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By Lemma 5, this means the beam remains in constrained motion8t �

T �, which contradicts our assumption. Hence, the switching system
must settle inside the constrained space in some finite timeT .

To prove the second part of the theorem, note thatT is finite. By
assumption, there are only a finite number of transitions within any
finite closed-time interval. Hence, the number of transitions fromt =
t0 to T must, therefore, be finite.

IV. CONCLUSIONS ANDFUTURE RESEARCH

In this paper, we have developed a model of a PD-controlled SFL
colliding with a stationary environment that both accounts for the im-
pact dynamics and is suitable for control purposes. A set of infinite-di-
mensional distributed-parameter dynamic equations was obtained for
the model and its exact solution was presented. A stability proof based
on the infinite-dimensional dynamic equations was then presented, and
it demonstrated that the switching collision system is asymptotically
stable. This research is based on a very simple model and the generality
of the infinite-dimensional stability analysis has much room for exten-
sion. In particular, we would hope to extend this analysis to a more so-
phisticated model of the environment impact dynamics and other more
complex control strategies.
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Using Manipulability to Bias Sampling During the
Construction of Probabilistic Roadmaps

Peter Leven and Seth Hutchinson

Abstract—Probabilistic roadmaps (PRMs) are a popular representation
used by many current path planners. Construction of a PRM requires the
ability to generate a set of random samples from the robot’s configuration
space, and much recent research has concentrated on new methods to do
this. In this paper, we present a sampling scheme that is based on the manip-
ulability measure associated with a robot arm. Intuitively, manipulability
characterizes the arm’s freedom of motion for a given configuration. Thus,
our approach is to densely sample those regions of the configuration space
in which manipulability is low (and therefore, the robot has less dexterity),
while sampling more sparsely those regions in which the manipulability is
high. We have implemented our approach, and performed extensive evalu-
ations using prototypical problems from the path planning literature. Our
results show this new sampling scheme to be effective in generating PRMs
that can solve a large range of path planning problems.

Index Terms—Importance sampling, path planning, probabilistic
roadmaps (PRMs).

I. INTRODUCTION

Probabilistic roadmaps (PRMs) were introduced in the early 1990s
as a representation useful for planning collision-free paths for robots
with many degrees of freedom [1], [2]. PRM path planners use a two-
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stage approach. During a preprocessing stage, the planner generates a
set of nodes that correspond to random configurations in the configu-
ration space, connects these nodes using a local path planner to form
a roadmap, and, if necessary, uses a subsequent sampling stage to en-
hance the roadmap. During a second, online stage, planning is reduced
to query processing, in which the initial and final configurations are
connected to the roadmap, and the augmented roadmap is searched for
a feasible path.

The method used for generating the random configurations lies at the
heart of any PRM planner. For this reason, numerous sampling schemes
have been proposed in recent years. We review many of these methods
in Section II.

In this paper, we present a new method for biasing the sampling
during the node generation stage used to build a PRM. Our method is
based onmanipulability[3], an intrinsic property of robot arms, which
measures an arm’s freedom to move in all directions. Our rationale for
this approach is that in regions of the configuration space where manip-
ulability is high, the robot has great dexterity, and therefore, relatively
fewer samples should be required in these areas. Conversely, regions
in which the manipulability is low tend to be near (or to include) sin-
gular configurations of the arm, where the range of possible motions is
reduced; therefore, such regions should be sampled more densely. An-
other way to interpret this is that for regions of the configuration space
where manipulability is low, large joint motions correspond to small
workspace motions. Thus, in these regions, traversing small paths in
the workspace requires traversing relatively longer paths in the con-
figuration space, consequently increasing the chance that such a path
would intersect the configuration space obstacle region.

Our choice to use such an intrinsic property, rather than to drive sam-
pling based on the geometry of the obstacle region of the workspace,
is motivated by our previous work in generating representations that
can be used for path planning in changing environments [4], [5]. We
describe our new approach in Section III.

We have done extensive comparisons between our new approach and
the original approach described in [6]. We present these results in Sec-
tion IV, and in Section V, we briefly present some conclusions that can
be drawn from our results.

II. RELATED WORK

The simplest way to generate sample configurations is to sample the
configuration space uniformly at random, discarding the samples that
lead to a collision. This technique makes no assumptions about the dis-
tributions of the obstacles and is relatively easy to analyze [7]. Unfor-
tunately, the number of samples this technique places in any particular
region ofCfree (the set of collision-free configurations) is proportional
to its volume; therefore, uniform sampling is unlikely to place samples
in narrow passages. Most PRM sampling schemes attempt to address
this problem.

