
 http://ijr.sagepub.com/

Robotics Research
The International Journal of

 http://ijr.sagepub.com/content/21/12/999
The online version of this article can be found at:

DOI: 10.1177/0278364902021012001

 2002 21: 999The International Journal of Robotics Research
Peter Leven and Seth Hutchinson

A Framework for Real-time Path Planning in Changing Environments

Published by:

 http://www.sagepublications.com

On behalf of:

 Multimedia Archives

 can be found at:The International Journal of Robotics ResearchAdditional services and information for

 http://ijr.sagepub.com/cgi/alertsEmail Alerts:

 http://ijr.sagepub.com/subscriptionsSubscriptions:

 http://www.sagepub.com/journalsReprints.navReprints:

 http://www.sagepub.com/journalsPermissions.navPermissions:

 http://ijr.sagepub.com/content/21/12/999.refs.htmlCitations:

 at UNIV OF ILLINOIS URBANA on September 8, 2010ijr.sagepub.comDownloaded from

http://ijr.sagepub.com/
http://ijr.sagepub.com/content/21/12/999
http://www.sagepublications.com
http://www.ijrr.org/
http://ijr.sagepub.com/cgi/alerts
http://ijr.sagepub.com/subscriptions
http://www.sagepub.com/journalsReprints.nav
http://www.sagepub.com/journalsPermissions.nav
http://ijr.sagepub.com/content/21/12/999.refs.html
http://ijr.sagepub.com/

Peter Leven
Seth Hutchinson
Electrical and Computer Engineering
The Beckman Institute
University of Illinois
Urbana, IL 61801

A Framework for
Real-time Path
Planning in Changing
Environments

Abstract

We present a new method for generating collision-free paths for
robots operating in changing environments. Our approach is closely
related to recent probabilistic roadmap approaches. These planners
use preprocessing and query stages, and are aimed at planning many
times in the same environment. In contrast, our preprocessing stage
creates a representation of the configuration space that can be eas-
ily modified in real time to account for changes in the environment,
thus facilitating real-time planning. As with previous approaches,
we begin by constructing a graph that represents a roadmap in the
configuration space, but we do not construct this graph for a spe-
cific workspace. Instead, we construct the graph for an obstacle-free
workspace, and encode the mapping from workspace cells to nodes
and arcs in the graph. When the environment changes, this mapping
is used to make the appropriate modifications to the graph, and plans
can be generated by searching the modified graph.

In this paper, we first discuss the construction of the roadmap,
including how random samples of the configuration space are gener-
ated using an importance sampling approach and how these samples
are connected to form the roadmap. We then discuss the mapping
from the workspace to the configuration space roadmap, explain-
ing how the mapping is generated and how it can be encoded ef-
ficiently using compression schemes that exploit redundancy in the
mapping. We then introduce quantitative robustness measures and
show how these can be used to enhance the robustness of the roadmap
to changes in the environment. Finally, we evaluate an implementa-
tion of our approach for serial-link manipulators with up to 20 joints.

KEY WORDS—probabilistic roadmaps, motion planning

1. Introduction

In this paper, we present a new method for generating
collision-free paths for robots operating in changing environ-
ments. Our work builds on recent methods that use proba-

The International Journal of Robotics Research
Vol. 21, No. 12, December 2002, pp. 999-1030,
©2002 Sage Publications

bilistic roadmap (PRM) planners (Amato et al. 1998; Horsch,
Schwarz, and Tolle 1994; Kavraki and Latombe 1994; Over-
mars and S̆vestka 1994; Wilmarth, Amato, and Stiller 1999).
The idea that the cost of planning will be amortized over
many planning episodes provides a justification for spend-
ing extensive amounts of time during a preprocessing stage,
provided the resulting representation can be used to generate
plans very quickly during a query stage. Thus, these planners
use a two-stage approach. During a preprocessing stage, the
planner generates a set of nodes that correspond to random
configurations in the configuration space (hereafter, C-space),
connects these nodes using a (simple, local) path planner to
form a roadmap, and, if necessary, uses a subsequent sampling
stage to enhance the roadmap. During the second, on-line
stage, planning is reduced to query processing, in which the
initial and final configurations are connected to the roadmap,
and the augmented roadmap is searched for a feasible path.

Our new approach is a direct descendant of the PRM meth-
ods. Our goal, like theirs, is a real-time planner that uses ap-
proximate representations such as those provided by computer
vision or range sensors. However, unlike PRM methods, our
method is aimed at changing environments and therefore can-
not exploit the premise that planning will occur many times
in the same environment. Note that we are not concerned here
with the problem of motion planning among moving obsta-
cles whose trajectories are known a priori. We are interested
in motion planning for environments in which obstacle loca-
tions are unknown a priori, or in which obstacle motion is
unpredictable, such as would be the case for a mobile robot
equipped with a manipulator operating in a previously un-
known environment.

The development of our ideas has been driven by the recent
and continuing explosion of available computational power,
both increased processor speeds and increased memory sizes.
It is not, of course, reasonable to expect algorithms with expo-
nential space or time requirements to become feasible merely
by increasing computational power, but it is quite reasonable
now to encode fairly fine discretizations of the environment
(which is at most three-dimensional (3D)) and to encode a

999

 at UNIV OF ILLINOIS URBANA on September 8, 2010ijr.sagepub.comDownloaded from

www.sagepublications.com
http://ijr.sagepub.com/

1000 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / December 2002

representation of the mapping between workspace obstacles
and obstacle regions in the C-space, provided the C-space
is represented by a combinatorial data structure that does
not grow exponentially with the dimension of the C-space
(for example, the graph representations used by PRM meth-
ods). These newly realized abilities form the basis for our new
approach.

Our method begins, as do the PRM planners, by construct-
ing a graph that represents the C-space. Nodes are gener-
ated by a random sampling scheme, and connections between
nodes are generated using a simple, straight-line planner. Un-
like the PRM planners, we generate a roadmap that corre-
sponds to an obstacle-free environment. Then, in a second
phase of the preprocessing stage, we generate a representa-
tion that encodes the mapping from cells in the discretized
workspace to nodes and arcs in the graph. These two phases
are specific to the robot, but are independent of the environ-
ment in which the robot will operate. The fact that the pre-
processing is completely independent of the robot’s target
environment removes constraints on preprocessing time. In-
deed, with our approach, it is feasible that when a new robot
is designed, an extended period of preprocessing could be
performed, at the end of which the robot would essentially be
preprogrammed to construct motion plans in any environment
that it might encounter.

In the on-line planning phase, the planner first identifies the
cells in the discretized workspace that correspond to obsta-
cles, and then deletes the corresponding nodes and arcs from
the graph, using the encoded mapping. Planning is then re-
duced to connecting the initial and final configurations to the
graph (again, as is also the case with the PRM planners), and
then searching the graph for a path between these newly added
nodes. Of course, it is possible to add obstacles to the envi-
ronment in such a way that the graph becomes disconnected.
This is true for any of the PRM planners (once we know how
samples are selected, and how these samples are connected
by local planners, it is fairly straightforward to construct en-
vironments that will thwart them), but, as we will describe
in subsequent sections, there are a number of steps that can
be taken to cope with this problem during the preprocessing
stages.

In the on-line planning stage, our method runs in real time;
plans are generated in less than 1 s. Thus, it is feasible to use
the planner even in the case when obstacles are moving in the
environment with unknown trajectories, provided a sensing
system can identify in real time those regions of the workspace
that are occupied by the obstacles.

In the remainder of the paper, we discuss the features of
our algorithm. After a brief review of the related path planning
literature in Section 2, we present a discussion in Section 3 of
the construction of the roadmap to be used for path planning,
followed by a discussion of the construction of the mapping
from the workspace to the roadmap in Section 4. We continue
with a discussion of methods for enhancing the roadmap in

Section 5. We then discuss results using this approach with
serial-link robots in two-dimensional (2D) and 3D environ-
ments in Section 6, and we finish with concluding remarks in
Section 7.

2. Related Research

The earliest work in path planning produced exact algorithms
(see, for example, Canny (1988) and Schwartz, Sharir, and
Hopcroft (1987)) and methods that build an approximate rep-
resentation of the full volume of C-space (see, for example,
Brooks and Lozano-Pérez (1983), Kambhampati and Davis
(1986) and Lozano-Pérez (1983)). In the former case, the
best-known algorithms have exponential complexity and re-
quire exact descriptions of both the robot and its environment,
whereas in the latter case, the size of the representation of C-
space grows exponentially in the dimension of the C-space.

The fact that real robots rarely have an exact description of
the environment, coupled with a desire for real-time planning,
led to the development of potential field approaches (Hwang
and Ahuja 1988; Khatib 1986; Koditschek 1989). The idea
of potential field approaches is to construct a scalar function
over the C-space that represents the goal region as the global
minimum in the field and the obstacles as local maxima. Path
planning is then reduced to following the gradient of the po-
tential function until the goal is reached. The advantage of this
approach is that the potential functions are easy to compute,
making the planner fast. Unfortunately, it is difficult to create
potential functions with a single global minimum at the goal;
therefore, these planners are easily trapped by local minima.

The problems of local minima in potential field planners
led to the development of randomized planning (Barraquand
and Latombe 1991). In this approach, when a local minimum
is detected, a random motion is performed to try to escape
the local minimum. Planning then can be considered a graph
search, where the nodes of the graph are the sequence of local
minima encountered when searching for the goal.

The randomized motion planners proved effective for a
large range of problems, but required extensive computation
time for some robots in certain environments (Hsu, Latombe,
and Motwani 1999; Kavraki et al. 1996). This limitation, to-
gether with the idea that a robot will operate in the same
environment for a long period of time, led to the development
of the PRM planners (Amato et al. 1998; Horsch, Schwarz,
and Tolle 1994; Kavraki and Latombe 1994; Overmars and
S̆vestka 1994; Wilmarth, Amato, and Stiller 1999). The idea
that the cost of planning will be amortized over many planning
episodes justifies spending extensive amounts of time during
a preprocessing stage, provided the resulting representation
can be used to generate plans very quickly during a query
stage.

The two stages of the PRM planners can be described as
follows. In the preprocessing stage, a roadmap is constructed

 at UNIV OF ILLINOIS URBANA on September 8, 2010ijr.sagepub.comDownloaded from

http://ijr.sagepub.com/

Leven and Hutchinson / A Framework for Real-time Path Planning 1001

in the free C-space. The nodes of the roadmap are created by
some random sampling scheme, and pairs of nodes are inter-
connected using a simple local planner. After construction,
this roadmap may contain more than one connected compo-
nent, in which case an enhancement operation may be per-
formed to try to connect the different components together.
In the second stage, planning queries are performed. For each
planning query, the initial and goal configurations are con-
nected to the network and the network is searched for a path.

The PRM planners that use this two-stage processing
mechanism are targeted toward environments in which the ob-
stacles are stationary and their positions are known in advance.
For environments for which this assumption does not hold,
single-query variants were developed that build the roadmap
as they search for a path (Hsu, Latombe, and Motwani 1999;
Kuffner and LaValle 2000; Vallejo, Jones, and Amato 1999).
PRM-type approaches have also been used for sensor-based
exploration of unknown environments. For example, Mehran-
dezh and Gupta (2002) use a robot equipped with a skin sensor
to explore the environment using a lazy-PRM approach.

There have been a number of previous approaches to path
planning in changing environments. In some cases, planners
have execution times that make it feasible to directly use
them in some kinds of changing environments with no mod-
ifications. This is the case, for example, for the Ariadne’s
Clew algorithm reported in Bessière et al. (1994) and Mazer,
Ahuactzin, and Bessière (1998). The Ariadne’s Clew algo-
rithm operates by generating landmarks (during an explo-
ration phase) and then connecting them to the existing network
(the search phase). Variations of this algorithm can be ob-
tained by varying the search phase, and by using different op-
timization criteria to select candidate landmarks (Ahuactzin,
Gupta, and Mazer 1998; McLean and Mazon 1996). The idea
of incrementally expanding a network for single-query plan-
ning has also been used in Hsu, Latombe, and Motwani (1999)
and Kuffner and LaValle (2000). In both of these, networks
are grown from both the initial and goal configurations until
they can be connected, although the details for expanding the
network differ. The incremental expansion method in Hsu,
Latombe, and Motwani (1999) has also been used in a dy-
namic environment (Kindel et al. 2000). In Vallejo, Jones,
and Amato (1999) an adaptable approach that uses multiple
local planners is described. At run time, characteristics of the
problem are used to determine which (combination of) local
planners will be most effective.

We also note here that, in two of these previous ap-
proaches (Horsch, Schwarz, and Tolle 1994; McLean and
Mazon 1996), the idea of somehow representing the map-
ping from the workspace to the C-space was incorporated. In
Horsch, Schwarz, and Tolle (1994), during the off-line plan-
ning stage, the planner is aware of a set of obstacles that
might be present in the environment (in their experiments, a
single obstacle was used). The locations of these obstacles
are specified a priori, and at run time the robot sensor system

determines which, if any, of the obstacles are present in the
environment. During the off-line planning stage, the trajecto-
ries in the paths tree that cause collisions with each of these
obstacles are determined. When objects are detected at run
time, the corresponding arcs are deleted from the graph. In
McLean and Mazon (1996), the paths tree (created by a mod-
ified Ariadne’s Clew algorithm) is augmented to generate a
graph. Then, for each path in the graph, the corresponding
workspace cells are identified. Thus, when a new obstacle is
added to the environment, the set of paths that intersect that
obstacle can be deleted from the graph. Because these au-
thors are primarily interested in domains for which extensive
preprocessing is not viable, they construct relatively small
graphs (fewer than 100 landmarks, with fewer than 400 cor-
responding paths). Therefore, it is fairly easy to add obstacles
that would disconnect the graph, even though these obstacles
might not cause the free C-space to become disconnected. In
their experimental evaluation of their planner, a single obsta-
cle was added, and the addition of this obstacle resulted in
disconnecting the graph into five components. In such cases,
their algorithm resorts to the Ariadne’s algorithm to recon-
nect the graph, which can take time, long enough to prohibit
the planner from being used in environments with moving
obstacles. The key advances in our work over these latter ap-
proaches are: (1) the ability to represent very large mappings
by using data compression schemes that exploit redundancies
in the mapping; and (2) methods for improving the robustness
of the underlying roadmap to changes in obstacle placement
in the environment.

