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Abstract

The authors consider the problem of determining robot motion plans
under sensing and control uncertainties. Traditional approaches
are often based on methodology known as preimage planning, which
involves worst-case analysis. The authors have developed a gen-
eral framework for determining feedback strategies by blending
ideas from stochastic optimal control and dynamic game theory with
traditional preimage planning concepts. This generalizes classical
preimages to performance preimages and preimage planning for de-
signing motion strategies with information feedback. For a given
problem, one can define a performance criterion that evaluates any
executed trajectory of the robot. The authors present methods for
selecting a motion strategy that optimizes this criterion under either
nondeterministic uncertainty (resulting in worst-case analysis) or
probabilistic uncertainty (resulting in expected-case analysis). The
authors present dynamic programming-based algorithms that nu-
merically compute performance preimages and optimal strategies;
several computed examples of forward projections, performance
preimages, and optimal strategies are presented.

1. Introduction

We present an objective-based motion planning framework
that addresses sensing and control uncertainties. A prelimi-
nary version of this work appeared in LaValle and Hutchinson
( 1994), and more details and related concepts are presented in
LaValle ( 1995, 1997). In an objective-based motion planning
framework, motion strategies are chosen by minimizing a cri-
terion that evaluates a trajectory by taking into account quan-
tities such as the path length or execution time. Many of the
concepts introduced here are borrowed from stochastic opti-
mal control theory and dynamic game theory (see Basar and
Olsder 1982; Kumar and Varaiya 1986) and build on previous
preimage planning research (see Erdmann 1984; Latombe,
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Lazanas, and Shekhar 1991; Lozano-Perez, Mason, and Tay-
lor 1984). Our approach generalizes classical preimages to
performance preimages and preimage planning for design-
ing motion strategies with information feedback. Construct-
ing a traditional termination criterion becomes equivalent to
formulating an optimal stopping problem (Bertsekas 1987)
within our framework.

Several variations of the motion planning problem have
been considered in past research (e.g., see Latombe 1991).
One basic form of motion planning, which we refer to as
collision-free planning, consists of computing a continuous
path in the robot’s configuration space that will bring the robot
from some initial configuration to a goal configuration while
avoiding collisions with obstacles. This is often referred to
as the gross-motion planning problem (Hwang and Ahuja
1992). Alternatively, interactions between the robot and ob-
jects can be allowed for operations such as compliant mo-
tions, pushing, and grasping. These interactions are incorpo-
rated into the motion plan of a robot, enabling it to accomplish
some specified task. Many researchers have considered the
problem of achieving a goal configuration under uncertainty
while permitting compliant motions; this has been referred to
as the fine-motion planning problem (Canny 1989; Erdmann
1984; Lozano-Perez, Mason, and Taylor 1984) and the ma-
nipulation planning problem (Brost and Christiansen 1996).
In other research, manipulation planning has been used to
refer to problems that involve the transfer of objects in the
workspace (Alami, Simeon, and Laumond 1989; Latombe
1991).
We use the term manipulation planning in this paper to refer

to the problem of achieving a goal configuration under uncer-
tainty while permitting compliant motions. For the examples
in this paper, we use the manipulation planning model, since
it is often considered more difficult than collision-free plan-
ning ; this is due to the characterization of motions when the
robot is in contact with obstacles. The methods presented
in this paper can also be adapted to collision-free planning
(we have computed results for many cases); however, in this
paper, we focus only on manipulation planning, since the
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basic collision-free planning issues under sensing and con-
trol uncertainties are included in the manipulation planning
model.

Section 2 provides some literature background and states
the key contributions of our research. Section 3 provides
the general definitions and concepts that form the basis of
our approach. Some of the notation, although not previ-
ously used to characterize manipulation planning problems,
is borrowed from modern control theory. After the general
concepts and definitions have been presented, they are used
in Sections 4, 5, and 6 to present forward projections, perfor-
mance preimages, and the determination of optimal motion
strategies, respectively. Computed examples are presented
at the conclusion of each of these three sections.
The concepts in each of Sections 4 through 6 can be

logically divided into four components that represent dif-
ferent types of uncertainty, based on two choices: (1) us-
ing probabilistic representations versus nondeterministic (or
bounded-set) representations and (2) modeling control errors
and assuming perfect sensing versus modeling both control
and sensing errors. Each of the probabilistic and nonde-
terministic representations offers distinct advantages; hence,
both are included in our framework. Probabilistic rep-
resentations lead to expected-case analysis, and nondeter-
ministic representations lead to worst-case analysis; rele-
vant issues are discussed in Section 2. Perfect sensing re-
sults are applicable when reasonable state estimation (i.e.,
configuration estimation) can be performed. The addition

of sensing uncertainty can be considered as an extension
in which the configuration space is replaced by an infor-
mation space that is derived from the sensing and action
history.

Section 7 discusses several issues regarding our current
approach, and Section 8 summarizes our contributions.

2. Background and Motivation
2.1. Prior Research

Preimage planning constitutes a large body of research that
assumes that sensing and control errors lie within bounded
sets. The approach was first conceptualized in Lozano-
P6rez, Mason, and Taylor (1984). Using geometric rea-
soning techniques, a plan is constructed that guarantees that
the robot will terminate in a specified subset of configura-
tion space regardless of where the errors might lie within
the bounded sets. This plan is generally constructed using
recursive subgoals as a form of backchaining. For each sub-
goal, a preimage is formed that allows the robot to achieve
the subgoal for a fixed command, starting from the sub-
set of the configuration space attained from the previous
subgoal. Figure 1 shows an example of a preimage. In

general, a preimage is defined as the set of all configura-

tions from which a robot is guaranteed to halt in the goal
region.
Two basic representations of sensing and control uncer-

tainty have been proposed in the manipulation planning lit-
erature ; consequently, we will provide a unified treatment of
both. We refer to these as nondeterministic uncertainty and
probabilistic uncertainty, as done in Erdmann (1992). Under
nondeterministic uncertainty, it is assumed that parameter
uncertainties lie in a bounded set. Worst-case analysis is
performed to yield a motion plan that is guaranteed to be suc-
cessful regardless of the true value of uncertain parameters
within the bounded set. This uncertainty representation is
the most common in previous manipulation planning research
(e.g., Erdmann 1984; Latombe 1991; Latombe, Lazanas, and
Shekhar 1991; Lozano-Perez, Mason, and Taylor 1984). Un-
der probabilistic uncertainty, probability densities are used
to represent uncertainty associated with parameters. This

approach has been advocated for manipulation planning by
Brost and Christiansen (Brost 1991; Brost and Christiansen
1993, 1996). Each uncertainty representation offers advan-
tages. Nondeterministic models do not require a statistical
representation of the errors and, hence, are often easier to
specify. If the uncertainty model is correct, the guarantee that
the goal is achieved is useful, particularly when the penalty is
severe for not achieving it. As noted in Brost and Christiansen
(1996) and Erdmann (1992), for many tasks a guaranteed mo-
tion plan does not exist; however, a plan can alternatively be
computed that achieves the goal with some probability. Since
either uncertainty model might be appropriate in a given con-
text, both are considered in this paper.

Several other planning problems and approaches are re-
lated to the context developed in this paper. In a series of

papers by Donald (1987, 1988, 1990), it was shown how
a planner that is capable of recognizing failure (in addi-
tion to success) can be used to implement error detection
and recovery strategies. Under this model, the robot is al-
lowed to try a new plan after realizing that a failure has
occurred, as opposed to continuing the failed plan. This

represents an important use of sensor information, and ex-
pands the previous notion of reachability to include fail-
ure. Goldberg applied preimage planning ideas to construct
manipulation plans that orient an object using a parallel
gripper without sensors (Goldberg 1990, 1993). Methods
for computing backprojections using visual constraint rays
that result from the correspondence between edges in the
workspace and the image plane are developed in Fox and
Hutchinson (1995). Algorithms for computing strategies in
the presence of probabilistic uncertainty for mobile robots
have been developed in Dean and Wellman (1991); Hu,
Brady, and Probert (1991); and Kirman, Basye, and Dean
(1991). In Takeda, Facchinetti, and Latombe (1994), a sen-
sory uncertainty field was introduced that indicates positional
sensing accuracy for a mobile robot as a function of config-
uration.
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Fig. 1. (a) A classic two-dimensional peg-in-hole insertion task without rotation. (b) Such a task can be represented in
configuration space with bounded uncertainty in commanded velocity and sensed configuration. (c) The classical preimage.

