

C:=WCW* (3.13) 

We have, thus, converted a time varying problem in lower 
dimensional I/O space into a time invariant problem in a higher 
dimensional I/O space. In order to compare the controller 
performance for various control sampling rates, i.e., m, all 
the design cases will be lifted to T/n, where n is a common 
multiple of various values of m, adopting Meyer's approach 
(1990). 

The operator H which has been defined in (3.6) as 

H:=WST/mH^SmW* 

can be rewritten as 

" 1 0 . . 0 ' 

1 0 . . 0 

1 0 . . 0 

1 0 . . 0 

H= (3.14) 

_ The controller C is nothing but the lifting of the controller 
C into a higher dimensional space. C maps vector signal y to 
vector signal u. The lifted controller C must have a block 
toeplitz structure. A block toeplitz structure implies the con
troller is causal and time invariant, i.e., the convolution op
erator has a lower triangular structure with identical elements 
along each diagonal (including sub-diagonals). As a causal 
controller is required this constraint must be imposed (Khar-
gonekar et al., 1985). This implies that the "Z>" matrix of C 
is lower triangular. This ensures that the controller in the 
process of being lifted does not violate its causality constraints. 
This constraint must be strictly imposed when one solves for 
the controller and this is normally difficult. However, in our 
problem the operator H due to its special structure ensures 
that controller automatically satisfies this constraint. Thus, 
one can carry out the design without actually considering this 
constraint. This is verified below. 

Let the operator H be combined with C. This is equivalent 
to 

u(mk) 

u(mk+\) 

u{mk+m— 1) 

C l l Cj2 

1 0 0 

1 0 0 

• o" 
• 0 

Clm 

Clm 

c 

Ci, 0 0 • 0 

C21 0 0 • 0 

cm1 o 0 

1 0 0 - 0 

y{mk) 

y(mk + 1) 

'>{mk+m-\)j 

I y(mk) 
y(mk+l) 

\y{mk+m- 1)1 

(3.15) 

C„ 
C21 

C,„i 

J(mA:)(3.16) 

where, 

Cn = YjQj, for all i,j= 1,2, (3.17) 
y'=i 

This implies that one needs to only solve for Cn. The ele
ments of C can be arbitrarily chosen as long as they satisfy 
(3.17) and the causality constraint. This is an important ob
servation because it indicates the inherent "two block" nature 
of the above problem, i.e., the measurement vector contains 
redundant information, and, when all redundancies are re
moved, the measurement vector reduces to a scalar. This is 
obvious from (3.16). 

So far, we have viewed the controller obtained as a m-
periodic controller. But, now we present an observation which 
is due to the special structure associated with this problem. 
Note that a linear shift invariant system (LSI) can be viewed 
as a w-periodic_system, i.e., a LSI discrete time system with 
transfer matrix C(z) can be uniquely expressed as 

C(z) = Cl(z
m)+z-lC2(z"')+ +z~{m-

Thus, the lifting of C(z) produces 
c=wcw-x 

l)C,„(zm) (3.18) 

C,(z) z-lCm(z) z-'Cm^(z) • z^C2{zj 

CAz) Ci(z) z~"Cm{z) • z~lC3(z) 
(3.19) 

Cm(z) Cm.l(z) C,„.2(z) • C,(z) 

i.e., a LSI discrete time system when viewed as a periodic 
system has only m independent elements unlike a m-periodic 
system which has m2 independent elements. Recall that the 
lifted realization of the controller when combined with the 
operator H has a special structure, namely, it is a m x m block 
matrix with only its first column being nonzero. This implies 
that our controller can be thought to have only m independent 
elements. 

Let us assume that the controller in its original domain is 
LSI. Then its lifting should correspond to the form as in (3.19). 
When (3.19) is combined with operator H we obtain a mxm 
block matrix with only its first column being nonzero, i.e., 

C(z)H= 

Ci(z)+z-lCm(z)+z-lC,„.l(z) + ...+z~,C2(z) 0 

C2(z) +Ci(z) +z~lC,„(z)+... +z~[C3(z) 0 

Cm(z) + Cm^(z) + Cm.2(z) + ... + Cl(z) 0 

(3.20) 
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Hence, from the definition of lifting we have 

^Cl(z)+z~lCm(z)+z-iCm-l(z) + ...+z-'C2{z) 0 

0 
C(z)H= 

C1(z) + Ci(z)+z-lCm(z) + ...+z-'Ci(z) 

Cm(z)+C„,-l(z) + C,„-2(z) + ... + C1(z) 0 

Cn 0 0 

C2, 0 0 
, (3.21) 

where the right-hand side is obtained from solving the /-l 
optimization problem of (3.16). Thus, 

1 Z 

1 1 

- ' z~l 

1 • 

1 1 1 

C,(z) 

C2(z) 

lCm(z). 