3. Constructing the Roadmap

Our construction of a roadmap of the C-space is very simi-
lar to methods used in previous PRM planners (Kavraki and
Latombe 1994). Nodes are generated by generating sample
configurations, and these nodes are then connected to form a
roadmap. We will denote this roadmap by G = 〈Gn,Ga〉, in
which Gn is the set of nodes in the roadmap and Ga is the set
of arcs in the roadmap.

Generating samples to construct Gn is potentially more
complex than for the traditional PRM planners, since we can-
not exploit the geometry of the obstacle region in the C-space
C to guide the sampling of C. In traditional PRM planners, the
goal is to find enough collision-free samples of the C-space
so that the connectivity of the collision-free portion of C can
be captured by the roadmap. In our approach, all samples
are collision-free because there are no obstacles (except for
the case of self-collision); therefore, our goal is to generate
samples such that our roadmap remains connected despite the
introduction of obstacles into the workspace.

Once the nodes have been generated, they must be con-
nected to form the roadmap. There are two issues to be
addressed in this phase of the roadmap construction. The first

 at UNIV OF ILLINOIS URBANA on September 8, 2010ijr.sagepub.comDownloaded from

http://ijr.sagepub.com/

1002 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / December 2002

is to decide which pairs of nodes to connect. For this purpose,
a distance function is defined that provides a measure of the
expected difficulty of connecting a pair of nodes. The second
issue is verification that a pair of nodes can be connected.
This is the role of the local planner, which must verify that
a collision-free path exists joining the two nodes. Tradition-
ally, this is the most expensive part of the PRM method, as
it involves many calls to collision testing libraries to deter-
mine the feasibility of paths. With our approach, connecting
the nodes to generate Ga is simpler; since our roadmap is con-
structed without the presence of obstacles in the workspace,
only self-collision need be considered when generating local
paths between nodes.

The remainder of this section is organized as follows. We
begin with a discussion on the sampling of C, including tech-
niques others have used and those that are appropriate for our
planner. We follow this with a discussion of the local planner
that is used to connect pairs of configurations. Finally, we dis-
cuss the distance functions that are used to determine which
pairs of nodes to connect in the roadmap.

3.1. Generating Sample Configurations

For traditional PRM methods, the roadmap is constructed for
a workspace that contains obstacles. The goal of sampling
is then to generate sample configurations in the free C-space
(denoted Cf ree). The simplest approach is to use uniform ran-
dom sampling, discarding samples that correspond to colli-
sions with obstacles. This technique makes no assumptions
about the distributions of the obstacles and is relatively easy
to analyze (Kavraki, Kolountzakis, and Latombe 1996). Un-
fortunately, the number of samples this technique places in
any particular region of Cf ree is proportional to its volume;
therefore, uniform sampling is unlikely to place samples in
narrow passages, and the resulting roadmap is likely to have
a connectivity that differs from that of Cf ree.

A number of sampling approaches have been proposed
recently to deal with this problem. In Horsch, Schwarz, and
Tolle (1994) and Kavraki and Latombe (1998), a second stage
of sampling is used, in which samples are added to regions
where the roadmap has few nodes. A number of approaches at-
tempt to place samples near the boundaries of obstacles (Am-
ato et al. 1998; Overmars and S̆vestka 1994; Amato and Wu
1996; Boor, Overmars, and van der Stappen 1999). An alter-
native to placing samples near the obstacle boundaries is to
sample near the medial axis of Cf ree or W (Wilmarth, Amato,
and Stiller 1999; Guibas, Holleman, and Kavraki 1999; Holle-
man and Kavraki 2000). Other sampling approaches aim at
growing a search tree in Cf ree so that the tree optimally ex-
plores the space (Hsu, Latombe, and Motwani 1999; Kuffner
and LaValle 2000; Ahuactzin, Gupta, and Mazer 1998; Yu
and Gupta 1999; Ahuactzin et al. 1992; Ahuactzin, Mazer,
and Bessière 1995). For the more difficult problem of kino-

dynamic planning (which considers constraints on robot ve-
locity as well as configuration) samples can be generated by
sampling from the space of control inputs, and applying the
sample control at a node in the existing roadmap (Kindel et al.
2000; LaValle and Kuffner 1999, 2000).

For our planner, since there are no obstacles to consider,
it is fairly easy to generate samples in the C-space. The only
hard constraint is that self-collision (that is, collision between
distinct links of the robot) is prohibited. The first method that
we have investigated is to sample from a uniform distribution
on the C-space. This approach reflects a complete absence of
prior knowledge about the environment in which the robot
will ultimately operate. If prior knowledge, either about the
environment or the set of tasks that the robot will perform,
were available, an appropriate importance sampling scheme,
or even a deterministic scheme (if the existence of certain
obstacles were known in advance), could have been used.

In addition to uniform sampling of the C-space of the robot,
we have investigated an importance sampling scheme that is
based on the manipulability measure associated with the ma-
nipulator Jacobian matrix (Yoshikawa 1985). Manipulability
is a quantitative measure of the ability of a robot to position
and orient its end-effector. The formula for the manipulability
is ω = σ1σ2 . . . σn, in which σi are the singular values of the
manipulator Jacobian.

The basic idea for using the manipulability as a bias for
sampling is the following. In regions of the C-space where
manipulability is high, the robot has great dexterity, and there-
fore relatively fewer samples should be required in these areas.
Regions of the C-space where manipulability is low tend to be
near (or to include) singular configurations of the arm. Near
singularities, the range of possible motions is reduced, and
therefore such regions should be sampled more densely.

We adopt the following strategy for concentrating samples
in regions of low manipulability. First, for each robot, we
compute a discrete representation of the cumulative distribu-
tion function of the manipulability. We create this distribution
function using the following approach. First, we sample the
C-space of the robot uniformly at random and compute the
manipulability for each configuration. We exclude from this
computation configurations in which the robot collides with
itself. We then create a histogram of the manipulability values
that we have computed. Finally, we normalize the number in
each bucket of the histogram and create the cumulative dis-
tribution function from these normalized values. The bucket
size of the histogram and the number of samples to take are
parameters.

Some example manipulability probability distributions for
six-joint robots are shown in Figure 1. In this figure, the plots
labeled “Not filtered” correspond to sampling the manipula-
bility of the robot without filtering out samples in which the
robot is in self-collision; the plots labeled “Filtered” do ex-
clude these samples. In both cases and for both robots, 10 mil-
lion samples were evaluated for manipulability. In addition,

 at UNIV OF ILLINOIS URBANA on September 8, 2010ijr.sagepub.comDownloaded from

http://ijr.sagepub.com/

Leven and Hutchinson / A Framework for Real-time Path Planning 1003

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

0.0016

0 500 1000 1500 2000 2500

P
ro

ba
bi

lit
y

Manipulability

Filtered
Not filtered

0.0e+00

2.0e-05

4.0e-05

6.0e-05

8.0e-05

1.0e-04

1.2e-04

1.4e-04

1.6e-04

0 5000 10000 15000 20000 25000

P
ro

ba
bi

lit
y

Manipulability

Filtered
Not filtered

(a) (b)

Fig. 1. Probability distribution functions for the manipulability of a robot with six joints: (a) a planar robot and (b) a 3D
workspace robot.

the gnuplot “csplines” function was used to smooth the plots.
An explanation for the shift that can be seen for both robots in
the probability distribution when filtering out self collisions
is that configurations in which the robot is in collision with
itself tend to be configurations for which the manipulability
is low.

We use these manipulability distributions to guide the sam-
pling as follows. First, we compute a self-collision-free sam-
ple of the C-space uniformly at random. We then compute
the manipulability measure for this configuration and use this
value as an index into the manipulability cumulative distribu-
tion table of the robot. The value in the table at this index is
then used as the probability of rejection for this configuration.

One shortcoming of the manipulability measure for our
purposes is that it does not reflect joint limits. When the robot
is near a joint limit, its movement is restricted. In an effort
to include samples near joint limits we adopt the following
convention: at configurations in which some joint is near a
limit, the manipulability is defined to be zero. The nearness
of a joint to its limit is a parameter of our sampling algorithm.

3.2. Local Planner

The local planner determines how the nodes of the roadmap
are connected and whether the connection is feasible, given
the presence of obstacles. In traditional PRM approaches, lo-
cal planning can be a difficult problem due to the presence
of obstacles. As a result, many different approaches have
been proposed (Kavraki and Latombe 1994; Overmars and
S̆vestka 1994; Hsu, Latombe, and Motwani 1999; Bessière
et al. 1994; Ahuactzin, Gupta, and Mazer 1998; McLean and
Mazon 1996; Kindel et al. 2000; Kavraki, Kolountzakis, and
Latombe 1996; Boor, Overmars, and van der Stappen 1999;

Ahuactzin, Mazer, and Bessière 1995; LaValle and Kuffner
1999, 2000; Amato et al. 2000; LaValle, Yakey, and Kavraki
1999; Overmars and S̆vestka 1995; Holleman, Kavraki, and
Warren 1998; Kavraki, Lamiraux, and Holleman 1998, An-
shelevich 2000).

In our approach, the roadmap is built without obstacles
in the workspace. Therefore, the requirements for the local
planner are very modest. It should be reasonably fast, as that
reduces the time needed to construct the data structures. It
should always return the same path when given the same
two configurations as input. In addition, the local planner
should consider self-collisions of the robot when determin-
ing whether two nodes can be connected.

In our implementation, we use the simple straight-line
planner (that is, for each arc, a straight-line trajectory in the
C-space is used to connect the two configurations whose con-
nection is implied by that arc). In addition, using the straight-
line planner simplifies the calculation of some of the distance
functions described below.

3.3. Distance Functions

The distance function provides a measure of the difficulty
the local planner would have connecting two configurations,
and thus it is useful for selecting pairs of nodes to connect in
the roadmap. An ideal distance function would be the swept
volume in the workspace of the trajectory connecting two
configurations, since intuitively, trajectories with larger swept
volumes are more likely to be blocked by obstacles in the en-
vironment. Unfortunately, as noted by others (Kavraki et al.
1996; Amato et al. 2000), this distance function is very ex-
pensive to compute; therefore, most PRM methods use ap-
proximations based solely on the two configurations that are
to be connected.

 at UNIV OF ILLINOIS URBANA on September 8, 2010ijr.sagepub.comDownloaded from

http://ijr.sagepub.com/

1004 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / December 2002

Several distance functions have been defined on the C-
space of the robot. These distance functions typically treat the
C-space as a Cartesian space and define the distance function
accordingly. For example, the Euclidean distance, which is
the 2-norm of the differences of each configuration variable,
is used in a few planners (Bessière et al. 1994; Amato and
Wu 1996; Han and Amato 2000). The 1-norm has also been
used (LaValle, Yakey, and Kavraki 1999). A problem with
these distance functions is that they weight the configuration
parameters equally, when some parameters may have a larger
effect than others. A solution to that problem is to add weights
to the different configuration parameters, and this has been
used in a number of planners (Amato et al. 1998; LaValle
and Kuffner 2000; Overmars and S̆vestka 1995; Bohlin and
Kavraki 2000).

Workspace distance functions attempt to measure the mo-
tion of the robot in the workspace. One method that has been
used for articulated robots is to take the 2-norm of the Eu-
clidean distances between the joint positions in the workspace
(Kavraki and Latombe 1994). Two methods for 3D rigid ob-
jects that were tested in Amato et al. (2000) are the distance
between the center of mass of the object at two configura-
tions and the maximum distance between any vertex of the
bounding box at one configuration and its corresponding ver-
tex at the other configuration. For flexible surface objects, a
workspace-defined distance function is the sum of the trans-
lation distance, scaled rotation, and maximum displacement
of a control point (Kavraki, Lamiraux, and Holleman 1998).
Another distance function is defined as the sum of the dis-
tances between unit vectors of the coordinate frame of the end-
effector of the robot. This distance function has been used for
manipulation planning (Ahuactzin, Gupta, and Mazer 1998)
and for inverse kinematics of redundant robots (Ahuactzin and
Gupta 1999). Another variant on a workspace distance func-
tion is defined for nonholonomic robots in 2D workspaces
(Overmars and S̆vestka 1995). In this approach, the distance
function is defined as the length of the minimum RTR path
connecting two configurations.