2.2. Motivation

Previous research in motion planning under sensing and con-
trol uncertainties has led to many interesting concepts and
algorithms. Similar uncertainty issues have been studied ex-
tensively in stochastic optimal control and dynamic game the-
ory, and significant advantages can be obtained by combining
previous motion planning concepts (in particular, preimage
planning) with modern control concepts. We are therefore
motivated to address several issues in this paper.

1. Probabilistic uncertainty is often handled quite dif-
ferently from nondeterministic uncertainty. We show that
the distinction between the two can be reduced to the way
in which parameters are chosen by an additional decision
maker referred to as nature. These parameters potentially
interfere with configuration prediction and sensing. As an
example of the close connection that we establish between
the two uncertainty forms, we show how probabilistic hyper-
states, as considered in Brost and Christiansen (1996) and
Goldberg (1990), can be obtained by sequentially applying
Bayes’s rule to the history, whereas nondeterministic knowl-
edge states (Erdmann, 1993) can analogously be obtained
by replacing Bayes’s rule with appropriate set operations ap-
plied to the history. By drawing such connections, methods
can potentially be applied to either uncertainty form.

2. For many problems that involve probabilistic or non-
deterministic uncertainty, it becomes crucial to optimize a
performance criterion such as path length or execution time.
In much previous work in motion planning under uncertainty,
the task is only to find a strategy that achieves the goal; how-
ever, consider the limiting case in which there is severe pre-
diction uncertainty to the point that pure Brownian motion
results from a fixed motion command. Many goals will be
achieved with probability 1, regardless of the motion strategy.
Although it may seem that a system with more uncertainty
is easier to control, the execution time, which is not being

measured, can be arbitrarily high. Thus, for many problems,
we can expect a performance criterion to be crucial in estab-
lishing the desired behavior.

3. Sensing uncertainty problems have repeatedly appeared
in robotics contexts and are closely related to imperfect ob-
servability in control theory. By using the concept of an
information space, as considered in stochastic control and

dynamic game theory, we provide a general characteriza-
tion of the fundamental relationship between sensor and ac-
tion history and decision making. In the case of imperfect
information regarding the current configuration, the infor-
mation space becomes a replacement for the configuration
space. Although the current configuration will generally be
unknown, an information state (i.e., a point in the informa-
tion space) will always be known. Thus, a motion planning
problem with sensing uncertainty can be transformed into a
problem with perfect sensing in an information space. We
show that reachability, recognizability, and the termination
concepts from preimage planning research can be naturally
described in terms of information space concepts.

4. One important difficulty in motion planning under
uncertainty is the determination of appropriate uncertainty
models. One advantage of having a common mathematical
framework is that error models can be changed without al-
tering the general computational approach, facilitating the
improvement of error models that are appropriate for a par-
ticular robotic system. Configuration space concepts have
provided this type of advantage for the basic path planning
problem (without uncertainty), and an expanded mathemati-
cal formulation can provide similar benefits for incorporating
uncertainties.

5. The focus in much previous motion planning research
has been on computing exact, geometric solutions. We

provide approximate, numerical solutions, since the com-
putational complexity of the exact manipulation planning
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problem is PSPACE-complete for ~J22 (Natarajan 1988) and
nondeterministic exponential-time hard for ~3 (Canny 1988,
1989). Solutions for various stochastic, Markov systems are
also known to have difficult complexity (Papadimitriou 1985;
Papadimitriou and Tsitsiklis 1987). Therefore, it seems un-
likely that exact solutions can be obtained practically for the
types of problems that are considered in this paper.

3. General Definitions and Concepts
In this section, we define the general concepts and terminol-
ogy that form the basis for our framework. We conceptualize
the manipulation planning problem as a dynamic game that
is played between two players: the robot and nature. Both
players will be considered as decision-making agents that
influence the general state of the system. The robot has a
general plan to achieve some goal, whereas nature makes
some decisions that potentially interfere with the robot. At
an abstract level, this general view of robotic manipulation
tasks has been advocated in Taylor, Mason, and Goldberg
(1987).
Most of the concepts are expressed in a general form, and

a specific modeling example that forms the basis for the ex-
periments is given in Section 3.5.

3.1. States, Stages, and Actions

3.1.1. State Space

Position and orientation information is represented by a point
in an n-dimensional configuration space C, for which n is the
number of degrees of freedom of the robot. The configu-
ration space could, for example, represent joint angles of a
manipulator that is engaged in a manipulation task, such as
peg insertion. As another example, the configuration space
could specify the position and orientation of a rigid mobile
robot. For manipulation planning, a subset of C, denoted as
Cvalid, is usually defined (see Latombe 1991 for configuration
space details). This corresponds to points in C at which either
(1) the robot does not touch an obstacle or (2) the boundary of
the robot is in contact with the boundary of some obstacle, but
the interiors do not overlap. The second condition enables
the possibility of guarded motion and compliance (Whitney
1977), which, for instance, allows the robot to execute a mo-
tion along the tangent of an obstacle boundary.
We associate a state space X with a given problem. For

the examples in this paper, we take X = Cvahd (for collision-
free planning, we would use X = Cfree. which is the in-
terior of C,,at,a). In general, parameters such as velocities
or environment characteristics could be included in the state

space, while many of the general concepts remain unchanged
(LaValle 1995).

3.1.2. Stages

A discrete-time representation is chosen to facilitate the defi-
nitions of random processes. Let time stages be denoted with
an index k E {I, 2, ..., K}. Stage k refers to time (k-1)Ot.
The state at stage k is denoted by ~k. We generally take At
sufficiently small to approximate continuous paths. It will be
assumed that all processes are stationary (or time invariant).
The final stage K is defined only to ease technical consider-
ations as the system evolves toward infinite time. Since the
robot is expected to achieve the goal in some finite time (if
it is achievable), consideration of infinite-length trajectories
is not needed. The specification of K is not required by our
algorithms due to stationarity.

3.1.3. Actions

An action (or command), which is denoted by Uk, can be
issued to the robot at each stage k. We let U denote the
action space for the robot, requiring that ~ck E U. The effect
of uncertainties will be modeled with an extra decision maker

referred to as nature. Let 0k denote an action for nature, which
is chosen from a set 0. Let 9k be a vector quantity that is
divided into two subvectors Bk and 0’ (i.e., 9k = [9~ek]).
As will be seen shortly, 9k affects the outcome of the robot’s
actions, and 01 k affects the sensor observations of the robot.

3.1.4. State Transition Equation

The effect of a robot action with respect to state is character-
ized by a state transition equation:

Hence, given a robot action, nature’s action, and the current
state, the next state is deterministically specified. During
execution, however, the robot will not know the action of
nature. A specific example of a state transition equation is
given in Section 3.5.

If nondeterministic uncertainty is considered, the state
transition equation can be applied to obtain the following
subset of X:

This set represents the possible next states that can result from
a single application of the state transition equation.
Under probabilistic uncertainty, a probability density func-

tion (pdf) p(Ol), is assumed to be known. For this probability
density and the remaining probability densities in the paper,
we implicitly assume there is some underlying probability
space, and random variables with densities are constructed

using appropriate measurability conditions. By using the
state transition equation, a pdf for x k+ can be inferred, which
is represented by ~(~k+1 ~ I Xk, ~ck).

 at UNIV OF ILLINOIS URBANA on September 8, 2010ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com/


23

In general, let F refer to minimal subsets of X that can
be inferred from the arguments. The role of F in our ex-

pression for nondeterministic uncertainty can be considered
analogous to the role of p in probabilistic expressions. Thus,
F is a generic representation for a subset of X, whereas p
is a generic representation for a density on X. This will

help clarify the relationships between nondeterministic and
probabilistic uncertainties.