Cn(z) 

C2l(z) 

lCmi(z). 

(3.22) 

The solution to the above system of equations is always non-
trivial as the determinant is never equal to zero. The obtained 
solution when inserted into (3.18) yields a shift invariant con
troller in the original domain. 

It must be noted here that the shift invariant realization of 
the controller is not specific for this problem alone but is true 
for the whole class of problems which give rise to the operator 
H, i.e., for all problems where the measurement is sampled at 
a slower rate than the generation of control signals and when 
the measurement rate is an integral multiple of control rate. 
Hence, for this class of problems the controller can be inter
preted both as a periodic controller and a shift invariant con
troller. This means that the performance of shift invariant 
controllers in terms of robustness is as good as periodic con
trollers for this class of problems. 

Before we conclude this section we state a theorem which 
shows the equivalence between the design in the original do
main and the lifted domain. 

Theorem 1: The controller C is_the design controller for 
the original plant G iff the lifting of C given by C is the design 
controller for the lifted problem G. 

Proof: Let F(G, C) denote the closed loop mapping of the 
original problem such that 

F(G, C): d-z 

The mapping for the lifted problem is given by 
F(G, C):d-~z 

the two closed-loop mappings are related through the equation 

F(G, C) = WF(G, C)W* (3.23) 

but, mappings W and W* are isometries 

=*IIF(G, C)II = IIF(G, C)ll (3.24) 

Q.E.D 
Here, G refers to the approximation of the generalized plant 

in Fig. 3.5 after the fictitious sample and hold are brought in 
and G refers to the lifting of G. Notice that as n in the fictitious 
sample and hold tends to infinity we get the original problem 
in Fig. 3.4. 

This theorem states that the optimal controller for the lifted 
problem corresponding to Fig. 3.8, when lowered, is the op
timal controller for the problem in Fig. 3.4 as n tends to 
infinity. The original problem is time varying while the lifted 
problem is time invariant. Hence it is simpler to carry out the 
design in the lifted domain and then lower the controller. 

4 The l-l Optimization Problem 
In this section we formulate the l-l optimization problem 

and state some facts about the l-l norm (Vidyasagar, 1986; 
Dahleh et al., 1987; McDonald et al., 1991). 

Definitions: 

The space /°° consists of bounded functions/: Z + —R" 

s.t 11/11 o„:= sup max \f{k)\<<x> 
kiZ+ l<Ar<« 

(4.1) 

So, given u,y(.F 
system (FDLSI) 

then, 

and 
G 

IIGII( 

a finite dimensional linear shift invariant 

s.ty(k) 

*>-;=Sup 
llwloo 

= Gu(k) 

HGwIU 
Hill (4.2) 

where 'g' is the impulse response sequence of G whose elements 
are mxn matrices and 

11111,= max YiYi\gij{k)\ (4.3) 

Problem Formulation Given a FDLSI system G which has 
two vector inputs, namely, d the exogenous disturbance and 
u the control input, and two vector outputs, namely, z the 
regulated output and y the measurement, we wish to design a 
compensator K such that the closed loop system is internally 
stable and is optimal in the l-l sense, i.e., 

generalized plant: 
Gn G12 

G21 G22 

controller: u=Ky. 

The closed-loop transfer function from d to z is 

4>=Gn + GnK(I-G22KylG2{. 

Using YJBK parameterization the above equation can be re
written as 

(4.4) 

<5> = H-UQV (4.5) 

where 

H: 

V: 
~V: 

(4.6) 

--Gn + Gl2MRYLG2i 

= GnMR 

:=MLG2 , 

Q belongs to S where S is the ring of stabilizing functions in 
l-l, G22 = NRMR ' = M[ lNL are the left and right coprime fac
torizations. 