For our experiments, we selected from the literature the
four distance functions listed in Table 1. For the equations in
this table, the robot has n joints, q and q′ are the two config-
urations corresponding to different nodes in the roadmap, qi
refers to the configuration of the ith joint, and p(q) refers to
the workspace reference point p of the set of reference points
A at configuration q. Versions of DW

2 and DW
2 were also used

in Kavraki et al. (1996).
Most of the distance functions defined in Table 1 try to cap-

ture the cost of a connection by using a measure defined only
on the endpoints of the path. While this allows the value of
the distance function to be calculated quickly, it does not suf-
ficiently penalize the motion of the robot as it follows the path
generated by the local planner. An example of this is shown in
Figure 2, where Figure 2(a) shows two configurations that are
considered close by the DW

2 function, and Figure 2(b) shows

the region of the workspace swept out by the straight line in
the C planner. For this robot, the first joint has unlimited range
of motion, whereas the latter nine have limited range.

To incorporate a measure of the motion of the robot into the
distance function, we have defined two new pseudo-distance
functions that incorporate the midpoint qm = (q + q′)/2 of
the path. The first is similar to DW

2 defined above but with the
addition of the midpoint of the path:

DW
m2(q, q′) =

[∑
p∈A

∥∥p(q′) − p(qm)
∥∥2

+
∑
p∈A

∥∥p(qm) − p(q)
∥∥2

] 1
2

.

The second is based on the coordinate frame of the end-
effector. A form of this function was defined in Ahuactzin and
Gupta (1999) for use in a motion-planning-based approach to
inverse kinematics. The idea for this function is to connect
nodes of the roadmap with similar end-effector positions. Let
Fa and Fb denote two coordinate frames. We define the dis-
tance between these two frames to be the sum of the distances
between the unit vectors along the coordinate axes, that is,

d(Fa,Fb) = dx + dy + dz,

where dx , dy , and dz are the Euclidean distances between the
unit vectors along the x, y, and z axes, respectively (see Fig-
ure 3). Using this definition, the distance between two con-
figurations q and q′ is

DW
F (q, q′) = d(F(q),F(qm)) + d(F(qm),F(q

′)),

where F(q) is the end-effector frame corresponding to the
configuration q and qm = (q + q′)/2.

It is important to note that, in general, neither of these two
functions satisfies the triangle inequality. This restricts the
type of nearest-neighbor algorithms that can be used when
constructing the roadmap as well as its use for searching for
paths in the planning phase. Also, because of the cost of com-
putations associated with using the midpoint, using either of
these two functions will increase the time needed to compute
the nearest neighbors during roadmap construction, although
this may lead to time savings elsewhere.

4. Workspace to Configuration Space Mapping

A key element of our path-planning approach is the mapping
from the workspace to the roadmap in C-space. To represent
the workspace, we use a uniform, rectangular decomposition,
which we denote by W. We denote the C-space by C, and
define the mapping φ : W → C as

φ(w) = {q | A(q) ∩ w = ∅}, (1)

 at UNIV OF ILLINOIS URBANA on September 8, 2010ijr.sagepub.comDownloaded from

http://ijr.sagepub.com/

Leven and Hutchinson / A Framework for Real-time Path Planning 1005

Table 1. Four Distance Functions from the Literature That We Have Investigated

2-norm in C-space: DC
2 (q, q′) = ‖q′ − q‖ =

[∑n

i=1(q
′
i
− qi)

2

] 1
2

∞-norm in C-space: DC
∞(q, q′) = maxn |q ′

i
− qi |

2-norm in workspace: DW
2 (q, q′) =

[∑
p∈A

∥∥p(q′) − p(q)
∥∥2

] 1
2

∞-norm in workspace: DW
2 (q, q′) = maxp∈A

∥∥p(q′) − p(q)
∥∥.

(a) (b)

Fig. 2. (a) Two configurations considered close by the DW
2 function and (b) the area swept by the robot following a straight

line in C connecting the two configurations.

dz

dy

dx

Fa
Fb

i

j j

k

k

i

Fig. 3. Illustration of dx , dy , and dz.

 at UNIV OF ILLINOIS URBANA on September 8, 2010ijr.sagepub.comDownloaded from

http://ijr.sagepub.com/

1006 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / December 2002

in which w is cell of the workspace and A(q) denotes the
subset of W occupied by the robot at configuration q. We
note that φ(w) is exactly the C-space obstacle region (of-
ten denoted by CB) if w is considered as an obstacle in the
workspace. In our approach, we do not explicitly represent
the C-space, but instead use the roadmap G. Therefore, we
define two additional mappings, one from the workspace to
the nodes in the roadmap, and one from the workspace to the
arcs in the roadmap:

φn(w) = {q ∈ Gn | A(q) ∩ w = ∅}, (2)

φa(w) = {γ ∈ Ga | A(q) ∩ w = ∅ for some q ∈ γ }. (3)

An example of this mapping is shown in Figure 4 for a two-
link robot in a 2D workspace. Figure 4(a) shows the robot in
its workspace along with a single obstacle (1×1 dark square).
Figure 4(b) shows the C-space for this robot, including the ob-
stacle region, CB (shaded), and a sample C-space roadmap
that was generated using the DW

2 distance function. The map-
pingφn(w) for this obstacle includes the nodes of the roadmap
shown as empty circles, and φa(w) includes the arcs shown as
dotted lines. Note that we need not include the arcs connected
to the nodes in φn(w) in the representation of φa(w), because
having one of the endpoints of the arc blocked by an obstacle
means that the arc itself is also blocked. For this reason, the
arcs connected to nodes in φn are not shown as dotted lines in
Figure 4.

4.1. Computation of φnφnφn and φaφaφa

In terms of the implementation, it is much easier to compute
the inverse maps φ−1

n
and φ−1

a
and, for this reason, we use the

inverse maps for the construction of our representation of the
mapping. The inverse map φ−1

n
(q) corresponds to the set of

cells in W that intersect with the robot at configuration q, and
the map φ−1

a
(γ) corresponds to the cells in W that intersect

with the swept volume of the robot as it follows the path γ in
the roadmap. In our definition of φ−1

a
(γ), we exclude the cells

in φ−1
n

for both of the endpoints of γ . An example of φ−1
n
(q)

is shown in Figure 5(a) and φ−1
a
(γ) is shown in Figure 5(b).

The lightly shaded cells correspond to those in φ−1
n

and the
darkly shaded cells to those in φ−1

a
. When the inverse maps

are computed, the forward maps can easily be represented, for
example, by using doubly linked pointers.

The construction of the representation for φn is straight-
forward. For each q ∈ Gn we note the mapping from each
w ∈ φ−1

n
(q) to the corresponding q. The set of cells in φ−1

n
(q)

is computed by a voxelization algorithm inspired by the vox-
elization algorithm for polyhedra described in Kaufman and
Shimony (1986). This algorithm essentially limits computa-
tion by efficiently building the representation of the inverse
map without examining every cell in W.

The computation of φ−1
a

is more complex and time con-
suming. It involves computing the swept volume of the robot

as it traverses a path computed by the local planner between
two configurations. Computing the swept volume for a robot
trajectory is not a trivial problem (Abrams, Allen, and Taraba-
nis 1993; Abrams and Allen 1995; Blackmore and Leu 1990;
Boussac and Crosnier 1996; Ma, Jiang, and Chan 2000). There
is a simple solution for convex polyhedra that only translate
(Xavier 1997), but the general case for motion with rotation
is much more complex. Because of this complexity, methods
for approximating the swept volume have been proposed, such
as a polyhedral approximation (Abrams, Allen, and Tarabanis
1993; Abrams and Allen 1995), or B-splines in Ma, Jiang, and
Chan (2000).

We have developed an approximate method for computing
φ−1
a
(γ) for each γ ∈ Ga as follows. First, φ−1

n
is computed for

the two endpoints qa and qb of γ . Then, the path correspond-
ing to γ is sampled using a recursive bisection method, which
proceeds as follows. First, the configuration qm correspond-
ing to the midpoint of the segment connecting the two nodes
is computed, and φ−1

n
(qm) for that configuration is computed.

Cells in φ−1
n
(qm) that are not in either φ−1

n
(qa) or φ−1

n
(qb) are

added to φ−1
a
(γ). In the current implementation, the subdi-

vision of the path continues until no new cells are added to
φ−1
a
(γ) by the robot at configuration qm. An example of this

subdivision process is shown in Figure 6.

4.2. Efficient Representations

With the recent rapid increase in computer memories, it is
feasible to use a naïve encoding to represent φn and φa for
a fairly large roadmap and a fairly fine discretization of the
workspace. An example showing the size of a naïve encoding
ofφa for several roadmap sizes and different numbers of joints
for planar robots without joint limits is shown in Figure 7.
Nevertheless, it is beneficial to find more efficient encodings
of φa and φn, provided that the encoding does not drastically
increase the computation required to compute plans on-line.
Reducing the size of the representation will also enable us to
consider larger roadmaps G, which will increase the efficacy
of the on-line planning.

From an information theoretic point of view, compression
of a data set involves the reduction of redundancy in that data
set. The amount of compression that can be performed is lim-
ited by the information content of the data set, which, in turn,
is related to the degree of unexpectedness, or randomness, in
the data set (Hankerson, Harris, and Johnson 1998). There are
three main sources of redundancy in the representation of φn

and φa that can be exploited: (1) the spatial coherence of the
set φ(w) in C for a specific w in W; (2) spatial coherence of
φ(w) for neighboring w’s in W; and (3) the representation of
the labels of the nodes and arcs in the roadmap.

The spatial coherence of CB has been exploited in pre-
vious collision checking approaches (e.g. Lin and Manocha
1997; Mirtich 1997; van den Bergen 1999). In our case, spatial
coherence derives from the continuity of φ, namely that small

 at UNIV OF ILLINOIS URBANA on September 8, 2010ijr.sagepub.comDownloaded from

http://ijr.sagepub.com/

Leven and Hutchinson / A Framework for Real-time Path Planning 1007

x 10-10 20-20

y

10

-10

20

-20

q0

q1

−π π−π

π

(a) (b)

Fig. 4. (a) The workspace of a two-link robot with an obstacle at (0, 10), and (b) the corresponding C-space of the robot.

(a) (b)

Fig. 5. An example of (a) φ−1
n
(q) and (b) φ−1

a
(γ).

 at UNIV OF ILLINOIS URBANA on September 8, 2010ijr.sagepub.comDownloaded from

http://ijr.sagepub.com/

1008 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / December 2002

Fig. 6. Illustration of the subdivision method for computing φ−1
a
(γ).

0

50

100

150

200

250

300

350

400

2 4 6 8 10 12 14 16 18 20

S
iz

e
(M

by
te

s)

Number of joints

2048
8192

16384

Fig. 7. Size of φa using a naïve encoding.

changes in the location of w will cause only small changes to
φ(w). Because of this, for some cell, say w∗ ∈ W, we expect
that φ(w) will be very similar to φ(w∗) for w ∈ η(w∗), with
η(w∗) some appropriate neighborhood of w∗. We also expect
that, because the robots we consider consist of a small set of
convex polyhedra, for many w ∈ W, CB(w) will contain a
small number of connected components, and that these may
be exploited to derive a compact representation of φ(w).

The discussion above suggests the following approach.
Partition W into a set of neighborhoods, and for each neigh-
borhood (a) choose a representative w∗, (b) derive a compact
representation of φ(w∗), and (c) for all w ∈ η(w∗) express
φ(w) in terms of φ(w∗). In some cases, we may be able to
improve upon this by selecting some reference set in step (c)
other than φ(w∗), and we discuss this below.

Given the above, we can formulate the corresponding op-
timization problem. For a specific choice of neighborhood
system we can define the cost of the representation by

L(W∗, η) =
∑

w∗∈W∗

{
cost[φ(w∗)] +

∑
w∈η(w∗)

cost[φ(w)]
}
,

(4)

in which W∗ is a set of representative cells in W, η(w∗) is
the set of neighbor cells for w∗, and cost[φ(w)] denotes the
cost of encoding the representation of the mapping for cell
w. In this formulation, we are given a set of neighborhoods
(this set is defined by the set W∗ of representative cells, and
the neighborhood function η), and the cost of encoding the
entire representation is the sum of the costs for encoding the

 at UNIV OF ILLINOIS URBANA on September 8, 2010ijr.sagepub.comDownloaded from

http://ijr.sagepub.com/

Leven and Hutchinson / A Framework for Real-time Path Planning 1009

neighborhoods. The encoding cost for a specific neighbor-
hood is the cost of encoding the representative cell, w∗, plus
the cost of encoding its neighbors. This leads to the optimiza-
tion problem

minimize L(W∗, η)
subject to:

⋃
w∗∈W∗ η(w∗) = W and

η(w∗
i
) ∩ η(w∗

j
) = ∅, i = j .

(5)

This particular formulation of the cost suggests an algo-
rithm that first selects representatives in W, builds the appro-
priate neighborhoods, and then efficiently encodes the repre-
sentatives and the neighborhoods. For our compression ap-
proach, we borrow techniques from text encoding for the en-
coding of numbers and sorted sequences of numbers. From
image encoding, we borrow ideas for the representation of
neighborhoods. We also use the idea of differential encod-
ing of neighbors from MPEG (Mitchell et al. 1997; Furht,
Greenberg, and Westwater 1997).

The remainder of this section presents the details of our
compression algorithms. While these details are essential to
fully understand our approach, they are not necessary for a
general understanding of our work.