3.2. Imperfect Sensing and Information Spaces

In this section, we consider uncertainty in sensing, which
implies that the current state is not known by the robot, and
actions must be chosen on the basis of imperfect information.
Therefore, actions taken by the robot will be conditioned on
an information space as opposed to the state space. This

information space concept has been adapted from stochastic
control (Kumar and Varaiya 1986) and dynamic game theory
(Ba§ar and Olsder 1982) to fit our particular context.

3.2.1. Sensor Observations

We begin by defining a general model of robot sensing. A
sensor can be viewed as a mapping from states onto sensor
values with potential interference that is caused by nature. At
every stage k, the robot makes an observation that is governed
by the equation

which we term the observation equation. A specific exam-
ple of an observation equation is given in Section 3.5. An
extension of this model could alternatively be defined that al-
lows delayed and correlated measurements (LaValle 1995),
but this will not be addressed in this paper.
The values Yk belong to a sensor space, denoted by Y. This

model indicates that the robot receives information at every
possible stage; however, this assumption can be relaxed. For
example, in visual servo control applications, the servo rate
for the robot joint controllers is typically much faster than the
sampling rate of the vision system (e.g., see Mahadevamurty,
Tsao, and Hutchinson 1994). It might also be the case that a
sensor only provides information at randomly chosen stages
(as is the case for the visual servo system reported in Feddema
and Mitchell 1989, in which the vision system’s sampling rate
varies according to the amount of processing required to track
moving objects in the scene).

For nondeterministic uncertainty, the set of possible values
for Xk after only observing can be determined from the
observation equation as

Under probabilistic uncertainty, we assume that p(Ol) is

known, and a pdf for Xk can be inferred, which is repre-
sented by P(~k ~ yk ). As a simple example, h could represent

a position sensor that measures Xk with Gaussian noise. If

h(Xk, 0() = Xk + Bk’ and p(O’) is a Gaussian density, then
p(~~ ~ I Yk) is Gaussian.

If Y = X, and hk is reduced to the identity map from X
to Y, then the sensing model reduces to perfect state infor-
mation. Equation (3) represents the output equation used in
control theory; it is also similar to the projection of world
states onto sensor values used in previous robotics contexts
(e.g., Donald and Jennings 1991).

3.2.2. History and Information

Several approaches to manipulation planning have incorpo-
rated sensor information. Erdmann (1993) presented an ap-
proach that yields motion strategies that are conditioned on
knowledge states. These knowledge states are inferred from
the sensing history and at a high level correspond closely
to using information feedback. In Latombe, Lazanas, and
Shekhar (1991), sensing and control history is used to infer
a subset of configuration space defined as a goal kernel in
which the robot can successfully switch between commands
in a multiple step plan or terminate in the goal region. In

Goldberg (1990), it is assumed that no sensor information is
available, and squeezing operations are conditioned on the
history of previous operations (which is equivalent to the
control history). Donald and Jennings ( 1991 ) have defined
perceptual equivalence classes that determine distinguishable
scenarios for a mobile robot based on its sensing history and
the projection from the configuration space onto the sensor
space.
The following definitions precisely describe the sensing

and action history available to the robot. For a given stage
k, let T/k denote some subset

The value 77k is a set of past actions and observations that
are known to the robot at stage k and is termed the in-
formation state. As an example, we could define a sen-
sorless robot as considered in Goldberg (1990) in which
?7k = {y,...,n~_1}.
The set of values that 77k can assume is denoted by Nk and

is termed the information space. We define an information
structure as the set of Nk for all 1 < k < K.

3.3. Representations of the Information State

In this section, we present alternative ways to interpret the
information space. Consider the case in which the robot has

perfect memory. Each 77k then corresponds to a complete
history of previous robot actions and observations. If U is

?~t-dimensional and Y is n2-dimensional, then in general the
dimension of Nk will be [k(nl + n2) + n2]. A space that
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grows significantly with each stage (and becomes infinite-
dimensional when K = oo) is very unappealing for design-
ing strategies.

3.3.1. The Case of Nondeterministic Uncertainty

An alternative to maintaining a growing history is to consider
subsets of X that represent the possible current states Xk for
a given information space value 77k- We will represent the
minimal subset of X that can be inferred from 77k as Fk(qk).
In other words, rik as Fk (77k) represents the set of all states Xk
that could possibly be the true system state, given the history
?7k - ·

The information state subset Fk+1 (rlk+1 ) can be deter-
mined from Fk(?7k) when uk and yk+1 are given. Initially, we
have F, (771) C X. Suppose inductively that we have Fk(77k)-
Recall from (2) that Fk+i (~. ~k) represents the possible val-
ues ~k+1 that could be obtained through a single application
of the state transition equation. We can define

Recall that 17k+l can be specified with 77k, uk, and ~+1.
Recall from (4) that F~(yk) denotes the set of possible values
for Xk after only observing Yk. By maintaining consistency
with the observation of yk+1, the following can be obtained:

which depends on (2) and (4). If the robot does not have

perfect memory, then the condition {17k, Uk} is replaced in
(7) by the appropriate subset of history.

3.3.2. The Case of Probabilistic Uncertainty

Under probabilistic uncertainty, the information state can be
considered as a conditional density on the state space, denoted
as p(~k ~ 1 17k). By using this approach, the information state
density p(~~:+i j rl~+~ ), can be determined from p(zk rlk)
when ~c~ and Yk+l are given. This observation allows the de-
velopment of several well-known stochastic control results,
such as the Kalman filter, when all densities in the information

space take some parametric form of fixed, low dimension.
We briefly indicate how the information state density is

obtained. These equations can be considered as probabilistic
versions of the nondeterministic results. Initially, we have
p(~1 ~ 1171). We can derive an expression for p(~k+1 ~ I 77k+l)
in terms of p(Xk r~k), ~k, and ~+1. Suppose inductively
that we have p(~k ~ rlk). First, consider the effect on the state
space of using the action uk . Using the density from the state
transition equation, we obtain, through marginalization with
respect to X~,

Recall from Section 3.1 thatP(~k+i ~ ~k, ~~) is inferred from
the state transition equation. Note that 71k+l can be specified
with ?7k, ~k, and yk+1. By using Bayes’s rule on X~+~ and
Yk+1, the following can be obtained:

which is a function of p(Yk+1 ~~+1 ), as defined in Section
3.2. A more detailed discussion of (9) can be found in Ku-
mar and Varaiya (1986). If the robot does not have perfect
memory, then the condition {r~k, Uk} is replaced in (9) by the
appropriate subset of history.

3.4. Strategy Concepts

3.4.1. Motion Strategies

At first it might seem appropriate to define some action Uk
for each stage. In general, due to the control uncertainty, it
is not possible to predict the trajectory of the robot for given
motion commands. It is therefore advantageous to allow the
robot to respond to information that becomes available during
execution.
We consider robot strategies for two cases: perfect infor-

mation and imperfect information. Suppose that the robot
has perfect state information. We can implement a state-
feedback strategy at stage k as a function 9k : X --> U. For
each state Xk, a strategy yields an action ~~ = gk(~k). The
set of mappings {91, g2, ... , gK } is denoted by g and termed
a (robot) strategy.