Also, the following Bezout identity must be satisfied 

-YL 

•ML 

MR YR 

NR XR 

= 1 (4.7) 

The resulting compensator 'K' is given by 

K=(YR-MRQ)(XR-NRQyl=(XL-QNL)-\YL~QML) 

(4.8) 

Hence, the optimization problem reduces to 

ii^MWH-UQVWi 
QiS 

(4.9) 

By the duality theorem, this problem can be posed in the dual 
space as 

/j
0 = mf\\H-UQV\\1= max (H, G> 

Q(S GeS-L 
UGlooSl 
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Based on the number of inputs, regulated outputs, disturb
ances and measurements, a MIMO problem is classified as a 
"one block," "two block," or a "four block" problem. Since 
we have as many control inputs as the regulated outputs, but 
have fewer measurements than the disturbances, the multirate 
sampling problem, in the lifted domain poses itself as a "two 
block" problem, i.e., [/issquare(n„ = n„) but Kisfat (ny<nz). 
A recently proposed method called "Delay Augmentation tech
nique" (Diaz-Bobillo, 1992) will be used to solve for the sub-
optimal solution. 

where 

V ~ and B, •pi'- (C Bn 

Let xw denote the state of Wf and xp denote the state of P and 
define the augmented state vector 

*: = 

Then the augmented plant is given by 

G = 

A% 0 

0 Am
pd 

Cfd Cpd 

CfdAfd CpdApd 

C/dA/d Cpc/Apd _ 

[Cfd Cpd] 

A'/d Bfd • 

D, 

m - 21 

A/dBfd Bfd 

L CfdAfd Bfd 

CfdBfd Df • 

0 

CfdBfd Df 

[Df 0 0 . 0] 

0 0 •• 0 

Apd Bpd • • ApdBpd Bpd 

Dn 

m - 2 r CpApd Bt 

0 0 

CpBpd Dp 

pd Dpd 

0 

0 

[Dp 0 . . 

CpBpd Dp_ 

0] 

(5.4) 

5 State Space Realizations in Lifted Domain 
In this section we present the state space realizations of the 

lifted equivalents of the plant and the filter and form an aug
mented realizations for the case n = m. 

Let Wf= 
Af Bf 

Cf Dfj 

The discrete equivalent of Wj when sampled at T/m s is given 
by 

Wf= 
Afd Bfd 

Cf Df_ 

where 

Afd = eAfT/'"; Bfd=(XjeAf'dt\Bf (5.1) 

Then the lifted system Wf is given by 

Afd [Afd Bfd 

Wf 

C -f 
CfA 'fAfd 

CfA •fAfd 

The lifted plant is 

•™pd 

AfdBfd Bfd] 

Df 

CfBfd 

0 

Df 

CfAfdBfd CfBfd 

CfA % Bfd 

L e t P = 
Ap Bp 

Cp Dp 

P= 

[A"p
,d'Bl 

CP 

CpApd 

CpA •pd 

Dn 

•pd &pd 

o 

CfAfdBfd CfBfd Df 

(5.2) 

ApdBpd Bpd] 

0 

CpBpd Dn 

CpBpd 

CpApd Bpd 

0 

CpBpd Dp 

(5.3) 

Note that the ' C matrix corresponding to measurement has 
a rank equal to that of the original problem. This is because 
the operator 'H' has been absorbed into the controller. 

Assuming that the sampling rates are nonpathological and 
that (Af, Bf) and (Ap, Bp) are stabilizable and (Cf, A/) and 
(Cp, Ap) are detectable we can state the following theorem. 

If the sampling rate is nonpathological then the lifted system 
is detectable and stabilizable if and only if the original system 
is detectable and stabilizable (Khargonekar, 1985). Hence the 
augmented plant G is stabilizable through u(k). If the hold 
operator were not present, y(k) and z(k) are identical. There
fore, we can conclude that G is detectable through z. In the 
presence of the operator H, for the system to be detectable 
through y (k), the rank of the following matrix must be equal 
to V for allRe(X)>0: 

(5.5) 

Assuming that the sampling times T and T/m are nonpathe-
logical the rank of the above matrix is always equal to '« ' . 
Hence the augmented plant G is stabilizable and detectable 
(also refer to Theorem 3 in Rahmani et al., 1990). 

6 Numerical Examples 

In this section we present the procedure for the design of a 
multirate controller. We also present some simulation results 
for the multirate controller and compare it with a PD con
troller. 

Consider a DC servo motor driven linear ball screw actuator. 
The open-loop transfer function of the plant has been obtained 
from a signal analyzer: 

Afd 

0 

Cfd 

0 " 

Apd 

Cpd] 

P ( s ) = -
- 0.0632 (s + 4749.3)(^ + 1934.7) 

5[(s + 953.72)2 + (841.02)2] 
(6.1) 

The delay in the vision system was approximately equal to 100 
ms (this includes the image acquisition and image processing 
time). The gain of the vision system was assumed to be 7, i.e., 
we assumed that the camera completely recovers the spatial 
configuration of the object from visual information. 