4.2.1. Efficient Encoding of φ(w∗)

As described above, certain cells in the workspace are desig-
nated as representatives to be used for differential encoding
of the neighbors. We have tested the following idea for com-
pressing the representation ofφn(w

∗); for cells where |φn(w
∗)|

is relatively large, there is some graph traversal algorithm that
efficiently separates the nodes inside φn(w

∗) from those out-
side. In the ideal case, this graph traversal algorithm crosses
from the nodes inside φn(w

∗) to those outside only once; in
this case, only the starting node and the point at which the
boundary is crossed need be stored. For example, if φ(w∗)
were a hypersphere in an n-dimensional C-space, then using
a breadth-first search to trace the graph would require only
the storage of the root node and a single integer that denotes
the crossing point to encode φn. Using the same traversal al-
gorithm starting at the specified start node can then recon-
struct the exact set of nodes in G that corresponds to the cell
w∗. In our implementation, we have tested the depth-first and
breadth-first search algorithms to evaluate the efficacy of this
approach with our roadmaps.

This approach is analogous to run-length encoding. In run-
length encoding, the lengths of strings of ones and zeros are
stored (for binary images) (Witten, Moffat, and Bell 1999).
This approach essentially works by imposing an ordering on
the pixels in the image (raster scan ordering), and then en-
coding when a region of ones is exited or entered. In our
approach, the graph traversal is used to impose an ordering
on nodes and arcs in G. We note here that approaches analo-
gous to 2n-trees are not appropriate in our case because these

methods are very sensitive to small perturbations (Hunter and
Steiglitz 1979; Rosenfeld and Kak 1982; Samet 1984).

4.2.2. Encoding φ over Neighborhoods in W

The encoding of the neighborhoods is based on the idea dis-
cussed above that there will be only minor variations in φ

over local neighborhoods of W. Assuming for the moment
that the neighborhoods have been determined, one way to
encode φ over a neighborhood η(w∗) is to first determine a
representative set of nodes and arcs in the roadmap φ∗ and to
then specify φ(w) relative to φ∗ for each w ∈ η(w∗). This
is essentially a differential encoding and can be specified as
φ ′(w) = φ(w)⊕ φ∗, where φ ′(w) is the encoded representa-
tion of φ(w) and ⊕ is the set symmetric difference operator.
This basic idea is at the heart of our schemes for encoding
over neighborhoods.

We have investigated two methods for defining the neigh-
borhoods in W. The first method is a region-growing ap-
proach, in which seed cells are selected and regions are
grown around them. The second method for defining neigh-
borhoods is hierarchical, based on an octree decomposition of
the workspace. Both of these will now be discussed in more
detail.

In the first method, region growing is used to define neigh-
borhoods. We are confronted with two issues: how to choose
seed cells, and when to stop expanding the neighborhood.
Choosing the optimal seed cells is a difficult combinatorial
optimization problem. Therefore, we have applied a greedy
selection approach: at each iteration, the algorithm selects as
the seed cell the unencoded workspace cell with the largest
representation of φ(w). In our approach, we simply define the
size of the representation of φ(w) to be the total number of
nodes and arcs in φ(w).

We expand the neighborhood around the seed cell in two
stages, constructing two neighborhoods, η1(w

∗) and η2(w
∗).

An example of a resulting neighborhood structure is shown in
Figure 8. The neighborhood η1(w

∗) is constructed as follows.
Let φ∗

n1
be the set

φ∗
n1

= arg min
φn1

∣∣φn1

∣∣ +
∑
w∈η1

∣∣φ(w) ⊕ φn1

∣∣,
in which | · | denotes set cardinality. That is, φ∗

n1
is such that,

if every w ∈ η1(w
∗) is encoded by a symmetric difference

with φ∗
n1

, then the cost of the representation of η1(w
∗) is min-

imized. Beginning with the seed w∗, we add cells to η1 until
it becomes more efficient to encode the additional cells using
the encoding method for η2. Cells that are assigned to η1(w

∗)
are then encoded by their symmetric difference with φ∗

n1
.

Each cell in η2(w
∗) is encoded by the symmetric difference

with the representation of one of its neighbors, wN ∈ η1(w
∗),

that minimizes the resulting representation size. This is illus-
trated in Figure 8, where the arrows originating in the darkly

 at UNIV OF ILLINOIS URBANA on September 8, 2010ijr.sagepub.comDownloaded from

http://ijr.sagepub.com/

1010 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / December 2002

w*

Fig. 8. The two neighborhoods w∗: η1(w
∗) is the light region containing w∗ and η2(w

∗) is the darker region.

colored cells point to the neighbor that is used for the differ-
ential encoding. Of course, care must be taken to avoid loops
in this referencing scheme.

Construction of the neighborhood η2 relies on two parame-
ters: a recursion depth and a scale factor. The recursion depth
limits the length of the chain of references between adjacent
cells. For example, the longest such chain in Figure 8 is 4, with
two cells having chains of this length. The scale factor is used
to ensure that the encoding of the new cell is sufficiently small;
that is, the cellw is added to η2 if |φ(w)⊕φ(wN)| < s|φ(w)|,
where s is the scale factor. For cells where there is no neighbor
such that |φ(w)⊕φ(wN)| < s|φ(w)|, we add the cell to η2 if
|φ(w) ⊕ φ(wN)| is the best we can do for this cell, provided
|φ(w) ⊕ φ(wN)| < |φ(w)|.

The second method that we have investigated for defining
the neighborhoods in W uses an octree-based decomposition
of the workspace. The result is a hierarchical set of refer-
ences for neighborhoods, at the bottom level, composed of
eight cells. An advantage of defining the neighborhoods in
this manner instead of using region growing is that the ref-
erence number for each cell is implicit with the location of
the cell, and need not be stored. A disadvantage is that the
region-growing method can define neighborhoods that more
effectively exploit the redundancy in the mapping.

Once the neighborhoods have been defined by the hierar-
chy, we are left with the choice of what set to store at the
parent of each set of eight children in the hierarchy. To sim-
plify the notation, we label the parent p and the children ci .
We have evaluated two such choices, which we label “union”
and “best”. In the union approach, the set φ∗(p) stored with
the parent is ∪8

i=1φ(ci). This approach is equivalent to a mul-
tiresolution decomposition of the workspace. In the “best”
approach, the set φ∗(p) is chosen to be the set that minimizes

∣∣φ∗(p)| +
8∑

i=1

∣∣φ(ci) ⊕ φ∗(p)
∣∣.

For both choices of the parent set, the set encoded with each
child is the set φ(ci) ⊕ φ(p).

These two neighborhood models are options to use for the
encoding of φ; the particular neighborhood model to use for
a given φ is a choice of the user. We will show in Section 6
the effect of using these models for different robot examples.

4.2.3. Encoding the Labels

Each entity in the representation of φ (including the nodes in
φn, the arcs in φa , and the cells in W) requires a label. For
simplicity, we use non-negative integers for the labels. Since
there are many such labels, we can benefit from previous work
that has been done in data compression, particularly in the
area of efficiently encoding positive integers (Bell, Cleary, and
Witten 1990). We can also impose some additional constraints
on the labels, such as storing the lists of labels in sorted order.
This allows us to use differential encoding of the labels, which
can reduce the number of bits required to represent the list
(Witten, Moffat, and Bell 1999).

We have devised an encoding scheme, which we call�b be-
cause of its similarity to the γ code (Bell, Cleary, and Witten
1990; Elias 1975). In this code, a number expressed in bi-
nary is split into pieces b bits in length. The number of pieces
is encoded in unary, with one bit of the length appended to
each piece. For example, to encode the number 11 using the
�3 code, first split the binary representation of 11 into two
pieces, 001 and 011. To the first piece, prepend a 1 bit, and to
the second, prepend a 0 bit. The resulting code is 10010011.
Encoding and decoding the �7 version of this code is partic-
ularly efficient on byte-addressable computers.

We have also created an extension to the �b code, which
we call �′

b
. This code treats the number zero as a special case,

using just the bit 0 to encode it. Other numbers are encoded
by prepending a 1 bit to the �b code for the number less 1.
This code is particularly useful for sequences of numbers in
which the number zero is predominant.

The savings that are achieved by compressing the labels
are much less significant than those achieved by the other
methods described in this section. For this reason, we omit

 at UNIV OF ILLINOIS URBANA on September 8, 2010ijr.sagepub.comDownloaded from

http://ijr.sagepub.com/

Leven and Hutchinson / A Framework for Real-time Path Planning 1011

here a detailed description of our compression schemes for
the labels.

5. Roadmap Enhancements

As we have discussed in Section 3, one of the difficulties with
the traditional PRM planners is placing samples in narrow
passages in Cf ree. This has led to the development of an en-
hancement phase, in which more sampling is performed to im-
prove the connectivity of the roadmap (Horsch, Schwarz, and
Tolle 1994; Kavraki and Latombe 1994; Kavraki et al. 1996;
Kavraki and Latombe 1998, Holleman, Kavraki, and Warren
1998; S̆vestka and Overmars 1995). Since our roadmap is con-
structed without obstacles, reducing the number of connected
components is not the goal for our enhancement phase. In-
stead, we are interested in preserving the connectivity of the
roadmap when obstacles are added to the workspace.

We have examined two methods for evaluating the connec-
tivity of our roadmap in the presence of obstacles, and from
these evaluation methods we have derived mechanisms for
enhancing roadmap connectivity. The first evaluation method
is based on a traditional measure of graph connectivity: the
minimum cut set. The second method involves a quantita-
tive measure of the robustness of the roadmap to the addi-
tion of obstacles to the workspace. We now discuss both of
these evaluation methods and the corresponding enhancement
techniques.

5.1. Connectivity-based Enhancement

Our first method for enhancement is to examine the edge con-
nectivity of the roadmap and add arcs in regions of low con-
nectivity. The edge connectivity of the roadmap is defined as
the minimum of the maximum number of arc-distinct paths
(that is, paths with no arc in common) between any distinct
pair of nodes. The basic idea is that, in regions of low con-
nectivity, it is relatively easy to disconnect clusters of nodes
in the roadmap with the addition of a small set of obstacles in
the workspace. The goal is to have the edge connectivity of
the roadmap be at least equal to the minimum degree of any
node in the roadmap.

Our approach for this form of enhancement is to add arcs
to the roadmap until the edge connectivity of the roadmap is
equal to the minimum node degree. To do this, we repeatedly
apply the unweighted minimum cut set algorithm from Matula
(1993) to find the minimum number of arcs that partition the
roadmap into two pieces. We then add arcs between these two
pieces until the number of such arcs is equal to the minimum
node degree. We stop when the number of arcs in the minimum
cut set is equal to the minimum node degree.

Once we have found a partition of the roadmap, we use
the following approach to add arcs between the two pieces of
the partition. First, for each node q in the smaller of the two
pieces, we compute the set of cells in W in φ−1

n
(q), using the

inverse of the mapping φn described in Section 4. Next, for
each arc γ in the cut set, we compute the subset set of cells
in W in φ−1

a
(γ) which excludes those cells in φ−1

n
(q) for any

node q in the smaller piece. The cells that remain in φ−1
a
(γ)

for each arc γ in the cut set form a set of potential obstacles in
the workspace whose presence would disconnect the roadmap
into these two pieces.

We then add arcs until enough arcs have been added be-
tween the two pieces in the partition. In each phase, we select
a set of cells from the subset of φ−1

a
(γ) described above for

each of the arcs in the cut set. These cells will be considered
as being occupied by obstacles as we attempt to add more
arcs connecting the two pieces. We then take each node of
the smaller piece in random order and attempt to add an arc
between it and some node in the larger piece. The reason for
selecting the nodes of the smaller piece at random is to try to
evenly distribute the new arcs over the nodes of the smaller
piece. We evaluate each node of the larger piece in order of
increasing distance from the test node in the smaller piece,
until we succeed in adding an arc or until we have tested all
arcs of the larger piece.

5.2. Workspace-based Enhancement

The second method for roadmap enhancement examines
quantitatively the relationship between the roadmap and the
workspace. In particular, we derive a property that we call
ρ-robustness. We say that G is ρ-robust if no spherical ob-
stacle in the workspace of diameter ρ (or less) can cause G
to become disconnected. Note that ρ-robustness is a global
property of the roadmap G.

Some motivation for the ρ-robustness idea can be seen
in Figure 9. Figure 9(a) shows the workspace for a two-link
planar arm with no joint limits for joint 1 and joint limits for
joint 2. A single obstacle of dimension 1 × 1 has been added
to the workspace and, as a result, as seen in Figure 9(b), the
50-node roadmap in the C-space is broken into three distinct
components. Hence, the roadmap in Figure 9(b) is not ρ-
robust for any value of ρ. An enhanced roadmap is shown in
Figure 9(c) (the enhancement caused 26 arcs to be added to
the roadmap). This enhanced roadmap is ρ-robust for ρ ≤ 4.
In other words, no single obstacle of size less than four units
can cause the enhanced roadmap to become disconnected.

Our approach to enhancement based on ρ-robustness is to
add arcs to the roadmap until the desired level of ρ-robustness
is achieved (if possible). Our algorithm proceeds as follows.
Starting with a cube of size 1 × 1 × 1, sweep cube-shaped
cells over the workspace of the robot. For each location of the
cube, compute the set of connected connected components. If
there is more than one component, add an arc, if possible, to
repair the connectivity of the roadmap, using the local planner
to verify the feasibility of each arc tested. Repeat the sweep
with larger cubes, 2 × 2 × 2, 3 × 3 × 3, etc., up to a cube of
side length �ρ + 1�.

 at UNIV OF ILLINOIS URBANA on September 8, 2010ijr.sagepub.comDownloaded from

http://ijr.sagepub.com/

1012 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / December 2002

X

Y

1

2

θ

θ

� ;

� 9

� à � � ç â ó Þ ß à ë á � î � 	 ç Ù ÿ ê ò â à Ú Ý ç Ù Þ ß à ë á � ë � � é Ú á â � Ù Ü à Ù ë á å á Ù Ú

Fig. 9. Effect of an occupied cell in the workspace on the connectivity of the roadmap before and after enhancement.