One means to address the problem of few samples in narrow passages
in Cfree is to add samples in regions where the roadmap has few nodes.
More samples near these nodes can be taken by randomly bouncing off
obstacles: choose a random direction, travel in the direction until an
obstacle is encountered, choose another direction, and continue until
the path length reaches some threshold [8], [9].

Another technique for samplingCfree is to concentrate the samples
near the surfaces of the obstacles in configuration space. One such ap-
proach is to locate samples on the surfaces of the obstacles themselves.
This approach works by taking an arbitrary sample in collision and then
searching for the boundary of the collision region ofC (the configura-
tion space) on rays directed away from the collision point, uniformly
distributed on a hypersphere [10]. The hope is to locate the center point
close to the center of the obstacle region such that the samples are uni-

Fig. 1. Planar robot example.

formly distributed over the surface of the obstacle. A modified version
of this approach also adds samples near the surfaces, in some cases
building shells of samples around theC obstacles [11]. Another ap-
proach for concentrating the samples near the obstacle surface is to
generate pairs of points, one uniform at random inC and the other a
small distance away (with the distance guided by sampling a Gaussian
distribution) [12]. In this case, the collision-free sample of the pair is
added to the roadmap only if the second sample is in collision.

There are other techniques that use the geometry of the obstacles to
define sample points. One such approach that works well for rigid-body
robots in two-dimensional (2-D) environments is to use the geometry
of the obstacles and the robot in the workspace to define the sample
nodes inCfree [2]. In this case, the axis of the robot is placed par-
allel to obstacle surfaces with the robot a small distance away from
the surface (a similar position is defined for vertices). Another geo-
metric approach is to generate samples along the medial axis, either in
Cfree or in the workspace. To generate samples using the medial axis
in the workspace, the idea is to first compute the medial axis of the
workspace, and then take random configurations and move the robot
from those configurations until some subset of reference points de-
fined on the robot lies on (or as close as possible to) the medial axis
[13], [14]. To generate samples in the medial axis inCfree, the idea is
to take random configurations and transform them to the medial axis
[15]. Each random configuration falls into one of three cases. In the
first case, the sample is on the medial axis and nothing further need be
done. Second, the sample could be inCfree but not on the medial axis,
in which case the point is translated away from the nearest obstacle
until it is equidistant from two obstacles. Third, the sample could be
in an obstacle region. In this case, the configuration is translated to the
nearest obstacle surface, and then to the medial axis.

Some techniques are designed in particular for single-query path
planning. One of these involves choosing a node at random from the
current roadmap, generating samples around that node, and adding
some of these new samples to the roadmap [16]. In this case, the node
selection is biased toward the nodes with fewer neighbors, and new
samples that have too many neighbors in the roadmap are rejected.
Another technique in a similar vein is to generate a sample at random
of C, find the node nearest to it in the roadmap, and generate a new
node in the roadmap by moving toward the random sample [17]. This
use of the random sample should bias the tree to exploreCfree more
rapidly. The Ariadne’s Clew algorithm also falls in this category,
though it uses the endpoints of Manhattan paths as its samples [18].
Other recent approaches use a delayed (or lazy) evaluation approach,
in which a PRM is constructed without exhaustive collision checking.
In this approach, the query stage is augmented with collision checking
as the search for a path evolves, saving time by reducing the total
number of calls to collision checking routines [19]–[22].
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Fig. 2. (a)–(c): Sample distributions for a two-joint planar robot. (a) Uniform. (b) Higher density in regions of low manipulability. (c) Higher density in regions of
high manipulability. (d)–(f): Histograms for the sample distributions shown in (a)–(c). (d) Uniform. (e) Higher density in regions of low manipulability. (f) Higher
density in regions of high manipulability.

III. M ANIPULABILITY -BASED SAMPLING

We have developed an importance-sampling approach that exploits
the manipulability measure associated with the manipulator Jacobian
[3]. The motivation for using manipulability as a bias for sampling is
as follows. In regions of the configuration space where manipulability
is high, the robot has great dexterity, and therefore, relatively fewer
samples should be required in these areas. Regions of the configura-
tion space where manipulability is low tend to be near (or to include)
singular configurations of the arm. Near singularities, the range of pos-
sible motions is reduced, and therefore, such regions should be sampled
more densely.

LetJ(q)denote the manipulator Jacobian matrix (i.e., the matrix that
relates velocities of the end-effector to joint velocities). For a redundant
arm (e.g., an arm with more than six joints for a three-dimensional
(3-D) workspace) the manipulability in configuration q is given by

!(q) = detJ(q)JT (q): (1)

Consider the robot shown in Fig. 1 as an example. The manipula-
bility for this robot is! = l1l2j sin �2j, wherel1 andl2 are the lengths
of the two links. The configuration shown in Fig. 1 corresponds to one
of the configurations at which the manipulability is highest for this
robot. For this robot, the manipulability does not depend on the po-
sition of the first joint.

