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However [13]
N(L*)—1
U(Z(a,T*) =U (Z(a,to))+ Y AU(tigr;ti) [14]
<6

<U (Z(a,to)) + N(T™)é [15]

<U (Z(a,to)) + {—D (Z<“’_fg)) — Cw 8 [16]

<cC. [17]

By Lemma 5this means the beam remains in constrained mation 18]

T, which contradicts our assumption. Hence, the switching system
must settle inside the constrained space in some finiteTime [19]

To prove the second part of the theorem, note #as finite. By
assumption, there are only a finite number of transitions within an;lzo]
finite closed-time interval. Hence, the number of transitions from

to to T" must, therefore, be finite. | [21]
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stage approach. During a preprocessing stage, the planner generates a A
set of nodes that correspond to random configurations in the configu-
ration space, connects these nodes using a local path planner to form
a roadmap, and, if necessary, uses a subsequent sampling stage to en-
hance the roadmap. During a second, online stage, planning is reduced b
to query processing, in which the initial and final configurations are
connected to the roadmap, and the augmented roadmap is searched for
a feasible path.

The method used for generating the random configurations lies at the 0,
heart of any PRM planner. For this reason, numerous sampling schemes ‘@ (.\ Al
have been proposed in recent years. We review many of these methods B
in Section II. frrrrm 2

In this paper, we present a new method for biasing the sampling |—= h |

during the node generation stage used to build a PRM. Our method is
based omanipulability[3], an intrinsic property of robot arms, which Fig- 1. Planar robot example.
measures an arm’s freedom to move in all directions. Our rationale for

this approach is that in regions of the configuration space where manigyyy distributed over the surface of the obstacle. A modified version
ulability is high, the robot has great dexterity, and therefore, relativeljf (g approach also adds samples near the surfaces, in some cases

fewer samples should be required in these areas. Conversely, reg'lSlﬂﬁiing shells of samples around thieobstacles [11]. Another ap-

in which the manipulability is low tend to be near (or to include) singroach for concentrating the samples near the obstacle surface is to

gular configurations of the arm, where the range of possible motionsg,isnerate pairs of points, one uniform at randon iand the other a
reduced; therefore, such regions should be sampled more densely. §fa| gistance away (with the distance guided by sampling a Gaussian
other way to interpret this is that for regions of the configuration spaggsiripution) [12]. In this case, the collision-free sample of the pair is
where manipulability is low, large joint motions correspond to smallygeq to the roadmap only if the second sample is in collision.
workspace motions. Thus, in these regions, traversing small paths iRhere are other techniques that use the geometry of the obstacles to
the workspace requires traversing relatively longer paths in the cQfiine sample points. One such approach that works well for rigid-body
figuration space, consequently increasing the chance that such a paffyts in two-dimensional (2-D) environments is to use the geometry
would intersect the configuration space obstacle region. ~ of the obstacles and the robot in the workspace to define the sample
_Ourch0|ce to use such an intrinsic property, ratherthan to drive safyges iNCree [2]. In this case, the axis of the robot is placed par-
pling based on the geometry of the obstacle region of the workspage| o obstacle surfaces with the robot a small distance away from
is motivated by our previous work in generating representations thgt g rface (a similar position is defined for vertices). Another geo-
can be used for path planning in changing environments [4], [S]. WRetric approach is to generate samples along the medial axis, either in
describe our new approach in Section il. Ciree OF in the workspace. To generate samples using the medial axis
We have done extensive comparisons between our new approgchiﬁqﬂe workspace, the idea is to first compute the medial axis of the
the original approach described in [6]. We present these results in Sggikspace, and then take random configurations and move the robot
tion IV, and in Section V, we briefly present some conclusions that c§ym those configurations until some subset of reference points de-
be drawn from our results. fined on the robot lies on (or as close as possible to) the medial axis
[13], [14]. To generate samples in the medial axigin., the idea is
to take random configurations and transform them to the medial axis
[15]. Each random configuration falls into one of three cases. In the
The simplest way to generate sample configurations is to sample fiist case, the sample is on the medial axis and nothing further need be
configuration space uniformly at random, discarding the samples thfaine. Second, the sample could b&in. but not on the medial axis,
lead to a collision. This technique makes no assumptions about the dliswhich case the point is translated away from the nearest obstacle
tributions of the obstacles and is relatively easy to analyze [7]. Unfauntil it is equidistant from two obstacles. Third, the sample could be
tunately, the number of samples this technique places in any partictiitaan obstacle region. In this case, the configuration is translated to the
region ofCx.. (the set of collision-free configurations) is proportionahearest obstacle surface, and then to the medial axis.
to its volume; therefore, uniform sampling is unlikely to place samples Some techniques are designed in particular for single-query path
in narrow passages. Most PRM sampling schemes attempt to addgasning. One of these involves choosing a node at random from the
this problem. current roadmap, generating samples around that node, and adding
One means to address the problem of few samples in narrow passagese of these new samples to the roadmap [16]. In this case, the node
in Crec IS to add samples in regions where the roadmap has few nodeslection is biased toward the nodes with fewer neighbors, and new
More samples near these nodes can be taken by randomly bouncingaffples that have too many neighbors in the roadmap are rejected.
obstacles: choose a random direction, travel in the direction until &mother technique in a similar vein is to generate a sample at random
obstacle is encountered, choose another direction, and continue wifti’, find the node nearest to it in the roadmap, and generate a new
the path length reaches some threshold [8], [9]. node in the roadmap by moving toward the random sample [17]. This
Another technique for sampling... is to concentrate the samplesuse of the random sample should bias the tree to expglese more
near the surfaces of the obstacles in configuration space. One suchrapidly. The Ariadne’s Clew algorithm also falls in this category,
proach is to locate samples on the surfaces of the obstacles themsethesigh it uses the endpoints of Manhattan paths as its samples [18].
This approach works by taking an arbitrary sample in collision and th@ther recent approaches use a delayed (or lazy) evaluation approach,
searching for the boundary of the collision regiorCafthe configura- in which a PRM is constructed without exhaustive collision checking.
tion space) on rays directed away from the collision point, uniformlin this approach, the query stage is augmented with collision checking
distributed on a hypersphere [10]. The hope is to locate the center paatthe search for a path evolves, saving time by reducing the total
close to the center of the obstacle region such that the samples are oamber of calls to collision checking routines [19]-[22].