Unfortunately, it is not always possible to achieve ρ-
robustness, even for ρ = 1. For many robots (particu-
larly those with joint limits), there are specific cells in the
workspace such that if an obstacle is placed in one of these
cells, Cf ree itself may become disconnected, or the passage
connecting two regions in Cf ree may become sufficiently nar-
row that representing this passage in the roadmap becomes
difficult. Our approach is to flag these cells in W and to
eliminate them from consideration during the enhancement
stage. The resulting roadmap will, of course, not be globally
ρ-robust, but will be as nearly ρ-robust as possible.

6. Results

In this section, we evaluate our planner, studying serial-link
manipulators operating in 2D and 3D workspaces. We have
evaluated our planning approach with several different types
of robots: planar arms with between two and twenty joints,
robots such as those illustrated in Figure 10 (with fixed base),
robots such as those illustrated in Figure 11(a) (with mobile
base) and robots such as those illustrated in Figure 11(b)
(rigid bodies with six degrees of freedom). For each artic-
ulated arm, all but the first joint are subject to joint limits. In
earlier work (Leven and Hutchinson 2000), we considered the
case of robots without joint limits.

We used the collision-detection package SOLID (van den
Bergen 1997, 1999) to test for self-collision of the robot, and
V-Clip (Mirtich 1997) to test for collisions between obstacles
and the robot; both of these packages use the quickhull algo-
rithm (Barber, Dobkin, and Huhdanpaa 1996) for computing
convex hulls. To evaluate how the data structures grow with
the size of the roadmap, we tested roadmaps with 2048, 8192,
and 16,384 nodes.

The results we show for the planar robots with joint limits
are obtained by averaging the results from seven runs. For each
of these runs, we construct the roadmap, compute φ, and then
compress the representation of φ. This averaging of results
does not include the results for the roadmap enhancement
techniques.

6.1. Roadmap Construction

We use two different sampling distributions for sampling the
C-space of each robot. The first set of samples comes from a
uniform sampling of the first joint for planar robots or the first
two joints for robots with a 3D workspace; for both cases, the
positions of the other joints are prespecified default values.
The purpose of these samples is to touch as much as possible
the maximum reach of the robot. The remaining samples come
from sampling the C-space of the robot uniformly at random.
Of this second set of samples, those in which the robot collides
with itself are rejected.

From the uniform random samples, we may also reject
samples with probability based on the value of the cumula-
tive distribution function at the manipulability value for the
sample. When we impose the manipulability constraint on
the random samples, we observe that about twice as many
collision-free samples must be generated.

6.2. Computing the Representation of φ

In this section, we compare the size of the initial, naïve rep-
resentation of φn and φa with the results of using a more ef-
ficient encoding. This section contains results for a number
of test cases. A summary of these results can be found in
Section 6.2.5.

 at UNIV OF ILLINOIS URBANA on September 8, 2010ijr.sagepub.comDownloaded from

http://ijr.sagepub.com/

Leven and Hutchinson / A Framework for Real-time Path Planning 1013

(a) (b)

Fig. 10. Two robots with 3D workspace.

(a) (b)

Fig. 11. Two mobile robots with 3D workspace.

6.2.1. The Sizes of φn and φa Before Compression

The overall size of φn is the product of the number of nodes
and the average number of cells the robot intersects in the
workspace. For the planar robots with a fixed maximum
length, this means that the size of φn is largely independent
of the number of joints. For our experiments, the size of φn

per node in Gn averages around 1000 bytes. The situation is
different for the 3D workspace robots, in which the number of
cells that intersect with the robot increases with the number of
joints. The effect of this on the size of φn can be seen in Fig-
ure 12, which shows the size of φn per node in the roadmap.
The sublinear increase in the size of φn with the number of
nodes is the result of the amortization of the overhead for each
cell in φn.

The size of φa is shown in Figure 13 for several distance
functions for the planar robots with joint limits; an explana-
tion for the labels can be found in Table 2. This figure shows
how large the naïve representation of φa can grow for the pla-
nar robots. The representation of φa is too large for the 3D
workspace robots to compute with the naïve representation;

Table 2. Definition of the Labels Used on Figures for
Distance Functions

Label Description

w The DW
2 distance function

W The DW
m2 distance function

F The DW
F distance function

a When associated with W or F, indicates
that an approximation approach is used to
find the nearest neighbors

therefore, we defer showing the size of φa for now.
Figure 13 also shows the effect of the different distance

functions and methods for computing nearest neighbors on
the size ofφa . The smallest size ofφa for all number of joints is
for the DW

m2 distance function, both for exact and approximate
nearest neighbor computation (the approximate form results

 at UNIV OF ILLINOIS URBANA on September 8, 2010ijr.sagepub.comDownloaded from

http://ijr.sagepub.com/

1014 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / December 2002

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3 6 9 12 15

S
iz

e
(k

by
te

s
pe

r
no

de
)

Number of joints

2048
8192

16384

Fig. 12. Size of φn for 3D workspace robots.

0

10

20

30

40

50

60

70

80

90

100

2 4 6 8 10 12 14 16 18 20

S
iz

e
(M

by
te

s)

Number of joints

w
W
F

Wa
Fa

Fig. 13. Size of uncompressed φa for planar robots with joint limits and for roadmaps with 16,384 nodes and five distance
functions.

in a slightly larger size). The distance function defined on
the end-effector coordinate frame performs worse, which is
expected because this distance function uses less information
about the positions of the links of the robot.

6.2.2. Compression of φ(w∗)

As discussed in Section 4.2.1, we can compress the represen-
tation of φ(w∗) for a particularw∗ by imposing an ordering on

the nodes in the roadmap and then using a sort of run length
coding. We tested this idea onφn, trying both depth-first search
(DFS) and breadth-first search (BFS) as the method for im-
posing the ordering. For each cell in φn, we tested each node
as a candidate starting node, and kept the one that produced
the best results. The results are shown in Figure 14. As can be
seen in the figure, the results are rather disappointing, showing
that it is only really successful for robots with two, or possi-
bly three, joints. The results do not change significantly for

 at UNIV OF ILLINOIS URBANA on September 8, 2010ijr.sagepub.comDownloaded from

http://ijr.sagepub.com/

Leven and Hutchinson / A Framework for Real-time Path Planning 1015

2

4

6

8

10

12

14

16

18

20

2 4 6 8 10 12 14 16 18 20

S
av

in
gs

 (
pe

rc
en

t)

Number of joints

BFS
DFS

2048 nodes

0

5

10

15

20

25

30

35

40

45

50

2 4 6 8 10 12 14 16 18 20

S
av

in
gs

 (
pe

rc
en

t)

Number of joints

BFS
DFS

8192 nodes

0

10

20

30

40

50

60

70

2 4 6 8 10 12 14 16 18 20

S
av

in
gs

 (
pe

rc
en

t)

Number of joints

BFS
DFS

16 384 nodes

Fig. 14. Compression results using run-length graph encoding for φn. The savings are in terms of the reduction of the number
of labels.

 at UNIV OF ILLINOIS URBANA on September 8, 2010ijr.sagepub.comDownloaded from

http://ijr.sagepub.com/

1016 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / December 2002

different roadmaps constructed using the same set of nodes
but different distance functions. What this shows is that the
roadmaps we use for planning do not cluster the nodes well
enough for the run-length encoding to work well. There may
be other roadmaps for which this method will work better.

6.2.3. Compression of φ over neighborhoods in W

In Section 4.2.2 we described how to compress φ by exploit-
ing redundancy in the mapping over neighborhoods in W.
We have evaluated the three neighborhood models proposed
there: region-growing, “union” hierarchical, and “best” hier-
archical. For the two hierarchical neighborhoods, “union” and
“best” define the set of labels that is stored with the parent:
with “union”, the union of the labels of the children is stored,
and with “best”, the set of labels that minimizes the label
count among the parent and children is stored. For the region-
growing neighborhood models, the results shown below use
the parameters with a size factor of 2 and a depth limit of 17.

Figure 15 shows the savings that we achieve using the dif-
ferent neighborhood models for φn for both the planar robots
and the 3D workspace robots. Using the region-growing
method, the amount of savings is relatively flat with different
numbers of joints, with a factor of around 3 for the planar
robots and 2 for the 3D workspace robots. The savings also
tend to be greater for roadmaps with fewer nodes, indicating
that the distribution of labels is more uniform for roadmaps
with fewer nodes.

Using the hierarchical models yields results that are not
as good as those for the region-growing models. Indeed, for
the 3D workspace robots, using the “union” model for the
neighborhoods results in an expansion of the number of labels
(a “savings” of less than one). The hierarchical models tend to
perform better as the number of joints of the robot increases.
This is due in part to the increase in the average number of
cells occupied by the robot at a configuration as the number of
joints increases. Another factor is that, with more joints, the
links of the robot have a greater tendency to cluster around the
origin. With fewer labels in the outer regions of the workspace,
the regions of uniformity are larger.

Figure 16 shows the savings that we achieve for φa for
planar robots. Figures 16(a), (c), and (e) show the cases for
robots without joint limits and roadmaps constructed using the
DW

2 distance function. This is the case for which the region-
growing method of compression was designed, and the sav-
ings reach a factor of 8.5 at 20 joints using this neighborhood
definition. The hierarchical models also perform well in this
case, although the “best” model achieves nearly twice the
level of savings of the “union” model. For a robot with joint
limits and using the DW

m2 distance function, the compression
results are quite different. This difference can be seen in Fig-
ures 16(b), (d), and (f). For these robots, the average swept
volume per arc converges to some constant value as the num-
ber of joints increases, and this same convergence is reflected

in the savings achieved. Notice that for these roadmaps, the
“best” hierarchical and the region-growing models produce
similar savings. This is also true for the roadmaps for these
robots for the other distance functions, although the region-
growing neighborhood results are slightly better for the DW

2

distance function.
Figure 17 shows the savings achieved for robots with 3D

workspaces, using the different neighborhood models for φa

and roadmaps constructed using the DW
m2 and DW

F distance
functions. Results for the second distance function are given
to show that the compression ratios do improve for roadmaps
constructed with distance functions that result in larger aver-
age swept volumes for the arcs. The results for φa for these
robots follow the general trend for the planar robots; that is, the
region-growing neighborhoods tend to produce the most sav-
ings, followed by the “best” hierarchical, and with the “union”
hierarchical resulting in an expansion of the number of labels
in many cases.

6.2.4. Compressing the Labels

As mentioned previously, significant savings were not ob-
tained from compressing the labels. Therefore, we do not
present individual results for this case. However, in the sum-
mary results presented in Section 6.2.5, label compression is
incorporated into the overall compression process.

6.2.5. Summary of Compression Results

We now examine the total space required for φ, including the
representation of the labels and various sources of overhead,
such as the reference number stored in each cell for the region-
growing neighborhoods, the count numbers which indicate the
number of labels stored with each reference and cell, and the
length numbers, which are used to locate a particular cell or
reference in the compressed data.

Figure 18 shows the result for φn with a 16,384-node
roadmap for both planar and 3D workspace robots; a descrip-
tion of the labels used in this and later figures is given in
Table 3.

For the planar robots, compression using the region-
growing neighborhoods clearly outperforms the other meth-
ods. This is due in large part to the reduction in the number
of labels that must be stored using this model. The region-
growing neighborhoods also have a slight advantage over the
hierarchical neighborhoods in terms of the overhead for stor-
ing the neighborhood structure; this is due to the hierarchical
neighborhoods being defined for 3D workspaces, and this hi-
erarchy is less efficient for the planar case.