As we are interested only in tracking signals of low fre-
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quency, we approximate the delay in vision by a pade' ap
proximation: 

n (l-Ts) 
(1+7S) 

Hence, the t plant model is given by 

0.0632(5- 10)(.s + 4749.3)(s+ 1934.7) 
P(s)=-

s(s+ 10)[(5+953.72)2 + (841.02)2] 

(6.2) 

(6.3) 

In order to eliminate the high frequency components of the 
reference signal, a strictly proper first order filter was used 

W'-£Y> (6"4) 

Notice that the plant has a pole at s = Q. In the /-l design a 
pole on the unit circle leads to a controller of a very high order. 
In order to avoid a very high order controller we chose to 
perturb the pole at 5 = 0 into the left half plane. So, the design 
plant transfer function is 

0.0632(s- 10)(s + 4749.3) (s+ 1934.7) 
P(s) (6.5) 

(5 + 0.01)(5+10)[(5 + 953.72)2 + (841.02)2 

The design of the multirate controller was carried out for 
various sampling rates of the controller (which are of the form 
T/n where n is an integer and T is the vision sampling time). 
For each sampling rate an optimal /-l controller was found 
and the closed-loop /-l norm evaluated. The evaluation was 
stopped at 776 as no substantial norm improvements were 
obtained. The design procedure is elucidated for 776 sampling 
rate. The lifting of the original plant using (4.4) for 776 sam
pling rate gives 

G = 

Ag Big B2g 

Clg DUs Di2g 

C2g D2\g D22g 

Dug = 

0 0 0 0 0 0 

0.0165 0 0 0 0 0 

0.0163 0.0165 0 0 0 0 

0.0160 0.0163 0.0165 0 0 0 

0.0157 0.0160 0.0163 0.0165 0 0 

0.0155 0.0157 0.0160 0.0163 0.0165 0 

Dng = 

0 0 

-0.0050 0 

-0.0034 -0.0050 

0 

0 

0 

-0.0020 -0.0034 -0.0050 

-0.000 -0.0020 -0.0034 

0.0003 -0.0007 -0.0020 

D2lg=[0 0 0 0 0 0] 

D22g=[0 0 0 0 0 0] 

0 

0 

0 

0 

-0.0050 

-0.0034 

0 

0 

0 

0 

0 

-0.0050 0 

(6.6) 

To perform the l-\ minimization we first obtain the Youla 
parameterization of G into H U and V. Note that U is square 
and Kis fat, i.e., we have as many control inputs as regulated 
outputs but have fewer measurements than the disturbance 
inputs. Thus the resulting problem is a 2-block problem. For 
a sampling rate of 776 the optimal controller obtained has the 
following state space realization: 

A,= 

01 

B2g-

9.0484*?-

0 

0 

0 

0 

0 

4.18e-7 

- 4 . 1 8 e - 8 

4.17e-9 

6.13e-10 

0 0 

2.3045e-05 4.3958e-02 

-2 .3045e-06 -4 .3958e-03 

2.2984e-07 4.3839e-04 

3.8802e-08 7.463 l e - 0 5 

0 0 

3.7262e + 01 3.7262e-01 

-3.7262e + 00 -3 .7162e-02 

3.7161e-01 

6.3918e-02 

0 0 0 0 

4.94e-7 5.83e-7 6.89e-7 8.14e-7. 

- 4 . 9 4 e - 8 - 5 . 8 3 e - 8 - 6 . 8 9 e - 8 - 8 . 1 4 e - 8 

4.92e-9 5.82e-9 6.88e-9 8.13e-9 

5.37e-10 4.48e-10 3.42e-10 2.16e-10 

-6 .2739e-03 

9.9964e-01 

0 

- 5 . 3 0 e - 6 

5.3e-7 

8.87e-9 

7 . 0 5 e - l l 

Bu — 

0.0152 0.0155 0.0157 0.0160 0.0163 0.0165 

1.0 - 6 . 3 4 e - 2 

9 .84e- l - 2 . 5 5 e - l 

9 .67e- l - 1 . 5 9 7 6 e - l -3.01e + 2 

9 .51e- l - 7 . 9 4 e - 2 -1.48e + 2 

4.26e + 2 -5.84e + 5 5.88e + 6 

4.82e + 2 -4 .05e+5 5.88e + 6 

2.51e + 5 5.88e + 6 

1.214e + 5 5.88e + 6 

9 .36e- l - 1 . 1 3 e - 2 - 1 . 8 e + l 1.14e + 4 5.88e + 6 

. 9 . 24e - l 4 .62e-2 9.18e+l 8.17e'+4 5.88e + 6. 