Il. RELATED WORK
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Fig. 2. (a)—(c): Sample distributions for a two-joint planar robot. (a) Uniform. (b) Higher density in regions of low manipulability. (c) Higligrideagions of
high manipulability. (d)—(f): Histograms for the sample distributions shown in (a)—(c). (d) Uniform. (e) Higher density in regions of low mdityp(faHigher
density in regions of high manipulability.

IIl. M ANIPULABILITY -BASED SAMPLING shown in Fig. 2(b), and 0.82 for the samples shown in Fig. 2(c),

. i . respectively.
We have developed an importance-sampling approach that exploﬁin order to bias sampling based on manipulability, we use an approx-

the manipulability measure associated with the manipulator Jacobian .. . ) . X o
P y P Imation of the cumulative density function (cdf) for manipulability. If

[3]. The motivation for using manipulability as a bias for sampling is e treat manipulability as a random quantity, denoted by the random

as follows. In regions of the configuration space where manipulabili}N . . - . - S
is high, the robot has great dexterity, and therefore, relatively few\é”ableg’ with probability density function (pdf)q, the cdfis given

samples should be required in these areas. Regions of the configura-

tion space where manipulability is low tend to be near (or to include) w
singular configurations of the arm. Near singularities, the range of pos- Po(w) = /pn(t)dt.

sible motions is reduced, and therefore, such regions should be sampled

more densely.

Let.J(q) denote the manipulator Jacobian matrix (i.e., the matrix that We compute a discrete representation/of as follows. First, we
relates velocities of the end-effector to joint velocities). For a redundagieate a discrete approximationg. This is done by sampling the
arm (e.g., an arm with more than six joints for a three-dimensionednfiguration space of the robot uniformly at random and computing
(3-D) workspace) the manipulability in configuration q is given by the manipulability for each sample configuration. We exclude from this

computation any configuration in which the robot collides with itself.
w(q) = det J(@)JJT (q). (1) We then create a histogram of the manipulability values that have been
computed. We normalize the number in each bucket of the histogram,

Consider the robot shown in Fig. 1 as an example. The manipubmd create the approximation ko, from these normalized values.
bility for this robot isw = ;12| sin 2|, wherel; andl» are the lengths We have adopted a rejection-based approach for ugiagto
of the two links. The configuration shown in Fig. 1 corresponds to oriBas the sampling of the configuration space. For each sample,
of the configurations at which the manipulability is highest for thisve use the following procedure. First, a candidate samgleijs
robot. For this robot, the manipulability does not depend on the pgenerated using uniform random sampling of the configuration space.
sition of the first joint. If q. is a self-collision configuration, it is rejected. {f. is not