For the 3D workspace robots, on the other hand, the
“best” hierarchical neighborhoods tie the performance of the
region-growing neighborhoods for robots with more joints,
even though the region-growing neighborhoods result in
fewer labels. This shows the trade-off between arbitrary

 at UNIV OF ILLINOIS URBANA on September 8, 2010ijr.sagepub.comDownloaded from

http://ijr.sagepub.com/

Leven and Hutchinson / A Framework for Real-time Path Planning 1017

2.9

2.95

3

3.05

3.1

3.15

3.2

3.25

3.3

2 4 6 8 10 12 14 16 18 20

La
be

l S
av

in
gs

 (
or

ig
in

al
 /

co
m

pr
es

se
d)

Number of joints

2048
8192

16384

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3 6 9 12 15

La
be

l S
av

in
gs

 (
or

ig
in

al
 /

co
m

pr
es

se
d)

Number of joints

2048
8192

16384

(a) (b)

1.24

1.26

1.28

1.3

1.32

1.34

1.36

1.38

1.4

1.42

1.44

1.46

2 4 6 8 10 12 14 16 18 20

La
be

l S
av

in
gs

 (
or

ig
in

al
 /

co
m

pr
es

se
d)

Number of joints

2048
8192

16384

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

3 6 9 12 15

La
be

l S
av

in
gs

 (
or

ig
in

al
 /

co
m

pr
es

se
d)

Number of joints

2048
8192

16384

(c) (d)

2.3

2.35

2.4

2.45

2.5

2.55

2.6

2 4 6 8 10 12 14 16 18 20

La
be

l S
av

in
gs

 (
or

ig
in

al
 /

co
m

pr
es

se
d)

Number of joints

2048
8192

16384

1.6

1.65

1.7

1.75

1.8

1.85

1.9

3 6 9 12 15

La
be

l S
av

in
gs

 (
or

ig
in

al
 /

co
m

pr
es

se
d)

Number of joints

2048
8192

16384

(e) (f)

Fig. 15. Compression results for φn for planar robots (a, c, e) and robots with 3D workspace (b, d, f). The neighborhoods are
region-growing in (a) and (b), “union” hierarchical in (c) and (d), and “best” hierarchical in (e) and (f).

 at UNIV OF ILLINOIS URBANA on September 8, 2010ijr.sagepub.comDownloaded from

http://ijr.sagepub.com/

1018 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / December 2002

1

2

3

4

5

6

7

8

9

2 4 6 8 10 12 14 16 18 20

La
be

l S
av

in
gs

 (
or

ig
in

al
 /

co
m

pr
es

se
d)

Number of joints

2048
8192

16384

1

1.2

1.4

1.6

1.8

2

2.2

2 4 6 8 10 12 14 16 18 20

La
be

l S
av

in
gs

 (
or

ig
in

al
 /

co
m

pr
es

se
d)

Number of joints

2048
8192

16384

(a) (b)

0

0.5

1

1.5

2

2.5

3

3.5

4

2 4 6 8 10 12 14 16 18 20

La
be

l S
av

in
gs

 (
or

ig
in

al
 /

co
m

pr
es

se
d)

Number of joints

2048
8192

16384

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

2 4 6 8 10 12 14 16 18 20

La
be

l S
av

in
gs

 (
or

ig
in

al
 /

co
m

pr
es

se
d)

Number of joints

2048
8192

16384

(c) (d)

1

2

3

4

5

6

7

8

2 4 6 8 10 12 14 16 18 20

La
be

l S
av

in
gs

 (
or

ig
in

al
 /

co
m

pr
es

se
d)

Number of joints

2048
8192

16384

1

1.2

1.4

1.6

1.8

2

2.2

2 4 6 8 10 12 14 16 18 20

La
be

l S
av

in
gs

 (
or

ig
in

al
 /

co
m

pr
es

se
d)

Number of joints

2048
8192

16384

(e) (f)

Fig. 16. Compression results for φa for planar robots: DW
2 distance function for robots without joint limits (a, c, e) and

DW
m2 distance function for robots with joint limits (b, d, f). The neighborhoods are region-growing in (a) and (b), “union”

hierarchical in (c) and (d), and “best” hierarchical in (e) and (f).

 at UNIV OF ILLINOIS URBANA on September 8, 2010ijr.sagepub.comDownloaded from

http://ijr.sagepub.com/

Leven and Hutchinson / A Framework for Real-time Path Planning 1019

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3 6 9 12 15

La
be

l S
av

in
gs

 (
or

ig
in

al
 /

co
m

pr
es

se
d)

Number of joints

2048
8192

16384

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3 6 9 12 15

La
be

l S
av

in
gs

 (
or

ig
in

al
 /

co
m

pr
es

se
d)

Number of joints

2048
8192

16384

(a) (b)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

3 6 9 12 15

La
be

l S
av

in
gs

 (
or

ig
in

al
 /

co
m

pr
es

se
d)

Number of joints

2048
8192

16384

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

3 6 9 12 15

La
be

l S
av

in
gs

 (
or

ig
in

al
 /

co
m

pr
es

se
d)

Number of joints

2048
8192

16384

(c) (d)

1

1.2

1.4

1.6

1.8

2

2.2

2.4

3 6 9 12 15

La
be

l S
av

in
gs

 (
or

ig
in

al
 /

co
m

pr
es

se
d)

Number of joints

2048
8192

16384

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3 6 9 12 15

La
be

l S
av

in
gs

 (
or

ig
in

al
 /

co
m

pr
es

se
d)

Number of joints

2048
8192

16384

(e) (f)

Fig. 17. Compression results for φa for robots with 3D workspace: roadmap constructed with the DW
m2 distance function (a, c,

e), and roadmap constructed with the DW
F distance function. The neighborhoods are region-growing in (a) and (b), “union”

hierarchical in (c) and (d), and “best” hierarchical in (e) and (f).

 at UNIV OF ILLINOIS URBANA on September 8, 2010ijr.sagepub.comDownloaded from

http://ijr.sagepub.com/

1020 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / December 2002

0

2

4

6

8

10

12

14

16

2 4 6 8 10 12 14 16 18 20

S
iz

e
(M

by
te

s)

Number of joints

Orig
Self
RG
HU
HB

4

5

6

7

8

9

10

11

12

2 4 6 8 10 12 14 16 18 20

S
av

in
gs

 (
or

ig
in

al
/c

om
pr

es
se

d)

Number of joints

Self
RG
HU
HB

(a) (b)

0

5

10

15

20

25

30

35

40

45

3 6 9 12 15

S
iz

e
(M

by
te

s)

Number of joints

Orig
Self
RG
HU
HB

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

3 6 9 12 15

S
av

in
gs

 (
or

ig
in

al
/c

om
pr

es
se

d)

Number of joints

Self
RG
HU
HB

(c) (d)

Fig. 18. File sizes and compression ratios for φn and a 16,384-node roadmap with efficient label encodings and different
neighborhood models. The results for planar robots are in (a) and (b), and for 3D workspace robots in (c) and (d).

Table 3. Definition of the Labels Used on Figures for the Different Encoding Models

Label Description

Orig Naïve encoding of the labels
Self Efficient encoding of the labels only
RG Region-growing neighborhood model with efficient label encoding
HU “Union” hierarchical neighborhood model with efficient label encoding
HB “Best” hierarchical neighborhood model with efficient label encoding

 at UNIV OF ILLINOIS URBANA on September 8, 2010ijr.sagepub.comDownloaded from

http://ijr.sagepub.com/

Leven and Hutchinson / A Framework for Real-time Path Planning 1021

neighborhoods, in which a reference number must be stored
with each workspace cell, and the hierarchical neighborhoods,
in which the reference for each cell is implicit in the tree
structure.

Figure 19 shows the compression results for φa for pla-
nar robots without joint limits. The roadmap for this case has
16,384 nodes and was constructed using the DW

2 distance
function. The compression results here follow the results ob-
tained for the savings in the number of labels using the dif-
ferent neighborhood models. Here, again, the neighborhoods
defined by region-growing have the best compression perfor-
mance, reaching a savings factor of more than 70.

The situation is slightly different for robots with joint lim-
its. First, even for roadmaps constructed using the same dis-
tance function, φa is smaller for robots with joint limits than
for those without. This difference can be seen by comparing
Figures 20(a) and 19(a), where the uncompressed form of φa

for robots with joint limits is about one quarter the size of that
for robots without joint limits. The savings achieved using
the different compression models are also lower, as shown
in Figure 20(b). The region-growing neighborhoods still per-
form best, reaching a compression ratio of nearly 25.

This trend continues in Figures 20(c) and (d). In this case,
the roadmap was constructed with 16,384 nodes using the
DW

m2 distance function. Using this distance function, the av-
erage swept volume for each arc is lower, resulting in less
space required to store φa using the naïve encoding. The cor-
responding compression ratios are also smaller, although the
region-growing neighborhoods still perform best.

The compression picture is more mixed for the robots with
a 3D workspace. An example for this is shown in Figure 21,
which shows the final file sizes for 16,384-node roadmaps
computed using two different distance functions. For these
cases, the size of the file for the naïve encoding is not available,
since it is too large. In the case with the roadmap constructed
with the DW

m2 distance function, the best performance was
given by two of the neighborhood models: region-growing and
“best” hierarchical. On the other hand, for the roadmap con-
structed with the DW

F distance function, the region-growing
neighborhoods perform best.

6.3. Roadmap Enhancement

In this section we discuss results from using our enhancement
techniques on the roadmaps, including examining the mini-
mum cut set of the roadmap represented as an unweighted
graph and the ρ-robustness property of the roadmaps.

6.3.1. Enhancement Based on Minimum Cut Sets

The purpose of using a minimum cut set algorithm is to find
clusters of nodes in the roadmap that are not well connected
to the rest of the roadmap. For our roadmaps, we define the
roadmap to be well connected if the number of arcs in the

minimum cut set is equal to the minimum number of arcs
connected to any node in the roadmap. Using this definition,
it turns out that most of the roadmaps are already well con-
nected, particularly when the DW

m2 distance function is used to
construct the roadmap. There are two primary exceptions to
this. One exception occurs for robots with two or three joints
and tends to be more prevalent for roadmaps with more nodes.
An explanation for this is that for low-dimensional C-spaces,
the samples are closer together and therefore more readily
form clusters.

The other exception to well-connected roadmaps is when
the roadmap construction process fails to produce a roadmap
with a single connected component; for this situation, the min-
imum cut set procedure is a useful tool for ensuring that the
roadmap does consist of a single component. We have ob-
served two cases for which this happens. The first of these
is for planar robots and roadmaps constructed using the DW

2

distance function. This case tends to occur for robots with 14
or more joints, and the cluster tends to consist of the samples
drawn uniformly from the range of the first joint, whereas the
positions of the other joints are fixed. These samples corre-
spond to a dense sampling of a line in the C-space, and for
robots with more joints, these samples tend to be “far” from
the other samples taken uniformly at random relative to other
samples on the line. The second case in which the roadmap
did not consist of a single component occurred for one of the
3D workspace robots and the roadmap constructed using the
DW

F distance function. This case was also more prevalent for
robots with more joints and for roadmaps with more nodes.

6.3.2. Enhancement Based on ρ-Robustness

As described in Section 5.2, ρ-robustness provides a quantita-
tive measure of the robustness of the roadmap to the introduc-
tion of obstacles into the workspace. A roadmap can be made
ρ-robust by adding arcs to the roadmap so that no obstacle of
size ρ can disconnect the roadmap.

We begin by evaluating the ρ-robustness of typical
roadmaps with respect to the distance functions used in their
construction. In Section 3, we conjectured that distance func-
tions that accurately reflect the swept volume for a path be-
tween two configurations will yield more robust roadmaps.
This is demonstrated in Figure 22. In particular, for these re-
sults we used the value of ρ = 1, and counted the number
of single-cell obstacles that could disconnect the roadmap.
(This was determined using a non-recursive version of the
DFS-based algorithm in Tarjan (1972) to find strongly con-
nected components.) The labels in these graphs for the dis-
tance functions follow the notation in Table 2. In Figure 22(b)
we excluded the cases for the DW

F distance function for which
the initial roadmap was not connected. For comparison, note
that the number of nonempty cells in the workspace is about
15,000 for planar robots, and 300,000 for 3D robots. The data

 at UNIV OF ILLINOIS URBANA on September 8, 2010ijr.sagepub.comDownloaded from

http://ijr.sagepub.com/

1022 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / December 2002

0

50

100

150

200

250

300

350

400

2 4 6 8 10 12 14 16 18 20

S
iz

e
(M

by
te

s)

Number of joints

Orig
Self
RG
HU
HB

0

10

20

30

40

50

60

70

80

2 4 6 8 10 12 14 16 18 20

S
av

in
gs

 (
or

ig
in

al
/c

om
pr

es
se

d)

Number of joints

Self
RG
HU
HB

(a) (b)

Fig. 19. File sizes and compression ratios with efficient label encodings and different neighborhood models for φa for a
16,384-node roadmap for planar robots without joint limits.

0

10

20

30

40

50

60

70

80

90

100

2 4 6 8 10 12 14 16 18 20

S
iz

e
(M

by
te

s)

Number of joints

Orig
Self
RG
HU
HB

0

5

10

15

20

25

2 4 6 8 10 12 14 16 18 20

S
av

in
gs

 (
or

ig
in

al
/c

om
pr

es
se

d)

Number of joints

Self
RG
HU
HB

(a) (b)

0

5

10

15

20

25

30

35

40

2 4 6 8 10 12 14 16 18 20

S
iz

e
(M

by
te

s)

Number of joints

Orig
Self
RG
HU
HB

0

2

4

6

8

10

12

2 4 6 8 10 12 14 16 18 20

S
av

in
gs

 (
or

ig
in

al
/c

om
pr

es
se

d)

Number of joints

Self
RG
HU
HB

(c) (d)

Fig. 20. File sizes and compression ratios with efficient label encodings and different neighborhood models for φa for a
16,384-node roadmap for planar robots with joint limits.

 at UNIV OF ILLINOIS URBANA on September 8, 2010ijr.sagepub.comDownloaded from

http://ijr.sagepub.com/

Leven and Hutchinson / A Framework for Real-time Path Planning 1023

0

10

20

30

40

50

60

70

80

90

3 6 9 12 15

S
iz

e
(M

by
te

s)

Number of joints

Self
RG
HU
HB

0

20

40

60

80

100

120

140

3 6 9 12 15

S
iz

e
(M

by
te

s)

Number of joints

Self
RG
HU
HB

(a) (b)

Fig. 21. Compressed file sizes for φa and a 16,384-node roadmap for 3D workspace robots. The roadmaps were constructed
with the DW

m2 distance function (a) and the DW
F distance function (b).

in Figure 22 support our conjecture that those distance func-
tions for which the average swept volume associated with each
arc is higher result in less robust roadmaps (i.e., there are more
single-cell obstacles that can disconnect the roadmap).