If the robot does not have direct access to state information,
its actions are instead conditioned on the information state.
In this case, we define a strategy at state k of the robot as a

function gk : 7V~ &horbar;~ U. For each information state 77k, a strat-
egy yields an action Uk = gk(r~~). In a sense, the &dquo;planning&dquo;
actually occurs in this information space. These strategy
concepts are equivalent to a feedback control law (Bertsekas
1987) and are similar to a conditional multistep plan in ma-
nipulation planning (Latombe, Lazanas, and Shekhar 1991).
We also define a strategy ~ye for nature. Since nature is con-

sidered as a decision maker that can interfere with the robot,
we allow nature’s actions to depend in general on the state
~~ and the action ~c~ of the robot. We can define a pure or

deterministic strategy for nature as a deterministic mapping
at each stage as 0 X x U - sa. Under nondetermin-
istic uncertainty, we will assume that nature implements a
deterministic strategy that is unknown to the robot. We will
use the notation r8 to refer to the space of strategies that are
available to nature under nondeterministic uncertainty.
Under probabilistic uncertainty, we consider a randomized

or mixed strategy for nature in which the action of nature
is represented by a pdf, p(0k) (or we can more generally
considerp(9k ~ ~,u~;)). The specific action of nature at stage
k is denoted by 6~, sampled from the random variable Sk.
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Therefore, the robot is given a pdf p(9k ) that characterizes the
action taken by nature at stage k. Although the randomized
strategy is known by the robot, the actions that will be chosen
are sampled from a random variable at each stage.

3.4.2. Termination Conditions

The decision to halt the robot has been given careful attention
in manipulation planning research, particularly when there is
uncertainty in the sensed current configuration. A motion
plan might bring the robot into a goal region (reachability),
but the robot may not halt if it does not realize that it is in
the goal region (recognizability) (Erdmann 1984). Under
nondeterministic uncertainty, it is said that a plan achieves a
goal if the robot is guaranteed to halt in the goal region. The
same concept is needed in our context; hence, we define a
termination condition TCk at each stage by a binary-valued
mapping

which is similar to the general form for the termination condi-
tion in Latombe, Lazanas, and Shekhar (1991). With perfect
state information, Nk is simply replaced by X in (10). We
require that if TCk = true, then TCk+l = true.

Let T C denote the complete specification of TCk for all k.
The termination condition is implemented so that the robot
terminates at some stage k < K + 1, making the specific
choice of K not important except that it be sufficiently large.
We will use the notation ~y to denote the pair (g, TC), which
can be considered as a strategy with termination condition.
This pairing is similar to the concept of a motion command as
defined in Latombe, Lazanas, and Shekhar ( 1991 ). We will
use the notation r to denote the set of all q that are available
to the robot. It can also been seen that the use of this termina-
tion condition in the determination of an optimal strategy is
equivalent to an optimal stopping rule (from optimal control
theory; Bertsekas 1987).

3.4.3. Loss Functionals

We encode the objectives that are to be achieved by a non-
negative real-valued functional

called the loss functional, which is assumed to be of a stage-
additive form that is often used in optimal control theory:

The first K terms correspond to costs that are received at
each step during execution of the strategy. The final term

Lx+1 is a final cost that can be used to indicate the impor-
tance of terminating in the goal. This form is quite general,
and facilitates the application of the dynamic programming
principle, as discussed in Section 6.

Next, we present two useful loss functionals. Let G C X
represent a goal region in the state space. The following loss
functional distinguishes only between success and failure to
achieve the goal:

Under probabilistic uncertainty, the evaluation of this crite-
rion under a given strategy yields the probability of success
(in the same manner that a 0-1 loss results in the probability of
an incorrect decision in Bayesian decision theory; Devijver
and Kittler (1982)).

Often, we will want to consider the cumulative cost of
executing motions. Under the bounded velocity assumption,
the following loss functional can measure the length of the
executed trajectory:

Above, l(~k, TCk) denotes the cost associated with taking ac-
tion ~k, and we require that l(Uk, TCk) = 0 if TCk = true.
Hence, loss does not accumulate after the robot has termi-
nated. We use Cf to express how important it is to achieve
the goal. If Cf becomes less than a typical aggregate action
cost that achieves the goal, then strategies will be preferred
that do not even expect to achieve the goal.

3.5. Specific Model Details

In this section, we present specific definitions of a state tran-
sition equation and an observation equation. These models
are inspired by those used in previous manipulation planning
research, and are used for our examples throughout this pa-
per. Variants of this model have been considered for object
manipulation tasks (Erdmann 1984) and mobile robot navi-
gation (Latombe, Lazanas, and Shekhar 1991). In general, a
variety of other types of models could be defined; however,
the present model facilitates the comparison with previous
motion planning research.

3.5.1. A Control Model

Suppose the robot is a polygon translating in the plane amid
polygonal obstacles. The action set of the robot is a set of
commanded velocity directions which can be specified by an
orientation, yielding U = [0, 2r). The robot will attempt to

 at UNIV OF ILLINOIS URBANA on September 8, 2010ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com/


26

move a fixed distance [ v ~ ~ Ot (expressed in terms of a con-
stant velocity modulus [ f II) in the direction specified by Uk.
The action space of nature is a set of angular displacements Bk
such that -Ee < 9~ <_ Ee for some maximum angle Ee. Un-
der nondeterministic uncertainty, any action 9k E [-co, Eel
can be chosen by nature. When using probabilistic uncer-
tainty, p(0§§ ) could be a continuous pdf, which is zero outside
of [-Ee, Eel.

There are several cases to consider in defining the state
transition equation f. Force compliant control is usually
permitted in manipulation planning, which enables the robot
to move along obstacle boundaries (Mason 1982; Paul and
Shimano 1976; Raibert and Craig 1981; Shan and Koren
1995; Whitney 1985), and we use the generalized damping
model, which has been considered most often in this context
(Latombe 1991; Whitney 1977). First, consider the state
transition equation when Xk E Cfree at a distance of at least
~ ~ ~ j j I l::1t away from the obstacles. If the robot chooses

action ~~ from state ~k, and nature chooses 01, then ~k+i is
given by

Let Ccontact represent the boundary of Cfree (hence, Ccontact =

Cvalid - Cfree). If ~k E Ccontact with a distance of at least
~ -u IIl:1t from the edge endpoints, then a compliant motion
is generated by using the generalized damper model (e.g., see
Whitney 1977) for certain choices of ~. If Uk points into
the obstacle edge with a sufficient angle to overcome friction,
then the robot moves a fixed distance parallel to the edge.
Otherwise, the robot either remains fixed or moves away into

Cfree. The remaining cases describe when the robot moves
from Cfree to Ccontact, from Ccontact to Cfree, or from one edge
in Cvalid to another. Note that in our model, nature repeatedly
acts at each time At, as opposed to only once as in Brost and
Christiansen (1996); Latombe, Lazanas, and Shekhar ( 1991 );
and Lozano-Perez, Mason, and Taylor (1984).

3.5.2. A Sensing Model

We now present a sensing model that is similar to that used
in Brost and Christiansen (1996); Erdmann (1984); and

Latombe, Lazanas, and Shekhar (1991). This sensing model
will be used in Section 6.6. The robot is equipped with a
position sensor and a force sensor. Assume that the position
sensor is calibrated in the configuration space, yielding values
in ~t2. The force sensor provides values in [0, 2~) U {0}, in-
dicating either the direction of force or no force (represented
by 0).
We consider independent portions of the observation equa-

tion : hP for the position sensor and hf for the force sen-
sor (which together form a three-dimensional vector-valued
function). We partition the sensing action of nature Bk into

subvectors O&dquo;P and 0&dquo;f, which act on the position sensor and
force sensor, respectively. The observation for the position
sensor is yr = hP(Xk, 6k’~) _ Xk + 9k’p. Under nonde-
terministic uncertainty, 0[&dquo;’ could be any value in 0~. If

probabilistic uncertainty is used, we could provide a density
for nature as

for some prespecified radius &euro;p, and B~’p is two dimensional.
For the force sensor, we obtain either ( 1 ) a value in [0, 2~r),

governed by yk = hf (x~, 6~’f ) = c~(x~) + 8Z’/, in which
x~ E Ccontact. and the true normal is given by a(xk), or (2)
an empty value 0 when the robot is in Ciree- When the robot
configuration lies in Ccontact and probabilistic uncertainty is
in use, then we might choose

for some positive prespecified constant e f < ~7r. We con-
sider the random variables of 8Z’P and 01’f to be independent
and identically distributed over all stages. In some applica-
tions, sensing errors might not be stage independent, in which
case these random variables become conditioned on sensing
and action history. Additional state parameters could also be
included that allow the sensing model to vary, although this
leads to higher complexity.