Three different sample distributions for this robot are shown irejected, we compute the manipulabilityq.). We rejectq. with
Fig. 2. As shown in the figure, concentrating the sampling in regiompsobability Po(w(q.)). This approach was used to generate the
of low manipulability results in more samples ndar= —m, 0, and sample distribution in Fig. 2(b). In Fig. 2(c), we ude&(w(q.))

w at the bottom, middle, and top of the views of configuration spacas the probability of acceptance.

respectively; sampling in regions of high manipulability results in One shortcoming of the manipulability measure for our purposes
more samples ne#t; = —x/2 and«/2. Normalizing for the link is that it does not reflect joint limits. When the robot is near

lengths, the mean values of manipulability for the distributions ia joint limit, its movement is restricted. In an effort to include

Fig. 2 are 0.65 for the samples shown in Fig. 2(a), 0.49 for the sampszsnples near joint limits, we adopt the following convention. At

0
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Fig. 3. (a) The pdf for the manipulability of a planar robot with six joints. (bfig. 4. (a) The pdf for the manipulability of a robot with six joints in a 3-D
Histogram for the manipulability of the roadmap nodes for this robot. workspace. (b) Histogram for the manipulability of the roadmap nodes for this

robot.

configurations in which some joint is near a limit, the manipulability ) ) . _ )
is defined to be zero. The nearness of a joint to its limit is to compute whether to reject a configuration based on its manipula-

parameter of our sampling algorithm. bility. We further modified the planner to adjust the order in which

Example manipulability pdfs are shown in parts (a) of Figs. 3-5. Agsts are applied to a random sample of the configuration space to de-
can be seen in the figures, the manipulability pdfs tend to be unimod@rmine whether to accept a sample. For each random sample, we test
and quite smooth. Parts (b) of these figures show the histogram of izt Whether the robot is in self collision, then we apply the manip-
nipulability of nodes that are selected using biased sampling. Note tHPility bias criterion, and last, test the sample for collision between
sampling biased toward low manipulability has a tendency to shift tfa€ robot and the obstacles. If the sample passes all tests, it is added
pdf to the left, while sampling biased toward high manipulability hato the network. The remainder of the preprocessing phase continues as

a tendency to shift the pdf to the right. In these figures, the plots 14€scribed in [6]. o _
beled “Not filtered” correspond to sampling the manipulability of the To evaluate the planner, we performed a similar set of experiments to

robot without filtering out samples in which the robot is in self collith0se described in [6]. The results are summarized in Tables I-IV. For

sion; the plots labeled “Filtered” exclude such samples. In all cas@?,‘:h set of parameters, we generate 40 networks and then test whether