Three different sample distributions for this robot are shown in
Fig. 2. As shown in the figure, concentrating the sampling in regions
of low manipulability results in more samples near�2 = ��, 0, and
� at the bottom, middle, and top of the views of configuration space,
respectively; sampling in regions of high manipulability results in
more samples near�2 = ��=2 and�=2. Normalizing for the link
lengths, the mean values of manipulability for the distributions in
Fig. 2 are 0.65 for the samples shown in Fig. 2(a), 0.49 for the samples

shown in Fig. 2(b), and 0.82 for the samples shown in Fig. 2(c),
respectively.

In order to bias sampling based on manipulability, we use an approx-
imation of the cumulative density function (cdf) for manipulability. If
we treat manipulability as a random quantity, denoted by the random
variable
, with probability density function (pdf)p
, the cdf is given
by

P
(!) =

!

0

p
(t)dt:

We compute a discrete representation ofP
 as follows. First, we
create a discrete approximation top
. This is done by sampling the
configuration space of the robot uniformly at random and computing
the manipulability for each sample configuration. We exclude from this
computation any configuration in which the robot collides with itself.
We then create a histogram of the manipulability values that have been
computed. We normalize the number in each bucket of the histogram,
and create the approximation toP
 from these normalized values.

We have adopted a rejection-based approach for usingP
 to
bias the sampling of the configuration space. For each sample,
we use the following procedure. First, a candidate sample,qc is
generated using uniform random sampling of the configuration space.
If qc is a self-collision configuration, it is rejected. Ifqc is not
rejected, we compute the manipulability!(qc). We rejectqc with
probability P
(!(qc)). This approach was used to generate the
sample distribution in Fig. 2(b). In Fig. 2(c), we useP
(!(qc))
as the probability of acceptance.

One shortcoming of the manipulability measure for our purposes
is that it does not reflect joint limits. When the robot is near
a joint limit, its movement is restricted. In an effort to include
samples near joint limits, we adopt the following convention. At
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(a)

(b)

Fig. 3. (a) The pdf for the manipulability of a planar robot with six joints. (b)
Histogram for the manipulability of the roadmap nodes for this robot.

configurations in which some joint is near a limit, the manipulability
is defined to be zero. The nearness of a joint to its limit is a
parameter of our sampling algorithm.

Example manipulability pdfs are shown in parts (a) of Figs. 3–5. As
can be seen in the figures, the manipulability pdfs tend to be unimodal,
and quite smooth. Parts (b) of these figures show the histogram of ma-
nipulability of nodes that are selected using biased sampling. Note that
sampling biased toward low manipulability has a tendency to shift the
pdf to the left, while sampling biased toward high manipulability has
a tendency to shift the pdf to the right. In these figures, the plots la-
beled “Not filtered” correspond to sampling the manipulability of the
robot without filtering out samples in which the robot is in self colli-
sion; the plots labeled “Filtered” exclude such samples. In all cases,
10 million samples were evaluated for manipulability. In addition, the
gnuplot “csplines” function was used to smooth the plots. An expla-
nation for the shift that can be seen for both robots in the probability
distribution when filtering out self collisions is that configurations in
which the robot is in collision with itself tend to be configurations for
which the manipulability is low.

IV. RESULTS

To evaluate sampling biased by manipulability, we used a modified
form of the planner for planar fixed-based articulated robots described
in [6]. In particular, we added a function to the preprocessing phase

(a)

(b)

Fig. 4. (a) The pdf for the manipulability of a robot with six joints in a 3-D
workspace. (b) Histogram for the manipulability of the roadmap nodes for this
robot.

to compute whether to reject a configuration based on its manipula-
bility. We further modified the planner to adjust the order in which
tests are applied to a random sample of the configuration space to de-
termine whether to accept a sample. For each random sample, we test
first whether the robot is in self collision, then we apply the manip-
ulability bias criterion, and last, test the sample for collision between
the robot and the obstacles. If the sample passes all tests, it is added
to the network. The remainder of the preprocessing phase continues as
described in [6].

To evaluate the planner, we performed a similar set of experiments to
those described in [6]. The results are summarized in Tables I–IV. For
each set of parameters, we generate 40 networks and then test whether
eight test configurations, shown in Fig. 6, can be connected to the net-
work. As a baseline, we include the results using unbiased sampling in
Tables I and IV.