4. Forward Projections
In this section, we present forward projections for each of
the four uncertainty cases that are considered in this paper.
A forward projection is used to characterize the possible fu-
ture states under the implementation of a strategy from an
initial state. The forward projection concepts presented here
are based on forward projection concepts that have appeared
in manipulation planning research (Brost and Christiansen
1996; Erdmann 1984). In our work, the forward projections
result from the implementation of a strategy ~/. We conclude
this section by presenting some computed examples of for-
ward projections.

4.1. Nondeterministic Forward Projections

4.1. l. The Perfect Information Case

We use the notation FJ(XH g) to denote the minimal subset
of X that is guaranteed to contain ~ if the system begins in
state z, at stage i, and strategy g is implemented up to stage j.
Assume that some g is given, and that at stage k, the state

Xk is known. The action taken by the robot at stage k is
known to be ~~ = g~(~k). Therefore, we can write
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in which Fk+1(~~,~k) is given by (2). Although the action
is known, the resulting next state ~~+1 is nondeterministic
because of nature, 9k E 01.

Suppose that we wish to determine the outcome at stage
Xk+2 if we know ~~. From (2), we already know that ~~+1 E
Fk+1(~k~ t~). The nondeterministic action of nature at stage
k ~- 1 must be taken into account to yield

This forward projection can also be expressed with a set union
as

The forward projection for a finite number of stages from
stage 1 can be considered as an iterated union

which is an extension of (19). The projection from any stage
k to stage k + N can be similarly defined.
The next step is to include the termination condition to

determine a forward projection for -1 as opposed to g. Assume
that the robot remains motionless after TC becomes true.

Hence, the effect of the termination condition is equivalent
to considering the resulting location of the robot at stage K+ 1
(assuming that under all possible trajectories, the termination
condition was met before K+ 1 ). This results in FK+1 (~ 1, &dquo;Y),
which can be constructed by replacing g with q in eqs. (17)
to (20).
The classical reachability and recognizability concepts

(Erdmann 1993) can be defined using our framework. We say
that the goal is reachable at stage k under -y if Fk (~ 1, g) C G.
In other words, if the strategy is guaranteed to bring the robot
into the goal region for some k, then reachability at stage k
holds. We can also define a reachability that does not de-
pend on k. We can say that the goal is reachable if for every
possible state trajectory f xl, ... , ~x+1 ~ (under the imple-
mentation of a given g), there exists a k such that ~k E G.
A stronger condition is that the goal is recognizably

achieved under ~y, which means FK+I (~1, 7) C G. This
condition implies that the robot is guaranteed to terminate in
the goal region.

4.1.2. The Imperfect Information Case

The previous forward projection (20) provided a subset of X
in which the system state will lie after the execution of a strat-

egy. With imperfect sensing, we can consider the motions to

occur in the information space. In fact, we can consider the
information space as a new &dquo;state space&dquo; in which there is
perfect &dquo;state&dquo; information. For this reason, a forward pro-
jection can also be defined directly on the information space.

It is assumed for the forward projection that the history
has not yet been given. Suppose that an information state
?7k E Nk is given. Under the implementation of g, the action
Uk = 9k(T/k) is known.
We now define the information forward projection for a

single stage. This will be an intermediate concept that is
used to define the forward projection as a subset of the state
space. We have previously used F to represent a subset of X,
and we will use F to refer to a subset of the information space.
After applying an action ~ck and receiving sensor observation
yk+1, we obtain

which depends on (2) and (4), and Fk(1Jk) C X is the sub-
set representation of the information state from Section 3.2.
This yields the set of all next information states that share a
common history with the current information state, and are
consistent with the state transition equation and next sensor
observation.
To obtain the information forward projection from stage 1

to some stage k, we can iteratively apply (21).
The information forward projection can be mapped to sub-

sets of the state space. For a given F~ (r~l , g), the subset of X
in which the system state will lie is

The goal is reachable at stage k if the set defined in (22) is
a subset of G. As in Section 4.1.1, we can replace g with -y
in the above expressions to yield the forward projection with
termination condition FK+1 (r!1, ’Y). Hence, recognizability
can also be defined.

4.2. Probabilistic Forward Projections

We use the notation p(~~ ~ ~,5’) in this section to represent
the density that is obtained if the system begins at state z, at
stage i and strategy g is implemented. This density follows
directly from the state transition equation and the densities
for nature of the form p(Bk).

4.2.1. The Perfect Information Case

The following development parallels the development of the
forward projection in Section 4.1.1. Assume that some g is
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given, and that at stage k, the state Xk is known. The action
taken by the robot at stage k is known to be Uk = g~(~k).
Therefore, we can write

Recall from Section 3.1 that ~(xk+1 ~ x~, ~k) can be deter-
mined from the state transition equation.

Next, consider predicting the outcome at stage k + 2 if we
begin at stage k and apply g:

The result after applying two actions is a posterior density
on X.
The forward projection for a finite number of stages from

stage 1 results in the posterior

The projection from any stage k to stage k + N can be simi-
larly defined.
The next step is to include the termination condition to

determine a forward projection for q as opposed to g. We
can replace g with q in the conditions above and define
p(~x+i ~ I xi, 7) by using the assumption that the robot re-
mains motionless after the termination condition becomes
true.

We can now define probabilistic notions of reachability
and recognizability. The probability that the goal is reached
at stage k is given by

in which the region of integration is the goal region G C X.
The probability that the goal is recognizably achieved is

4.2.2. The Imperfect Information Case

In this section, we develop the forward projections for the
case in which there is probabilistic uncertainty in both sensing
and control. The forward projection for this case will be
considered as a density on X, which is conditioned on a

particular strategy and initial state (either ~1 or 111). This

density indicates where the robot will be likely to end up
when a fixed q is implemented, either after TC is satisfied

or at some specified stage. Note that we could also derive
P(~ ! y , ~y), resulting in a pdf on the information space.

At stage k, the density on X after starting at qi is given by

The first term in the integrand can be determined using (8).
Each of the remaining terms can be reduced to

This reduction occurs because most of the sensing and action
history appears on both sides of the density expression. The
right side of (29) can be further reduced to

in which all three terms in the final integrand are known. The
density p(yk+i x~+I ) is inferred from the sensing model;
p(~~+1 ~ ~~, ~k) is inferred from the control model; P(Xk [
77k) is the density representation of the current information
state.

To include the termination condition, we replace g by q
above to obtain p(~K+i ~ 7yi, ~y). Reachability and recogniz-
ability can be defined in a manner similar to that in Section
4.2.1.

4.3. Computed Examples

In this section, we present computed examples that illus-
trate the forward projection concepts. These forward pro-
jections are provided under the assumption that constant
motion commands are given to the robot. In other words,
some ~c E U is chosen, and a strategy is defined as qk = u
for all k E { 1, ... , K}. This will make the comparison of
our forward projections to previous research more clear. In
Section 6.6, we will present forward projections that are ob-
tained under the implementation of the optimal strategies, as
computed by our algorithms.
We have computed forward projection examples in a

straightforward way by using a discretized array represen-
tation for the state space. Under nondeterministic uncer-

tainty, this can be considered as a bitmap representation of
the forward projection. Under probabilistic uncertainty, the
representation approximates a pdf on X by using a fine grid.
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Fig. 2. Two examples that are considered in this section. The
obstacles in the workspace are indicated by gray regions, and
the black region represents the goal.

In the first step of the computation, the array is initialized
to reflect the uncertainty associated with the initial state. At
each additional step, the forward projection for the next stage
is represented in a new array, which is determined by apply-
ing the given strategy to the elements in the previous array
and using linear interpolation (in the implementation, only
two copies of the array are needed at any given time). We
have found this computational technique to produce reason-
able representations of forward projections.