Next, we examine the number of arcs added to the roadmap
during the ρ-robustness enhancement phase (described in
Section). Figure 23 shows the number of arcs added for each
pass over the workspace and the resulting average connec-
tivity of the roadmap measured in arcs per node. We tested
planar robots with 2–10 joints, performing five passes over
the workspace, and we tested 3D workspace robots with 3–
15 joints, performing three passes. The robot type for the 3D
workspace robots is that shown in Figure 10(a). As can be
seen in Figure 23, we add most of the arcs in the first pass. An
explanation for this is that, in the first pass over the workspace,
we find most of the “fragile” pieces of the roadmap that can
be easily disconnected. The result after processing is a near-
linear dependence between the number of arcs per node and
the number of joints.

In the remainder of this section, we focus on robots with
a 3D workspace such as those shown in Figure 10(a), which
we will refer to as type A, and in Figure 10(b), which we will
refer to as type B. We will also examine the effect of using
the manipulability measure to bias the sampling distribution
in the C-space. For each robot, we construct a roadmap and
perform ρ-robustness enhancement for ρ = 3. During the
enhancement, when a cube of size ρ disconnects the roadmap,
we limit the number of connection attempts between pairs
of roadmap components to 100 (we used larger limits for
the earlier examples). The effect of such a low limit on the
number of connection attempts is to reduce the number of cells
for which we can enhance the robustness of the roadmap. It

also reduces the computation time needed for enhancement.
The number of cells in the workspace that can disconnect the
roadmap before and after enhancement are recorded in the
table under the column Breaks.

We tested three sets of roadmaps, one set with the samples
concentrated in regions of low manipulability, one with the
samples concentrated in regions of high manipulability, and
one unbiased set. To take into account the joint limits in the
manipulability, we declared the manipulability to be zero if
any joint of the robot was within a factor of 0.016 from a joint
limit. For each roadmap, we took 2048 samples and used the
DW

m2 distance function to select the arcs. Except where stated
otherwise, each node was connected to at least its five nearest
neighbors. The results for the robot types A and B are shown
in Tables 4 and 5, respectively.

The effects of using manipulability to bias the sampling are
interesting. For both robot types, the roadmaps created with
nodes biased toward high manipulability were more robust
after enhancement, and the enhancement required fewer arcs
to produce this result. On the other hand, before enhancement,
the roadmaps created with nodes biased toward low manipu-
lability tended to be more robust, particularly for robots with
more joints.

Our current algorithm for processing a roadmap to increase
its ρ-robustness can require significant computation time. The
time required for the test procedure, which finds the number
of cells that result in the roadmap becoming disconnected,
is proportional to the product of the number of nonempty
cells in the workspace and the size of the roadmap. The pro-
cedure that repairs the roadmap for each of the cells that
disconnect the roadmap adds the cost of evaluating the arcs
needed to reconnect the pieces of the roadmap. This last step

 at UNIV OF ILLINOIS URBANA on September 8, 2010ijr.sagepub.comDownloaded from

http://ijr.sagepub.com/

1024 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / December 2002

3000

4000

5000

6000

7000

8000

9000

10000

2 4 6 8 10 12 14 16 18 20

C
el

ls
 th

at
 b

re
ak

 r
oa

dm
ap

Number of joints

w, 2K nodes
w, 8K nodes

Wa, 2K nodes
Wa, 8K nodes

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

3 6 9 12 15

C
el

ls
 th

at
 b

re
ak

 r
oa

dm
ap

Number of joints

Wa, 2K nodes
Wa, 8K nodes

Wa, 16K nodes
Fa, 2K nodes
Fa, 8K nodes

Fa, 16K nodes

(a) (b)

Fig. 22. Test for ρ-robustness for roadmaps constructed with different distance functions: (a) planar robots and (b) 3D
workspace robots.

0

1000

2000

3000

4000

5000

6000

7000

8000

2 3 4 5 6 7 8 9 10

A
rc

s
ad

de
d

Number of joints

pass 1
pass 2
pass 3
pass 4
pass 5

5

6

7

8

9

10

11

12

13

14

15

16

2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 a
rc

s
pe

r
no

de

Number of joints

Start
pass 1
pass 2
pass 3
pass 4
pass 5

(a) (b)

0

2000

4000

6000

8000

10000

12000

3 6 9 12 15

A
rc

s
ad

de
d

Number of joints

pass 1
pass 2
pass 3

6

8

10

12

14

16

18

20

22

24

3 6 9 12 15

A
ve

ra
ge

 a
rc

s
pe

r
no

de

Number of joints

Start
pass 1
pass 2
pass 3

(c) (d)

Fig. 23. Arcs added and resulting connectivity at different steps during processing for ρ-robustness for 2048-node roadmaps
constructed with the DW

m2 distance functions: (a) and (b) planar robots, and (c) and (d) 3D workspace robots.

 at UNIV OF ILLINOIS URBANA on September 8, 2010ijr.sagepub.comDownloaded from

http://ijr.sagepub.com/

Leven and Hutchinson / A Framework for Real-time Path Planning 1025

Table 4. Results for ρρρ-robustness for a 2048-node Roadmap Created for the Type A
Robots

Low Manipulability High Manipulability

Breaks Arcs Breaks Arcs

Joints Before After Added Before After Added

3 6,476 55 1,218 6,065 61 1,113
6 17,073 522 5,454 19,406 266 4,798
9 29,449 1,265 10,298 32,058 1,081 9,163

12 36,592 3,303 14,153 42,585 1,753 12,915
15 41,426 5,921 15,777 47,908 3,685 14,960

Table 5. Results for ρρρ-robustness for a 2048-node Roadmap Created for the Type B Robots

Low Manipulability No Manipulability High Manipulability

Breaks Arcs Breaks Arcs Breaks Arcs

Joints Before After Added Before After Added Before After Added

3 5893 0 1022 6233 0 999 5198 4 863
6 18,426 86 5047 18,347 87 4639 18,005 53 4143
9 32,505 315 9156 33,853 443 8478 32,667 213 7392

12 39,663 627 11,777 42,014 547 11,024 44,903 446 10,160
15 45,863 1010 13,774 51,454 880 12,863 54,543 765 12,074

dominates the computation time for enhancing the ρ-
robustness of a roadmap.

For example, the test procedure, which finds the number
of cells that result in the roadmap becoming disconnected,
took 35 min for a 2048-node roadmap for the 3D workspace
robots. The times for the 8192- and 16,384-node roadmaps
were 3.5 and 8.3 h, respectively. The test times were shorter
for the planar robots, since there are fewer cells to test (around
15,000 instead of 300,000). The program that improves the
robustness of the roadmap can easily take several days or
more, particularly for larger roadmaps and robots with more
joints.

6.4. Planning Examples

The implementation of our planner tests for the existence of a
path between two selected nodes in the roadmap modified to
take into account obstacle constraints. The process for finding
a path for fixed-base robots consists of two steps: modifying
the roadmap to take into account the obstacles and searching
the modified roadmap for a path. The search process itself
is fast, taking of the order of tens of milliseconds to search
the roadmaps that we have tested. This is true for both robots
with 2D workspaces and robots with 3D workspaces. The path
smoothing that we apply to the output of the planner takes a
variable amount of time, spending more time when the robot
is closer to the obstacles along the path and taking more time
for robots with more joints.

Modifying the roadmap to take into account the obstacles
is slower, and the time required depends on the neighbor-
hood model used to encode φ. The fastest roadmap update
times were for φ encoded with no neighborhood model. The
“best” hierarchical neighborhoods had the second fastest up-
date times, and the region-growing neighborhoods had the
third fastest times. Nevertheless, the update times for all three
of these were close in magnitude. This was not the case for
the “union” hierarchical neighborhoods, whose performance
was around an order of magnitude worse. This performance
gap may be due to our implementation of the decoding pro-
cedure for the hierarchical neighborhoods, which decodes φ
for a given cell from the bottom of the hierarchy to the top. It
may be more efficient for this case to process the cells from
the top of the hierarchy down.

Figure 24 shows an example path generated by our plan-
ner for a 20-joint planar robot. In this example, roughly half
of the workspace is occupied by the obstacle region. The
roadmap used for this plan had 8192 nodes. The time re-
quired to process the obstacles shown in Figure 24 was of the
order of a few seconds for 2048- and 8192-node roadmaps and
φ encoded using no neighborhood model, using the region-
growing neighborhood model, and using the “best” hierarchi-
cal neighborhood model. On the other hand, using the “union”
hierarchical neighborhood model, processing the obstacles re-
quired on average 41 s for the 2048-node roadmap and 167 s
for the 8192-node roadmap. These times did not vary much

 at UNIV OF ILLINOIS URBANA on September 8, 2010ijr.sagepub.comDownloaded from

http://ijr.sagepub.com/

1026 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / December 2002

Fig. 24. An example plan for a 20-joint planar robot with joint limits. The sequence of steps is from left to right, top to bottom.

for robots with different numbers of joints. For the example
path shown in Figure 24, path smoothing took around 12 s to
perform. Therefore, for real-time applications, there are two
viable approaches: decode the representation prior to plan-
ning (this would allow, for example, the representation to be
stored using a small amount of ROM, and then unpacked into
RAM at planning time), or use one of the three faster encoding
schemes.

Figure 25 shows an example path generated by our plan-
ner for a six-joint robot with a 3D workspace and a 2048-
node roadmap. We observed a pattern similar to the planar
robot case for the processing time required for the different

neighborhood models when processing the obstacles in the
workspace. For the obstacles shown in Figure 25, the pro-
cessing time was less than 1 s for the neighborhood models
of none, region-growing, and “best” hierarchical, with excep-
tions for the 12- and 15-joint robots, where the time increased
to 2.8 s for the 8192-node roadmaps. The times for the “union”
hierarchical neighborhood models were much slower, requir-
ing around 10.5 s for the 2048-node roadmaps and around 43 s
for the 8192-node roadmaps. In addition, the times tended to
increase with the number of joints, which correlates with the
increase in the size of the representation of φ with the number
of joints.

 at UNIV OF ILLINOIS URBANA on September 8, 2010ijr.sagepub.comDownloaded from

http://ijr.sagepub.com/

Leven and Hutchinson / A Framework for Real-time Path Planning 1027

Fig. 25. An example plan for a 6-joint robot with a 3D workspace. The sequence of steps is from left to right, top to bottom.

7. Conclusion

We have presented a new method for generating collision-
free paths for robots operating in changing environments. We
use a preprocessing stage that comprises three steps. First,
a roadmap is constructed using random sampling of the C-
space. We have used both uniform sampling and importance
sampling based on manipulability. Secondly, we encode the
mapping from cells in the robot’s workspace to nodes and arcs
in the C-space roadmap. The redundancy in this mapping is
exploited to construct a significantly compressed representa-
tion. This mapping and the ability to represent it efficiently
is at the heart of our new approach. Thirdly, we enhance the

C-space roadmap using the minimum cut set of the roadmap
and ρ-robustness, a measure that we have defined to capture
the robustness of the roadmap to the introduction of obstacles
into the robot workspace.

We have presented experimental results for a planner based
on our framework. We have examined serial-link manipu-
lators for both 2D and 3D workspaces. For roadmap con-
struction, we have examined the effect of the geometry of the
robot on the sampling of its C-space. For the mapping from
the workspace to the roadmap, we have examined the size
of the mapping, the computation time required to generate
the mapping, and the improvement in the size of the map-
ping gained by using a more efficient encoding. For roadmap

 at UNIV OF ILLINOIS URBANA on September 8, 2010ijr.sagepub.comDownloaded from

http://ijr.sagepub.com/

1028 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / December 2002

enhancement, we have examined the amount of improvement
we can expect using either of the two techniques for a given
robot and roadmap. We have concluded our experimental re-
sults with some planning examples.

We believe that this work makes an important step in the
direction of constructing optimal representations for real time
path planning, but there is much work that remains to be done.
The approach presented here has a number of limitations. It is
not capable of any sort of fine motion planning, and it would
not be able to cope with the narrow passage problem that
plagues many randomized approaches. Therefore, to solve
such problems, it would be necessary to augment our sys-
tem, possibly by using our current approach to generate gross
motion plans, and then incorporating a refinement stage to
produce fine motion plans or to cope with narrow passages.
We leave these problems for our future work. Furthermore,
we have not investigated any sort of incremental methods for
updating the representation dynamically if the environment
undergoes a series of changes. Such methods are very popu-
lar in the computational geometry literature, and we hope to
investigate how these methods could be applied to our sys-
tem. We are also interested in investigating how our approach
could be used to plan the motion of mobile manipulators in
conjunction with sensor-based exploration tasks. In sum, we
believe that the work presented here represents one compo-
nent in an intelligent robotic system, and that this component
can certainly be further improved.

Acknowledgments

This material is based in part upon work supported by the Na-
tional Science Foundation under Award No. CCR-0085917
and IIS-0083275.

References

Abrams, S., and Allen, P. K. 1995. Swept volumes and their
use in viewpoint computation in robot work-cells. In Pro-
ceedings of IEEE Conference on Robotics and Automation,
pp. 188–193.

Abrams, S., Allen, P. K., and Tarabanis, K. A. 1993. Dynamic
sensor planning. In Proceedings of IEEE Conference on
Robotics and Automation, pp. 605–610.

Ahuactzin, J.-M., and Gupta, K. 1999. The kinematic
roadmap: A motion planning based global approach for in-
verse kinematics of redundant robots. IEEE Transactions
on Robotics and Automation 15(4):653–669.