C2g=[l.O - 6 . 3 4 e - 2 -4.26e + 2 -5.84e + 5 5.88e + 6] 
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Table 6.1 Comparison of l-l optimal control and PD control 
Delay in the 
vision unit 

(s) 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 

0.0167 

Sampling rate of 
controller 

(s) 
0.1 (n=l) 
0.05 (n = 2) 
0.033 (n = 3) 
0.025 (n = 4) 
0.02 (n = 5) 

0.0167 (n = 6) 
0.0167 

l-l norm at 
sampling rate of 

the controller 
0.21278 
0.19657 
0.19053 
0.18739 
0.18546 
0.18415 
0.11325 

l-l norm at 
T/6 ( = 0.0167) 
sampling rate 

0.21300 
0.19721 
0.19134 

— 
— 

0.18415 
0.11325 

/-l norm of PD 
at sampling .rate 
of the controller 

0.4994 
0.5045 
0.5126 
0.5160 
0.5186 
0.5202 

NA 

G = 

C-
Ac Bc 

_CC Dc 

-0.93542 -0.15127 

1.4756e-2 0.90363 

2.4772e-7 3.1957e-5 

Bc = 

3.5772el " 

8.1731 

1.3721e-4 

8.7490 -0.60214 

-0.30768 0.14036 

0.67358 5.7798e-2 

0.55553 6.5630e-2 

0.5807 6.3582e-2 

_ 0.54757 6.2636e-02 

Dc = 

"-1.6896c2" 

-4.6420 

-2.2258el 

-1.9952el 

-1.9835el 

-1.9485e 1 

-0.23215 

-7 .8839e-2 

-1 .1244e-6 

0.41432 

9.9729e-2 

0.13179 

1.2592e-l 

0.12425 

0.12215 

C«i(z)=-

(6.7) 

_ Note that the above realization corresponds to the lifting of 
C. When C is lowered, we obtain a 6-periodic controller: 

C=[C\i C2\ C31 C41 C51 C6i] (6.8) 

where C,- for i=[l , 2, 3, .. 6] are time invariant controllers 
which form the 6-periodic controller. 
where, 

C„(z) = 

C2,U) = 

c3dz)--

Qi(z )= -

C„lz) = 

-168.9 (z-2.93e-8)[(z-0.896)2 + (0.349)2] 
(z + 9.342e-l)(z-9.024e-l)(z-1.7358e-06) 

(6.9) 

-4.642(z-1.05e-8)(z-1.038)(z + 3.194) 
(z + 9.342e-l)(z-9.024e-l)(z-1.7358e-06) 

(6.10) 

-22.26(z-1.046e-7)(z-0.9046)(z-0.1673) 
(z + 9.342e-l)(z-9.024e-l)(z-1.7358e-06) 

(6.11) 

-19.95(z-2.261e-7)(z-0.9211)(z-7.00e-2) 
(z + 9.342e-l)(z-9.024e-l)(z-1.7358e-06) 

(6.12) 

-19.84(z-3.536e-7)(z-0.9183)(z-0.1234) 
•1.7358e-06) 

(6.13) 
(z + 9.342e-l)(z-9.024e-l)(z-

-19.46(z-1.986e-7)(z-0.9195)(z-8.03c-2) 
(z + 9.342e- l)(z-9.024e- l ) (z - 1.7358e-06) 

(6.14) 

Each of the above controllers has a sampling time of 0.1 s. 
The convolution of C is a combination of the convolutions of 
C-for i=[ l ,2 , 3, . . , 6]. 