For the examples that are considered in this paper, we as-
sume a two-dimensional, bounded state space (i.e., Cvjid C
~2), in which each coordinate is constrained to lie in the
interval [0, 100 ]. This could, for example, represent the
configuration space of a planar Cartesian manipulator with
two translational degrees of freedom. The obstacles in the
workspace will be indicated in figures by gray regions, and a
black region will represent the goal.
The first example is depicted in Figure 2a and can be con-

sidered as a configuration space representation of the classi-
cal peg-in-hole problem (e.g., see Erdmann 1984; Brost and
Christiansen 1996; Latombe, Lazanas, and Shekhar 1991;
Lozano-Perez, Mason, and Taylor 1984). The second ex-

ample is depicted in Figure 2b and is designed to spread the
possible locations of the robot over a large portion of the state
space. The initial configuration ~1 for these two examples
is (50,96). We use the control model that is discussed in
Section 3.5 and assume that [ t~ Ot = 3, which implies
that the robot is capable of moving three units at each stage.
We assume that the maximum angular displacement that can
be caused by nature is co = 48.8°. The given strategy is
qk = 2 2 7r for all k E {1, ... , K} (i.e., move down).

Figures 3 and 4 show forward projections under prob-
abilistic uncertainty. For these examples, we assume that
p(O’) is uniform on the interval [-ee, co]. Initially, the pdf is
sharply peaked; however, as control uncertainty accumulates,
the density becomes more diffuse. Whenever compliance is

possible, the density becomes narrower in the direction per-
pendicular to the edge. The compliant motions have the effect
of funneling the probability mass into smaller regions. The
pdf values become larger, since the density must integrate to
1. This effect can be seen in Figure 4, as a triangular obsta-
cle causes the probability mass to divide. In the final stages,
there is also a peaking effect; this corresponds to the robot
sticking at some final state. Maximizing the probability that
the goal will be achieved can be thought of as causing as
much of the probability mass to stay in the goal as possible.

5. Performance Preimages
In this section, we present performance preimages for each of
the four uncertainty cases considered in this paper. A perfor-
mance preimage describes a region in the information space
or state space from which the loss in achieving the goal lies
within a set of values. This concept generalizes the notion
of classical preimages to arbitrary performance measures, al-
though the preimages are defined in discretized time in our
framework. In the same way that classical preimages are
useful for evaluating a motion command, the performance
preimage is useful for evaluating a strategy. We conclude
this section by presenting some computed examples of per-
formance preimages and relating them to those in previous
literature.

5.1. Nondeterministic Performance Preimages
In this section, we assume that nature implements a deter-
ministic, unknown strategy 70, as defined in Section 3.4.

5.1. I. The Perfect Information Case

Suppose that the strategy for nature yo was given to the robot;
then, the loss that would be received by choosing robot strat-
egy 7 could be expressed as L(xl, q, -yo), since the state tra-
jectory can be deterministically predicted once ~1, ~/, and

70 are given. This in turn implies that the action sequence
Ui, tt2.... ~ uK can also be predicted. Since the strategy of
nature is not known by the robot, we define

which represents the maximum loss (given by the loss func-
tional) that the robot could receive under the implementation
of q from ~1. This corresponds to modeling nature as an
opponent, as is done in minimax design (Ba§ar and Kumar
1987).

Recall that the classical preimage is a subset of X from
which the robot is guaranteed to achieve the goal for a fixed
motion command. Suppose that we are evaluating the trajec-
tory of the robot with the loss functional (12) for a strategy
that consists of a fixed action repeated at every stage (which
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Fig. 3. The forward projection at several stages, under probabilistic uncertainty.

is equivalent to a fixed motion command). Elements z E X
such that L(xI’ q) = 0 correspond to locations in the state
space from which the robot is guaranteed to achieve the goal,
and hence lie in the classical preimage.

Next, we generalize this classical preimage. Note that

L(~1, ~y) can be considered as a real-valued function of zi for
a fixed &dquo;y. Consider some subset of the reals R C R. We
define the performance preimage on X as a subset of X that
is given by

The set *.,: (~y, R) C X indicates places in the state space from
which if the robot begins, the loss will lie in R.
We can consider partitioning X into isoperformance

classes by defining an equivalence class 7r~(~, {r}) for each
r E [0, oo). To shorten notation, we denote an isoperfor-
mance class ~x(~y, {r}) by 7r;c(~, r).

For the loss functional (12), *., (-y, 0) yields the classical
preimage. Under (13) and R = [0, m), we obtain a perfor-
mance preimage that indicates all xl E X from which the
loss is guaranteed to be less than m.

If we replace &dquo;’( with g and replace the condition &dquo;if xk+1 E
G&dquo; in (12) with &dquo;if xk E G for some k,&dquo; then 7r(~, 0) yields

a backprojection that is similar to that appearing in Erdmann
(1984).

5.1.2. The Imperfect Information Case

Let L(r~l , ’y, ~ye ) represent the loss that is obtained if the robot
implements &dquo;’( and nature implements q°. If ~1 cannot be

recovered from 7]1, &dquo;/, and 70, then L(r~l, ~y, q°) must be
considered as the supremum over all initial states that are
consistent with r~l, 7, and &dquo;’(°. The maximum amount of loss
that the robot could receive under the implementation of q
while starting from 7]1 is obtained by replacing ~1 with 7]1 in
(31). Note that in this case, &dquo;’(° represents both control and
sensing actions.
We define the performance preimage on N, as a subset of

Nl, denoted by 7r(~, R), which is given by replacing ~1 with
7]1 in (32).

5.2. Probabilistic Performance Preimages

In this section, we assume that nature chooses actions by sam-
pling from a known pdf p(0) which corresponds to a mixed
strategy.
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Fig. 4. The forward projection at several stages, under probabilistic uncertainty.

5.2.1. The Perfect Information Case

Suppose that we wish to evaluate some q = (g, TC) with
a given initial state xl. If 0 is given along with xl and a
strategy &dquo;y, the entire state trajectory Xl, x2, ... , xx+1 can
be deterministically specified. We can therefore specify the
loss for this trajectory as a function L(xl, ~y, B). This is true
because (1), (3), and Xk can be determined for every state
when the value of nature’s action 0 is given.
The expected loss that we incur if -y is implemented can

be expressed as

in which 0 represents the actions taken by nature over all
stages. The integral considers each possible action sequence
for nature 0 weighted by the probability density value p(O).
For any given 0 (along with q and ~1 ), the action sequence
{y, ... , ~x}, and state trajectory {~1, ... , ~x+1 } can be
completely determined, allowing the evaluation of the loss
functional.
We observe for a fixed q that L(~1, -y) can be considered

as a real-valued function of ~1. Consider some subset of the

reals R C R. We define the performance preimage on X as
a subset of X,

The set 7r x (-y, R) g X indicates places in the state space from
which if the robot begins, the expected loss lies within R.
We now describe some particular choices for R. Suppose

that R = [0, r] for some r > 0 (recall that L is nonnegative).
The performance preimage yields places in X from which
the expected performance will be better than or equal to r.
If R = {r}, for some point r > 0, we obtain places in X
in which equal expected performance will be obtained. We
can consider partitioning X into isoperformance classes by
defining an equivalence class 7rx(&dquo;’(, {r}) for each r E [0, oo).
The loss functional (12) implies that we are only interested

in achieving the goal without any notion of efficiency in the
actual robot trajectory. The loss L(xl, -y) in this case repre-
sents the probability that the goal will not be achieved using
q. We consider some 7rx(&dquo;’(, [0, r]) for r E [0,1] as a prob-
abilistic preimage on X. The probabilistic preimage thus
indicates places in X from which the goal will be achieved
with probability of at least 1 - r. Furthermore, if we re-
place &dquo;’( with g, and replace the condition &dquo;if ~~+1 E G&dquo; in
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(12) with &dquo;if Xk E G for some k,&dquo; then ~~(g, [0, r]) yields a
probabilistic backprojection quite similar to that appearing in
Brost and Christiansen (1996). We can also consider 1i&dquo; x (&dquo;’(, r)
as an isoprobability class. The isoprobability class 7T~(~,0)
corresponds to the classical preimage notion in which the
goal is guaranteed to be achieved. However, in our case, it is
more appropriate to claim that the goal will be achieved with
probability 1.