Ahuactzin, J.-M., Gupta, K., and Mazer, E. 1998. Manipula-
tion planning for redundant robots: A practical approach.
International Journal of Robotics Research 17(7):731–
747.

Ahuactzin, J.-M., Mazer, E., and Bessière, P. 1995. Fonde-
ments mathématiques d’algorithme “fil d’Ariane”. Revue

d’Intelligence Artificielle 9(1):7–34.
Ahuactzin, J.-M., Talbi, E.-G., Bessière, P., and Mazer, E.

1992. Using genetic algorithms for robot motion plan-
ning. In European Conference on Artificial Intelligence,
pp. 671–675.

Amato, N. M., and Wu, Y. 1996. A randomized roadmap
method for path and manipulation planning. In Proceed-
ings of IEEE Conference on Robotics and Automation
Vol. 1, pp. 113–120.

Amato, N. M., Bayazit, O. B., Dale, L. K., Jones, C., and
Vallejo, D. 1998. OBPRM: An obstacle-based PRM for
3D workspaces. In Proceedings of Workshop on Algorith-
mic Foundations of Robotics, pp. 155–168.

Amato, N. M., Bayazit, O. B., Dale, L. K., Jones, C., and
Vallejo, D. 2000. Choosing good distance metrics and local
planners for probabilistic roadmap methods. IEEE Trans-
actions on Robotics and Automation 16(4):442–447.

Anshelevich, E., Owens, S., Lamiraux, F., and Kavraki, L. E.
2000. Deformable volumes in path planning applications.
In Proceedings of IEEE Conference on Robotics and Au-
tomation, pp. 2290–2295.

Barber, C. B., Dobkin, D. P., and Huhdanpaa, H. 1996. The
quickhull algorithm for convex hulls. ACM Transactions
on Mathematical Software 22(4).

Barraquand, J., and Latombe, J.-C. 1991. Robot motion plan-
ning: A distributed representation approach. International
Journal of Robotics Research 10(6):628–649.

Bell, T. C., Cleary, J. G., and Witten, I. H. 1990. Text Com-
pression, Prentice Hall, Englewood Cliffs, NJ.

Bessière, P., Ahuactzin, J.-M., Talbi, E.-G. and Mazer, E.
1994. The “Ariadne’s clew" algorithm: Global planning
with local methods. In Proceedings of Workshop on Algo-
rithmic Foundations of Robotics, pp. 39–47.

Blackmore, D., and Leu, M. C. 1990. A differential equa-
tion approach to swept volumes. In Proceedings of Rens-
selaer’s 2nd International Conference on Computer Inte-
grated Manufacturing, pp. 143–149.

Bohlin, R., and Kavraki, L. E. 2000. Path planning using lazy
PRM. In Proceedings of IEEE Conference on Robotics and
Automation, pp. 521–528.

Boor, V., Overmars, M. H., and van der Stappen, A. F. 1999.
The Gaussian sampling strategy for probabilistic roadmap
planners. In Proceedings of IEEE Conference on Robotics
and Automation, pp. 1018–1023.

Boussac, S., and Crosnier, A. 1996. Swept volumes generated
from deformable objects application to nc verification. In
Proceedings of IEEE Conference on Robotics and Automa-
tion, pp. 1813–1818.

Brooks, R., and Lozano-Pérez, T. 1983. A subdivision algo-
rithm in configuration space for findpath with rotation. In
International Joint Conference on Artificial Intelligence,
pp. 799–806.

Canny, J. F. 1988. The Complexity of Robot Motion Planning.
MIT Press, Cambridge, MA.

 at UNIV OF ILLINOIS URBANA on September 8, 2010ijr.sagepub.comDownloaded from

http://ijr.sagepub.com/

Leven and Hutchinson / A Framework for Real-time Path Planning 1029

Elias, P. 1975. Universal codeword sets and representations
of the integers. IEEE Transactions on Information Theory
21(2).

Furht, B., Greenberg, J., and Westwater, R. 1997. Motion Es-
timation Algorithms for Video Compression. Kluwer Aca-
demic, Boston.

Guibas, L. J., Holleman, C., and Kavraki, L. E. 1999. A
probabilistic roadmap planner for flexible objects with a
workspace medial-axis-based sampling approach. In Pro-
ceedings of IEEE/RSJ Conference on Intelligent Robots
and Systems.

Han, L., and Amato, N. M. 2000. A kinematics-based prob-
abilistic roadmap method for closed chain systems. In
Proceedings of Workshop on Algorithmic Foundations of
Robotics.

Hankerson, D., Harris, G. A., and Johnson Jr, P. D. 1998. In-
troduction to Information Theory and Data Compression.
Discrete Mathematics and its Applications. CRC Press,
New York.

Holleman, C., and Kavraki, L. E. 2000. A framework for us-
ing the workspace medial axis in PRM planners. In Pro-
ceedings of IEEE Conference on Robotics and Automation,
pp. 1408–1413.

Holleman, C., Kavraki, L. E., and Warren, J. 1998. Planning
paths for a flexible surface patch. In Proceedings of IEEE
Conference on Robotics and Automation, pp. 21–26.

Horsch, T., Schwarz, F., and Tolle, H. 1994. Motion planning
with many degrees of freedom—random reflections at c-
space obstacles. In Proceedings of IEEE Conference on
Robotics and Automation, pp. 3318–3323.

Hsu, D., Latombe, J.-C., and Motwani, R. 1999. Path planning
in expansive configuration spaces. International Journal of
Computational Geometry and Applications 9(4/5):495–512.

Hunter, G. M., and Steiglitz, K. 1979. Operations on images
using quad trees. IEEE Transactions on Pattern Analysis
and Machine Intelligence 1(2):145–153.

Hwang, Y. K., and Ahuja, N. October 1988, Path planning
using a potential field representation. Technical Report
UILU-ENG-8-2251, University of Illinois.

Kambhampati, S., and Davis, L. S. 1986. Multiresolution path
planning for mobile robots. IEEE Journal of Robotics and
Automation 2(3):135–145.

Kaufman, A., and Shimony, E. 1986. 3D scan-conversion al-
gorithms for voxel-based graphics. In Proceedings of 1986
Workshop on Interactive 3D Graphics. ACM, New York,
pp. 45–76.

Kavraki, L. E., and Latombe, J.-C. 1994. Randomized pre-
processing of configuration space for fast path planning.
In Proceedings of IEEE Conference on Robotics and Au-
tomation Vol. 3, pp. 2138–2145.

Kavraki, L. E., and Latombe, J.-C. 1998. Probabilistic
roadmaps for robot path planning. In Practical Motion
Planning in Robotics: Current Approaches and Future Di-
rections, K. Gupta and P. del Pobil, eds. Wiley, New York,

pp. 33–53.
Kavraki, L. E., Kolountzakis, M. N., and Latombe, J.-C. 1996.

Analysis of probabilistic roadmaps for path planning. In
Proceedings of IEEE Conference on Robotics and Automa-
tion Vol. 4, pp. 3020–3025.

Kavraki, L. E., Lamiraux, F., and Holleman, C. 1998. Towards
planning for elastic objects. In Proceedings of Workshop
on Algorithmic Foundations of Robotics.

Kavraki, L. E., S̆vestka, P., Latombe, J.-C., and Overmars,
M.H. 1996. Probabilistic roadmaps for path planning in
high-dimensional configuration spaces. IEEE Transac-
tions on Robotics and Automation 12(4):566–580.

Khatib, O. 1986. Real-time obstacle avoidance for manipula-
tors and mobile robots. International Journal of Robotics
Research 5(1):90–98.

Kindel, R., Hsu, D., Latombe, J.-C., and Rock, S. 2000. Kin-
odynamic motion planning amidst moving obstacles. In
Proceedings of IEEE Conference on Robotics and Automa-
tion, pp. 537–543.

Koditschek, D. E. 1989. Robot planning and control via po-
tential functions. In The Robotics Review 1, pp. 349–367.
MIT Press, Cambridge, MA.

Kuffner Jr, J. J., and LaValle, S. M. 2000. RRT-connect: An
efficient approach to single-query path planning. In Pro-
ceedings of IEEE Conference on Robotics and Automation,
pp. 995–1001.

LaValle, S. M., and Kuffner Jr, J. J. 1999. Randomized kino-
dynamic planning. In Proceedings of IEEE Conference on
Robotics and Automation, pp. 473–479.

LaValle, S. M., and Kuffner Jr, J. J. 2000. Rapidly-exploring
random trees: Progress and prospects. In Proceedings of
Workshop on Algorithmic Foundations of Robotics.

LaValle, S. M., Yakey, J. H., and Kavraki, L. E. 1999. A
probabilistic roadmap approach for systems with closed
kinematic chains. In Proceedings of IEEE Conference on
Robotics and Automation, pp. 1671–1676.

Leven, P., and Hutchinson, S. 2000. Toward real-time path
planning in changing environments. in Proceedings of
Workshop on Algorithmic Foundations of Robotics.

Lin, M., and Manocha, D. 1997. Efficient contact determi-
nation in dynamic environments. International Journal of
Computational Geometry and Applications 7(1):123–151.

Lozano-Pérez, T. 1983. Spatial planning: A configuration
space approach. IEEE Transactions on Computers

Ma, L., Jiang, Z., and Chan, K.Y.T. 2000. Interpolating and
approximating moving frames using b-splines. In Proceed-
ings of the 8th Pacific Conference on Computer Graphics
and Applications, pp. 154–164.

Matula, D. W. 1993. A linear time 2 + ε approximation algo-
rithm for edge connectivity. In Proceedings of the ACM-
SIAM Symposium on Discrete Algorithms, pp. 500–504.

Mazer, E., Ahuactzin, J.-M., and Bessière, P. 1998. The Ari-
adne’s clew algorithm. Journal of Artificial Intelligence
Research 9:295–316.

 at UNIV OF ILLINOIS URBANA on September 8, 2010ijr.sagepub.comDownloaded from

http://ijr.sagepub.com/

1030 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / December 2002

McLean, A., and Mazon, I. 1996. Incremental roadmaps and
global path planning in evolving industrial environments.
In Proceedings of IEEE Conference on Robotics and Au-
tomation, pp. 101–107.

Mehrandezh, M., and Gupta, K. 2002. Simultaneous path
planning and free space exploration with skin sensor. In
Proceedings of IEEE Conference on Robotics and Automa-
tion, pp. 3838–3843.

Mirtich, B. June 1997. V-Clip: Fast and robust polyhedral
collision detection. Technical Report TR97-05, Mitsubishi
Electric Research Laboratory, 201 Broadway, Cambridge,
MA 02139.

Mitchell, J. L., Pennebaker, W. B., Fogg, C. E., and LeGall, D.
J., eds. 1997. MPEG Video Compression Standard Chap-
man and Hall, New York.

Overmars, M. H., and S̆vestka, P. 1994. A probabilistic learn-
ing approach to motion planning. In Proceedings of Work-
shop on Algorithmic Foundations of Robotics, pp. 19–37.

Overmars, M. H., and S̆vestka, P. March 1995. A paradigm
for probabilistic path planning. Technical Report UU-CS-
1995-22, Utrecht University.

Rosenfeld, A., and Kak, A.C. 1982. Digital Picture Process-
ing. Academic Press, New York, second edition.

Samet, H. 1984. The quadtree and related hierarchical data
structures. Computing Surveys 16(2):187–260.

Schwartz, J. T., Sharir, M., and Hopcroft, J., eds. 1987. Plan-
ning, Geometry, and Complexity of Robot Motion. Ablex,
Norwood, NJ.

S̆vestka, P., and Overmars, M. H. 1995. Coordinated motion
planning for multiple car-like robots using probabilistic
roadmaps. In Proceedings of IEEE Conference on Robotics

and Automation, pp. 1631–1636.
Trjan, R. E. June 1972. Depth-first search and linear graph

algorithms. SIAM Journal on Computing 1(2).
Vallejo, D., Jones, C., and Amato, N. M. October 1999. An

adaptive framework for ‘single shot’ motion planning.
Technical Report TR99-024, Department of Computer Sci-
ence, Texas A&M University, College Station, TX.

van den Bergen, G. 1997. Efficient collision detection of com-
plex deformable models using AABB trees. Journal of
Graphics Tools 2(4):1–14.

van den Bergen, G. 1999. A fast and robust GJK implemen-
tation for collision detection of convex objects. Journal of
Graphics Tools 4(2):7–25.

Wilmarth, S. A., Amato, N. M., and Stiller, P. F. 1999. Mo-
tion planning for a rigid body using random networks on
the medial axis of the free space. In Proceedings of ACM
Symposium on Computational Geometry, pp. 173–180.

Witten, I. H., Moffat, A., and Bell, T. C. 1999. Managing
Gigabytes: Compressing and Indexing Documents and
Images. Morgan Kaufmann, San Francisco, CA, second
edition.

Xavier, P.G. 1997. Fast swept-volume distance for robust col-
lision detection. In Proceedings of IEEE Conference on
Robotics and Automation, pp. 1162–1169.

Yoshikawa, T. 1985. Manipulability of robotic mechanisms.
International Journal of Robotics Research 4(2):3–9.

Yu, Y., and Gupta, K. 1999. Sensor-based roadmaps for mo-
tion planning for articulated robots in unknown environ-
ments: Some experiments with an eye-in-hand system. In
Proceedings of IEEE/RSJ Conference on Intelligent Robots
and Systems.

 at UNIV OF ILLINOIS URBANA on September 8, 2010ijr.sagepub.comDownloaded from

http://ijr.sagepub.com/