An explanation for the labels on the tables is as follows. The columns
marked “Nodes” represents the target number of nodes for the roadmap
after preprocessing, with “N” nodes generated during random sampling
and “M” nodes generated during enhancement. The columns labeled
“Number Rejected” list the number of nodes that failed a test: robot
self collision (“Self”), manipulability bias (“Manip”), and robot colli-
sion with an obstacle (“Obstacle”). The next three columns show three
more statistics for the preprocessing phase. The column labeled “Avg.
Size” lists the average size of the largest connected component in the
roadmap after preprocessing. The column labeled “Avg. Comps” lists
the average number of components in the roadmap after preprocessing,
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TABLE I
RESULTS FORUNBIASED SAMPLING WITH ENHANCEMENT

(a)

(b)

Fig. 5. (a) The pdf for the manipulability of a planar robot with 20 joints. (b)
Histogram for the manipulability of the roadmap nodes for this robot.

and the column labeled “Avg. Time” lists the average processing time
required by the preprocessing phase. The last columns show the suc-
cess rate over the 40 roadmaps of connecting the configurations shown
in Fig. 6.

V. DISCUSSION ANDCONCLUSIONS

We begin by noting that some of our results in Table I are slightly
better than those originally reported in [6]. This can be attributed to
improvements in computing power since those early results were pub-
lished.

Fig. 6. Eight configurations of a 7-revolute-joint fixed-base robot.

It can be seen in Tables II, III, V and VI that our new approach is
significantly more selective than unbiased approaches. Our manipula-
bility-based rejection criterion rejects 2–3 times the number of nodes
as are rejected due to collision with obstacles. Thus, one can see from
these tables the tradeoff between efficacy in node selection and the
amount of computation required to construct the PRM.

BycomparingTables IandVI, itcanbeseenthatusingmanipulability-
biased samplingwithoutenhancement produces PRMs that are nearly
as effective as those that are produced by unbiased samplingwith
enhancement. This indicates that it may be possible to drive PRM
enhancement using primarily intrinsic properties of the robot arm,
as opposed to properties that are specific to the obstacles in a
given workspace. This opens the door for new representations that
can be constructed for arbitrary workspaces, as in some of our
related work [4], [5]. Of course we do not intend to overstate the
efficacy of our approach. Note, for example, that the PRMs for
the examples in Table VI typically have around six times more
connected components than the corresponding PRMs for Table I.
This seems not to affect the overall effectiveness of the planner (in
terms of the percentage of successful planning attempts), perhaps
because the corresponding regions of the configuration space for
many of these components are small, and therefore rarely chosen
to contain initial and final configurations for randomly generated
planning problems. If this is the case, then it would be possible to
generate problems for which the number of connected components
would cause significant performance differences.

We realize that from this set of experiments we should not draw the
conclusion that biasing samples toward regions of low manipulability
will always lead to improved performance. Indeed, for this paper,
we have chosen an environment with many small passages, and
we use planning problems that often require the robot to operate
near singularities (e.g., when the robot must “stretch” to reach a
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TABLE II
RESULTS FORSAMPLING BIASED TOWARD HIGH MANIPULABILITY WITH ENHANCEMENT

TABLE III
RESULTS FORSAMPLING BIASED TOWARD LOW MANIPULABILITY WITH ENHANCEMENT

TABLE IV
RESULTS FORUNBIASED SAMPLING WITHOUT ENHANCEMENT

TABLE V
RESULTS FORSAMPLING BIASED TOWARD HIGHER MANIPULABILITY WITHOUT ENHANCEMENT

goal). While we believe that for these kinds of environments our
approach will lead to performance improvements, it seems equally

clear that little would be gained by applying our approach in sparsely
populated environments.
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TABLE VI
RESULTS FORSAMPLING BIAS TOWARD LOWER MANIPULABILITY WITHOUT ENHANCEMENT

Furthermore, even though our results for biasing toward low ma-
nipulability are quite good, it should be noted that the results for bi-
asing toward high manipulability are also reasonably good (Table II),
as good or better than the traditional PRM for about half of the prob-
lems, performing more than 10% worse than the traditional approach
only 18% of the time. From this, we surmise that there may be environ-
ments for which biasing toward higher manipulability would be more
appropriate. This can be justified intuitively by noting that nodes in re-
gions of the configuration space in which manipulability is high have
the potential to be connected to many configurations, possibly gener-
ating roadmaps with higher connectivity.

One shortcoming of our current implementation is that we use only
the manipulability of the end-effector to bias the sampling of the en-
tire arm’s configuration space. It is possible, for example, that perfor-
mance gains could be obtained by using individual manipulability mea-
sures for each link of the arm. We have chosen not to implement such
an approach because the added computational cost would be extreme
(growing with the number of links), and because the manipulability of
the end-effector represents, in some sense, an aggregate of the manip-
ulabilities of the individual links.

Based on our results, we believe that our new approach to biased
sampling can play a useful role in the construction of PRMs for many
path planning applications.
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