5.2.2. The Imperfect Information Case

The imperfect information case can be obtained by replacing
zi with &dquo;11 in (33) and (34) to define L(&dquo;1t,&dquo;’() and Tr(-y, R)
in a manner similar to the imperfect information case with
nondeterministic uncertainty.

5.3. Computed Examples
In this section, we present several computed preimages. As
in Section 4.3, these results are provided under the assump-
tion that constant motion commands are given to the robot.
This will make the comparison of our preimages to previous
research clearer, and in Section 6.6 we will show preimages
that are obtained under the implementation of the optimal
strategies, as computed by our algorithms.

These examples were computed using the techniques that
will be presented in Section 6. We begin the examples by
returning to the peg-in-hole problem, which was discussed
in Section 4.3. Suppose that the fixed action is ~7r and that
the maximum angular displacement EB is 14.3°. We will

use (12) for all of the examples in this section, since we
have observed that (13) produces very similar curves under
fixed motion commands; when considering optimal strate-
gies, however, the difference between the two loss functionals
becomes much more significant.

Figure 5a shows a performance preimage under nondeter-
ministic uncertainty. The subset of the state space that is

below the curve corresponds to places in the state space from
which the goal is guaranteed to be achieved. Note that this
result does not depend on [ r j) At; this is because with
nondeterministic uncertainty, the robot configuration can lie
anywhere within the cone generated from the initial state and
±&euro;~. The curve shown in Figure 5a corresponds closely to the
classical preimage that has been determined for this problem
in previous manipulation planning research (Erdmann 1984;
Latombe 1991).

Figure 5b shows probabilistic backprojections which are
quite similar to those in Brost and Christiansen (1996). We
assume that p(0~) is uniform on the interval [&horbar;&euro;~,6~], and
ee = 48.8°. We assume that [ v II At = 200, and let
K = 1. There is only one decision-making stage, and the
robot can move enough distance to accomplish the goal in
a single stage. The figure shows isoprobability curves from

7~(0.2) to 7rx(0.9), at evenly spaced probability values. The
innermost curve represents 7r(0.2).
The remaining examples show performance preimages for

cases in which there are not similar results in the literature.

Suppose that instead of using a uniform density for con-
trol error, a zero-mean, truncated Gaussian density is used.
The resulting performance contours are shown in Figure 5c.
Again, we show the preimages from 7~(0.2) to 7~(0.9) at
evenly spaced probability values. In general, we can sub-
stitute any density into the model and observe the resulting
preimages.

For the remaining examples in this section, we use prob-
abilistic uncertainty and assume that p(O’) is uniform on the
interval [-eo, co], and co = 48.8°. We also assume that
~ ~ v II [ At = 3, which implies that the robot moves only a
small amount before additional control uncertainty is added.
Figure 5d shows the resulting contours (with the same preim-
age values as used previously).
We conclude this section with two additional examples

of probabilistic preimages, which are depicted in Figures 6a
and 6b. These examples differ from the previous example
because the configuration space obstacles are more complex.
We assume that the initial state and fixed motion command are
the same as used in the previous example. In these examples,
the curves appear to be separated around obstacle boundaries
due to the effects of compliant motion. For instance, in Figure
6a, the curves are separated because of compliant motions
on the top part of the triangular obstacle. Although there
is significant uncertainty in control, the edge of the triangle
guides the robot into the goal region, significantly reducing
the expected loss.

6. Designing Optimal Strategies
Sections 4 and 5 have presented methods that evaluate a
given strategy. In this section, we define concepts of op-
timality, present a computational approach that selects an
optimal strategy, and show computed examples.

6.1. Defining Optimality

The design problem is to select the most desirable strategy
~y* from the space of allowable strategies r. Under nonde-
terministic uncertainty, nature is considered as an opponent
with diametrically opposed interests; therefore, a strategy is
selected that minimizes the maximum amount of loss that
could result from the strategy of nature. Under probabilistic
uncertainty, the actions of nature can be characterized with
probability densities; hence, a strategy is selected that mini-
mizes the expected amount of loss.
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Fig. 5. Several computed performance preimages.

Fig. 6. Two computed performance preimages. In these examples, the obstacles displace the curves.
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6.7.7. Optimality under Nondeterministic Uncertainty

6.1.1.1 I Perfect Information

Recall that rO denotes the space of deterministic strategies
for nature when nondeterministic uncertainty is considered.
Under perfect information and nondeterministic control un-
certainty, the ideal choice for a strategy 7* E r satisfies

for all ~1 E X. This indicates that from any initial state, the

strategy will guarantee the least possible loss given the worst-
case actions of nature. This concept has been used previously
to design controllers based on worst-case analysis (Ba~ar and
Kumar 1987).

If we use the loss functional (12), the space of strategies
r can be partitioned into two equivalence classes: those that
are guaranteed to achieve the goal (resulting in a worst-case
loss of zero) and those that may fail to achieve the goal (re-
sulting in a worst-case loss of one). Any strategy in the first
equivalence class satisfies (35) and directly corresponds to
the common approach in previous manipulation planning re-
search of selecting a strategy that is guaranteed to achieve
the goal. By using another loss functional, such as (13), (35)
can be considered as partitioning r into many more classes;
this induces preferences on the set of strategies that achieve
the goal.

6.1.1.2 Imperfect Information

The imperfect information case can be obtained by replacing
~1 with qi in (35) to define L(rh, ~*).

6.1.2. Optimality under Probabilistic Uncertainty

6.1.2.1 I Perfect Information

Recall that the actions of nature can be partially predicted
through the specification of a pdf p(9) in which 9 represents
the action Bk of nature at every stage.
Under perfect information and probabilistic control uncer-

tainty, the design task is to select a strategy V E r such
that

for all ~1 E X. This corresponds to selecting a strategy that
minimizes the loss in the expected sense, as considered in
stochastic optimal control theory.

6.1.2.2 Imperfect Information

Under imperfect uncertainty, ~1 is replaced with qi (36) to
define L(r~l , -y*).

6.2. The Principle of Optimality
One powerful tool that underlies many of the solution tech-
niques for dynamic decision-making problems is dynamic
programming. The key is the principle of optimality, which
states that an optimal solution can be recursively decomposed
into optimal parts. In general, this optimization concept has
been useful in a variety of contexts, both for producing ana-
lytical solutions and for numerical computation procedures.
The class of problems that can be analytically solved by us-

ing the principle of optimality is fairly restrictive, and there
has been much focus on numerical dynamic programming
procedures (Bertsekas 1987; Larson 1968; Larson and Casti
1982). Bertsekas (1987) considered solvable problems to
typically be an exception in applications. In both control

theory and game theory, the classic set of problems that can
be solved are those with a linear state transition equation and
quadratic loss functional (Anderson and Moore 1990; Basar
and Olsder 1982; Bryson and Ho 1975). As an example, the
principle of optimality forms the basis of the analytic solu-
tion to the linear-quadratic Gaussian (LQG) optimal control
problem.