10 million samples were evaluated for manipulability. In addition, th&!ght test configurations, shown in Fig. 6, can be connected to the net-
gnuplot “csplines” function was used to smooth the plots. An explé{‘lork' As a baseline, we include the results using unbiased sampling in
nation for the shift that can be seen for both robots in the probabilijpPes | and IV. _
distribution when filtering out self collisions is that configurations in AN €xplanation for the labels on the tables is as follows. The columns
which the robot is in collision with itself tend to be configurations fofharked “Nodes” represents the target number of nodes for the roadmap
which the manipulability is low. after preprocessing, with “N” n(_)des generated during random sampling
and “M” nodes generated during enhancement. The columns labeled
“Number Rejected” list the number of nodes that failed a test: robot
self collision (“Self"), manipulability bias (“Manip”), and robot colli-
IV. RESULTS sion with an obstacle (“Obstacle”). The next three columns show three
more statistics for the preprocessing phase. The column labeled “Avg.
To evaluate sampling biased by manipulability, we used a modifi&ize” lists the average size of the largest connected component in the
form of the planner for planar fixed-based articulated robots describezhdmap after preprocessing. The column labeled “Avg. Comps” lists
in [6]. In particular, we added a function to the preprocessing phat® average number of components in the roadmap after preprocessing,
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TABLE |
RESULTS FORUNBIASED SAMPLING WITH ENHANCEMENT
Nodes Number Rejected Avg. Avg. Avg Connection success rate (%)
N M Self Manip Obstacle | Size Comps Time | C: C, Cs3 C4 Cs Ce¢ Cr Cs
800 400 94367 0 43799 911 59 9.604 | 100 63 60 60 60 100 65 58
1000 500 | 116774 0 54253 | 1253 52 12.978 | 100 78 78 78 78 100 78 78
1200 600 | 140434 0 65137 | 1584 48 16.559 | 100 88 88 88 90 100 88 88
1400 700 | 163250 0 75763 | 1916 43 20.338 | 100 98 90 98 93 100 98 90
1600 800 | 185751 0 86218 | 2240 42 24.157 | 100 98 100 98 100 100 98 100
1800 900 | 209249 0 97039 | 2534 40 28.108 | 100 100 98 100 98 100 100 98
2000 1000 | 232937 0 108022 | 2862 37 32.126 | 100 100 100 100 100 100 100 100
2200 1100 | 256321 0 118841 | 3144 35 36.323 | 100 100 100 100 100 100 100 100
2400 1200 | 279882 0 129942 | 3456 34 40.626 | 100 100 100 100 100 100 100 100
2600 1300 | 302125 0 140305 | 3747 32 44.903 | 100 100 100 100 100 100 100 100
3000 1500 | 347880 0 161483 | 4359 31 53.779 {100 100 100 100 100 100 100 100
00016 R Filtered — - A\ ‘ i \
0.0014 + e : Not filtered - g [— - — — —/J— —: — — -“—
i ) .
00012 i "'; \" : ) -f— - w —41!,»' N . O . . .
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0 500 1000 1500 2000 2500 3000 3500 4000 4500 Fig. 6. Eight configurations of a 7-revolute-joint fixed-base robot.
Manipulability
(@) It can be seen in Tables II, 1ll, V and VI that our new approach is
0.04 . . r . . — , significantly more selective than unbiased approaches. Our manipula-
0.035 | ';'_'gx o bility-based rejection criterion rejects 2—3 times the number of nodes
o ‘ ‘ ] as are rejected due to collision with obstacles. Thus, one can see from
,§ 0.03 | } these tables the tradeoff between efficacy in node selection and the
g amount of computation required to construct the PRM.
o> 0025 r By comparing Tablesand VI, itcan be seen thatusing manipulability-
§ 0.02 + biased samplingvithoutenhancement produces PRMs that are nearly
5 as effective as those that are produced by unbiased sampithg
g 0015 1 enhancement. This indicates that it may be possible to drive PRM
'(z::; 0.01 | ] enhancement using primarily intrinsic properties of the robot arm,
L as opposed to properties that are specific to the obstacles in a
0.005 r T given workspace. This opens the door for new representations that
0 / ; i i M can be constructed for arbitrary workspaces, as in some of our
0 500 1000 1500 2000 2500 3000 3500 4000 4500 related work [4], [5]. Of course we do not intend to overstate the

Manipulability efficacy of our approach. Note, for example, that 'the' PRMs for
the examples in Table VI typically have around six times more
(b) -
_ ' - ' o connected components than the corresponding PRMs for Table I.
Fig. 5. (a) The pdf for the manipulability of a planar robot with 20 joints. (b)Thjs seems not to affect the overall effectiveness of the planner (in
Histogram for the manipulability of the roadmap nodes for this robot. terms of the percentage of successful planning attempts), perhaps
because the corresponding regions of the configuration space for

and the column labeled “Avg. Time” lists the average processing tiffl@@ny of these components are small, and therefore rarely chosen
required by the preprocessing phase. The last columns show the dgccontain initial and final configurations for randomly generated

cess rate over the 40 roadmaps of connecting the configurations sh&@#ning problems. If this is the case, then it would be possible to
in Fig. 6. generate problems for which the number of connected components

would cause significant performance differences.
We realize that from this set of experiments we should not draw the
conclusion that biasing samples toward regions of low manipulability
We begin by noting that some of our results in Table | are slightlyill always lead to improved performance. Indeed, for this paper,
better than those originally reported in [6]. This can be attributed toe have chosen an environment with many small passages, and
improvements in computing power since those early results were pue use planning problems that often require the robot to operate
lished. near singularities (e.g., when the robot must “stretch” to reach a