The equivalent shift invariant realization of the controller 
aforementioned can be obtained by solving (3.22) and (3.18). 
Thus, the LSI realization C(z) is given by 

C(z) = 
N(z) 
D(z) 

N(z) = 1- 168.9z24+ 164.26z23- 17.62z22 + 2.31z21 +0.11z20 

+ 0.38z19 + 322.13z18-312.68z17 + 33.87z16-4.09z15 + 0.895z14 

- 1.21z13- 175.62zl2+ 171.56z" - 18.76z10 + 2.08z9-0.962z8 

+ 0.811z7+1.44z6-4.73xl0"V + 5.14xl0'7z4-6.15 

x l 0 " V + 5.04xl0"7z2-5.10xl0"7z-2.85xl0-7] 

Z>(z) = (z6-l)(z18 +3.18 xl0_2z12-0.843z6+1.463 xlO"6) 
(6.16) 

The optimal / - 1 norms for various sampling rates of the 
controller, assuming that the delay in vision unit is 0.1 s, is 
shown in Table 6.1. Also, a PD controller of the form 

C = KP + 
KD(l-Z~l) 

(6.17) 

where, Kp is the proportional gain, KD the derivative gain, and 
Ts is the sampling rate of the PD controller, was designed and 
its /-l norm was evaluated using the lifting technique and 
compared with the optimal multirate controller. The PD con
troller was tuned to minimize the spectral radius of the single 
rate discrete time system for 0.1 second sampling time, resulting 
in KP= - 6 and KD= -1.25. 

The first column of Table 6.1 represents the delay time in 
the vision unit. The second column represents the sampling 
rate of the controller which for our design also gives the sam
pling rate of the fictitious sample and hold. Column three gives 
the l-l norm of the closed loop system optimal at the sampling 
rate of the controller. Column four gives the l-l norms of the 
closed loop systems calculated at T/6 sampling rate. The sig
nificance of this column is twofold: First, it provides us a 
means to compare the performance of designs which use con
trollers operating at different sampling rates; Second, we eval
uate the control system performance for Fig. 3.1, i.e., the 
sampled data system, by the use of Fig. 3.8, i.e., discrete 
approximation of Fig. 3.1 (the calculation uses n = 6 although 
n could be larger for better approximation). In order to lift 
the cases for T/4 and T/5, the system must be lifted to di
mension corresponding to a sampling rate of T/60, which 
requires intensive computation and is omitted. As expected, 
the performance improves with decreasing controller sampling 
time. If a fast vision unit operating at T/6 was possible, the 
performance would be as given in the last row. The perform
ance of the multirate controllers, i.e., row two through row 
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Fig. 6.1 Response of the closed-loop system to a filtered step input Fig. 6.3 Response of the closed-loop system to an unfiltered sine wave, 
u = 0.1 rad/s 

Fig. 6.2 Response of the closed-loop system to an unfiltered step input 

six, are between the fast and the slow single rate controllers 
as in row seven and row one, respectively. Thus, multirate 
control can be thought of as an alternative to single rate control 
when a fast sensor is not available. We can see from Table 6.1 
that the /-l designs have a much smaller /-l norm than the PD 
design. This proves the superiority of a the optimal /-l multirate 
controller design over conventional design techniques. 

The performance of the 6-periodic controller in feedback 
with the X- Y table was simulated for various exogeneous sig
nals. The simulation was carried out in the lifted domain as 
the closed loop system in this domain is shift invariant. The 
performance of the closed-loop system was simulated with and 
without the filter, with the filter to verify the /-I design and 
without the filter to simulate the realistic performance. The 
simulation results are given below. 

Figure 6.1 shows the response of the closed-loop system when 
the disturbances enter the system through the filter. Notice 
that the maximum tracking error corresponds to the one ob
tained from the design. Figure 6.2 shows the response of the 
actual system to a step disturbance. Notice that the oscillations 
in the output are minimal. This is a typical feature of /-l 
designs. The response of the closed-loop system to a sine wave 
disturbance with to = 0.1 rad/s is shown in Fig. 6.3. The re
sponse with and without the filter are nearly the same as to 
be expected. These simulations confirm the good performance 
obtainable from the /-l multirate controller. The controller 
output of the simulation in Fig. 6.3 is shown in Fig. 6.4, the 
chattering behavior indicating the 6-modes of the multirate 
controller. 

7 Conclusions 
The analysis and design of a multirate visual feedback servo 

control system have been studied. We have shown that the 
lifting technique provides a useful tool for analyzing and de
signing multirate control systems and have further derived 
some intrinsic properties useful for control system design and 
implementation. These results hold for the class of slow sensing 
and fast control multirate problems in general. The /-l norm 
minimization provides a direct means to meet both the camera 

Fig. 6.4 Output of the multirate controller. The chattering curve is the 
controller output and the smooth curve is the camera output. 

field of view limit and mechanical motion tolerance con
straints. The numerical example demonstrates the methodol
ogy and provides performance comparisons among different 
sampling rates and control algorithms. 
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