V. DiscussION ANDCONCLUSIONS
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TABLE I
RESULTS FORSAMPLING BIASED TOWARD HIGH MANIPULABILITY WITH ENHANCEMENT
Nodes Number Rejected Avg. Avg. Avg Connection success rate (%)
N M Self Manip Obstacle | Size Comps Time | C1 C: Cs3 Cy Cs Cs C; Csg
800 400 | 157374 82433 32451 881 63 10.543 | 100 38 35 35 35 100 40 35
1000 500 | 195695 102337 40384 | 1231 57 14.159 | 100 63 70 60 70 100 60 68
1200 600 | 236037 123329 48690 | 1549 52 17.915 | 100 75 80 75 90 100 75 80
1400 700 | 275244 143893 56812 | 1854 50 21.877 | 100 85 85 83 85 100 83 85
1600 800 | 315373 164900 65038 | 2175 45 25.822 | 100 88 93 88 93 100 88 95
1800 900 | 354719 185277 73182 | 2520 45 30.074 | 100 100 98 100 98 100 100 98
2000 1000 | 391648 204513 80872 | 2816 41 33991 (100 95 98 95 98 100 95 98
2200 1100 | 431421 225607 89066 | 3123 39 38.417 | 100 98 100 98 100 100 98 100
2400 1200 | 470227 245733 97018 | 3441 36 42.782 | 100 100 100 100 100 100 100 100
2600 1300 | 511244 267431 105446 | 3760 35 47.204 | 100 100 100 100 100 100 100 100
3000 1500 | 588644 307629 121385 | 4359 34 55602 | 100 100 100 100 100 100 100 100
TABLE Il
RESULTS FORSAMPLING BIASED TOWARD LOW MANIPULABILITY WITH ENHANCEMENT
Nodes Number Rejected Avg. Avg. Avg Connection success rate (%)
N M Self Manip Obstacle | Size Comps Time | Ci; C; C3 Cs Cs Ce¢ C; Cs
800 400 | 228219 96440 58891 970 43 10.793 98 75 85 75 85 100 75 85
1000 500 | 287113 121424 74035 | 1366 37 14.509 | 100 95 98 95 98 100 95 98
1200 600 | 341759 144396 88094 | 1651 36 18.473 | 100 95 98 95 98 100 95 98
1400 700 | 403436 170477 103999 | 1955 36 22.697 | 100 95 100 95 100 100 95 100
1600 800 | 460660 194606 118832 | 2275 33 26.885 | 100 100 100 100 100 100 100 100
1800 900 | 520620 219997 134298 | 2567 31 31.233 | 100 100 100 100 100 100 100 100
2000 1000 | 576715 243793 148752 | 2868 28 35.729 | 100 100 100 100 100 100 100 100
2200 1100 | 633438 267774 163294 | 3156 28 40.162 | 100 100 100 100 100 100 100 100
2400 1200 | 688248 290849 177390 | 3463 27 44795 | 100 100 100 100 100 100 100 100
2600 1300 | 746051 315498 192478 | 3758 25 49.453 | 100 100 100 100 100 100 100 100
3000 1500 | 863813 365067 222769 | 4348 25 59.231 [ 100 100 100 100 100 100 100 100
TABLE [V
RESULTS FORUNBIASED SAMPLING WITHOUT ENHANCEMENT
Nodes Number Rejected Avg. Avg. Avg Connection success rate (%)

N M Self Manip Obstacle | Size Comps Time | C; C» Cs Cy Cs Cs Cr; Cs
1200 0 | 139751 0 64889 | 680 168  8.762 | 100 8 5 8 8 100 8 3
1500 0 | 174232 0 80865 966 167 12.047 | 100 23 30 23 33 100 23 35
1800 0 | 210632 0 97676 | 1269 175 15.531 | 100 40 48 40 45 100 40 45
2100 0 | 244919 0 113780 | 1595 177 19.186 | 100 58 60 58 58 100 60 58
2400 0 | 279583 0 129809 | 1944 176 22923 | 100 65 78 65 75 100 65 75
2700 0 | 314987 0 146154 | 2207 180 26698 | 100 70 73 70 73 100 70 73
3000 O | 348680 0 161858 | 2622 186 30.643 | 100 88 90 88 88 100 88 88
3300 O | 384748 0 178657 | 2902 185 34759 [ 100 8 90 8 90 100 8 90
3600 0 | 419583 0 194684 | 3226 187 38.802 [ 100 88 98 8 98 100 88 98
3900 0 | 455130 0 211280 | 3569 192 42.954 | 100 95 98 95 98 100 95 98
4500 0 | 527326 0 244786 | 4201 194 51.536 | 100 100 100 100 100 100 100 100

TABLE V
RESULTS FORSAMPLING BIASED TOWARD HIGHER MANIPULABILITY WITHOUT ENHANCEMENT
Nodes Number Rejected Avg. Avg. Avg Connection success rate (%)
N M Self Manip Obstacle | Size Comps Time | C; C2 C3 Cy Cs Ce¢ Cr Cs

1200 0 | 235671 123258 48577 | 809 178 10.104 | 100 3 5 0 0 100 0 5

1500 0 | 293136 153299 60512 | 1055 182 13.590 | 100 3 15 3 13 100 3 13

1800 0 | 353514 184734 72905 | 1285 186 17.139 | 100 8 10 5 13 100 5 10

2100 0 | 412814 215555 85175 | 1556 189 20905 [ 100 23 15 20 18 100 20 18

2400 0 | 468641 244993 96665 | 1855 197 24682 [ 100 40 28 40 35 100 40 30

2700 0 | 531315 277513 109491 | 2109 198 28737 [ 100 35 38 35 38 100 35 38

3000 0 | 590763 308767 121869 | 2434 199 32.658 | 100 53 48 53 48 100 55 48

3300 O | 646986 338165 133384 | 2691 207 36.673 | 100 50 50 50 53 100 50 53

3600 0 | 705373 368756 145486 | 3075 204 40932 | 100 65 73 65 78 100 65 73

3900 0 | 767938 401333 158583 | 3329 206 45.224 | 100 73 60 73 58 98 73 60

4500 0 | 882189 461151 181934 | 4011 212 54.159 | 100 88 70 88 70 100 88 70

goal). While we believe that for these kinds of environments owtear that little would be gained by applying our approach in sparsely
approach will lead to performance improvements, it seems equafigpulated environments.
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TABLE VI
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RESULTS FORSAMPLING BIAS TOWARD LOWER MANIPULABILITY WITHOUT ENHANCEMENT

Nodes Number Rejected Avg. Avg. Avg Connection success rate (%)

N M Self Manip Obstacle | Size Comps Time| Ci C; C3 Cs Cs Cs C; Cs
1200 0 | 342290 144614 88228 | 605 136 10558 | 80 48 50 48 50 60 48 50
1500 0 429853 181626 110792 913 135 14.482 93 48 63 48 63 80 48 63
1800 0 515776 217943 132974 | 1367 142 18.474 98 65 83 65 83 98 65 83
2100 0 599852 253770 154705 | 1647 148 22.638 | 100 68 85 68 85 98 68 85
2400 0 | 688392 290852 177466 | 2085 150 26.852 | 100 8 95 8 95 100 8 95
2700 0 771972 326285 199132 | 2472 152 31.224 | 100 98 98 98 98 100 98 98
3000 O | 863181 364893 222513 | 2709 156 35.763 | 100 90 100 90 100 100 90 100
3300 0 | 945738 399917 243895 | 3092 157 40.265 | 100 100 100 100 100 100 100 100
3600 O | 1031846 436321 266026 | 3385 159 44.754 | 100 100 100 100 100 100 100 100
3900 0 | 1119291 473301 288500 | 3678 163 49.450 | 100 100 100 100 100 100 100 100
4500 0 | 1291941 546276 333038 | 4258 170 59.148 | 100 100 100 100 100 100 100 100

Furthermore, even though our results for biasing toward low ma- [8]
nipulability are quite good, it should be noted that the results for bi-
asing toward high manipulability are also reasonably good (Table I1), [9]
as good or better than the traditional PRM for about half of the prob-
lems, performing more than 10% worse than the traditional approach
only 18% of the time. From this, we surmise that there may be environ-
ments for which biasing toward higher manipulability would be more[10]
appropriate. This can be justified intuitively by noting that nodes in re-
gions of the configuration space in which manipulability is high have; 1)
the potential to be connected to many configurations, possibly gener-
ating roadmaps with higher connectivity.

One shortcoming of our current implementation is that we use onI)LlZ]
the manipulability of the end-effector to bias the sampling of the en-
tire arm’s configuration space. It is possible, for example, that perfor13]
mance gains could be obtained by using individual manipulability mea-
sures for each link of the arm. We have chosen not to implement such
an approach because the added computational cost would be extremg
(growing with the number of links), and because the manipulability of
the end-effector represents, in some sense, an aggregate of the manip-
ulabilities of the individual links. [15]

Based on our results, we believe that our new approach to biased
sampling can play a useful role in the construction of PRMs for many g]
path planning applications.
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