6.2.1. The Nondeterministic Case

6.2.1.1 Perfect Information

Suppose that for some k, the optimal strategy is known for
each stage i E I k, ... , K}. The optimal worst-case loss ob-
tained by starting from stage k and implementing the portion
of the optimal strategy 17k*, ... , 7k } can be represented as

in which re refers to the set of possible choices for &dquo;’(°. We use
~yz (~Z) to represent the simultaneous choice of u* and TC;.
Recall that under the implementation of a strategy, the state
trajectory depends on the actions chosen by nature; therefore,
the expression in the sup depends on nature. The function
L~(~~) is sometimes referred to as the cost-to-go function in
dynamic optimization literature (Bertsekas 1987).
The principle of optimality (Ba§ar and Olsder 1982) states

that ~k(~k) can be obtained from ~k+1 (Xk+l) by the follow-
ing recurrence:

Recall that f (~~, Uk, Bk) represents ~~+1, and hence this de-
fines a recursion. We assume that termination is implicitly
included as a possible choice.
The goal is to determine the optimal action ~~ and ter-

mination condition TCk for every value of Xk and every
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stage k E { 1, ... , K). One can begin with stage K + 1
and repeatedly apply (38) to obtain the optimal actions.
At stage K + 1, we can use the last term of (12) to ob-
tain ~K+i (~x+i ) - lx+i (~x+1 ). The cost-to-go Lk
can be determined from LK+1 through (38). Using the
UK E U and TCk that minimize (38) at XK, we define

7~(~~’) = JUK, TCKI. We then apply (38) again, using
L* K to obtain LK_1 and -yk -1. These iterations continue
until k = 1. Finally, we take -y* = {&dquo;’(i,... , ~yK}.
The cost-to-go function L* shares similarities with the

concept of a global navigation function in motion planning
(Latombe 1991; Rimon and Koditschek 1992), as both repre-
sent functions on the configuration space that can be used to
control the robot. Also, various forms of dynamic program-
ming have been successfully applied in several other mo-
tion planning contexts (Barraquand and Ferbach 1994; Hu,
Brady, and Probert 1991; Miura and Shirai 1991; Suh and
Shin 1988); for instance, the wavefront expansion method
that is described in Latombe (1991) can be viewed as a spe-
cific form of dynamic programming.

Recall that because of stationarity, the strategy qk does
not depend on the stage index k for the problems that we
consider.

6.2.1.2 Imperfect Information

We now describe how the dynamic programming equation
is applied under nondeterministic sensing and control uncer-
tainties. From a given information state, we wish to evaluate
a partial strategy from stage k to stage K. Previously, we used
the notation L~(~k) to evaluate a part of an optimal strategy
from a given state. Using the information state representation
Fk(?7k), which was defined in Section 3.3, we have

We want to consider the effect of selecting -Yk(?7k) in the
information space ?7k. This results in Fk+1(~1k+1)~ ~ defined
in (17). We additionally assume that the per-stage loss does
not depend on state l(~~, Uk, TCk) = l(Uk, TCk), which en-
compasses the loss functionals that we have considered thus
far (this assumption is not required in general).
The dynamic programming principle states that ~~ (r~k ) can

be obtained from ~~+1 (r~k+i ) by the following recurrence:

in which L~(r~k) represents the optimal worst-case loss, ob-
tained by implementing the optimal strategy 7* from stage k
to stage K + 1.

At stage K + 1, we can use the last term of ( 11 ) to obtain

6.2.2. The Probabilistic Case

6.2.2.1 Perfect Information

Next, we present the principle of optimality under probabilis-
tic control uncertainty. The resulting equation can be applied
in the same iterative manner to obtain an optimal solution.
The expected loss obtained by starting from stage k and im-

plementing the portion of the optimal strategy 1-yk* ...... ~yK}
can be represented as

in which E{} denotes expectation taken over the actions of
nature.

The principle of optimality (Kumar and Varaiya 1986)
states that lg(zk ) can be obtained from Lk+1(~~+1) by the
following recurrence:

Note that the integral is taken over states that can be reached
using (1).

6.2.2.2 Imperfect Information

We now describe how the dynamic programming equation
is applied under probabilistic sensing and control uncertain-
ties. From a given information state, we wish to evaluate a
partial strategy from stage k to stage K. Previously, we used
the notation L¡(Xk) to represent the expected loss of execut-
ing a partial, optimal strategy from a given state. Using the
information state density ~(~k ~ r~k) on X, we have

We also consider the one-stage expected loss associated
with taking an action, from a given information state, ?7k:

This is the expected loss that will be incurred if an action
~ck and TCk are taken from state r)k, resulting in some 1]k+l.
The integral of (45) is determined from (11) and (9). Using
the previous notation, the dynamic programming principle

 at UNIV OF ILLINOIS URBANA on September 8, 2010ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com/


36

states that 1g(qk ) can be obtained from Lk+1(rlk+1) by the
following recurrence:

Above, p(r~~+1 ~ ~A:.7A:(~)) is determined by replacing 9
with -y in (29).
At stage K + 1, we can use the last term of ( 11 ) to obtain

6.3. Approximating the State Space

We determine optimal strategies numerically by successively
building approximate representations of Lg over the state
space. A uniform grid is used to closely approximate Lk.
(Note that the use of a hierarchical representation is more
difficult in this context than in traditional path planning.) We
obtain the value for Lg(zk) by computing the right side of
(38) (or the appropriate dynamic programming equation) for
various values of Uk and TCk and using linear interpolation.
Other schemes, such as quadratic interpolation, can be used
to improve numerical accuracy (Larson and Casti 1982).

Note that the LK represents the cost of the optimal one-
stage strategy from each state ~. More generally, LK_z
represents the cost of the optimal i + 1 stage strategy from
each state XK-,. For a motion planning problem, we are
concerned only with strategies that require a finite number
of stages before terminating in the goal region, and assume
that stationarity holds, as discussed in Section 3.4. We select
a positive 6 = 0 and terminate the dynamic programming
iterations when IL¡(Xk) - L¡+1 (xk+dl < b for all values

in the state space. The resulting strategy is formed from
the optimal actions and termination conditions in the final
iteration. Note that no choice of K is necessary. Also, at
each iteration of the dynamic programming algorithm, we
retain only the representation of L~+1 while constructing i g ;
earlier representations can be discarded.
To execute a strategy, the robot uses the final cost-to-go

representation, which we call Li . The robot is not confined
to move along the quantization grid that is used for deter-
mining the cost-to-go functions. The optimal action can be
obtained from any real-valued location x E X through the
use of (38) (or the appropriate dynamic programming equa-
tion), interpolation, and the approximate representation of
Li . A real-valued initial state is given. The application
of the optimal action will yield a new real-valued configu-
ration for the robot. This form of iteration continues until

TCk = true.

6.4. Approximating the Information Space

With sensing uncertainty, planning occurs in the information
space, which is generally of a much higher dimension than
the state space. This section discusses trade-offs between
the computational expense and the quality of information
space approximations. Many issues exist that may cause
one method to be preferable over another. In the current

implemented examples, which are presented in Section 6.6,
we limit the history to the past sensor observation. This
results in sensor feedback, which is similar to the approach
used in Erdmann (1993).

These approximation techniques can be used in combi-
nation with interpolation, which was discussed in Section
6.3. Strategies are determined, however, by successively
building cost-to-go functions on the information space, as
opposed to X.

6.4.1. Limiting History

As defined in Section 3.2, ?7k is defined as a subset of the
sensing and action history. One straightforward way to keep
the information space dimension fixed is to limit the amount
of history that is remembered. For instance, we can maintain
i stages of history to obtain

If i = 0, then only the last sensor observation can be retained
for decision making, which results in a sensor-feedback strat-
egy. If position sensing is used along with a directional force
sensing, then the information space is reduced to having one
more dimension than the state space.

6.4.2. Introducing Statistics

A more general way to reduce the information space com-
plexity is to transform the history into a lower dimensional
space. This technique encompasses the history limiting ap-
proach. An ideal situation exists when an information space
can be transformed using a low-dimensional sufficient statis-
tic (Duda and Hart 1973; Kumar and Varaiya 1986). A suf-
ficient statistic implies that any decision that is based on the
complete history can equivalently be made by considering
only the statistic.

In general, a transformation of the form

is applied to the history. The information space Nk as defined
in previous sections can be replaced by the statistic space Zk
for which E Zk. Strategies are then defined Zk, and dy-
namic programming can again be applied to yield solutions.
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6.4.3. Functional Approximation with Moments

One special type of statistic that can be used to approximate
the information spaces is the set of moments. Suppose there
is probabilistic uncertainty and the information space is rep-
resented as a function space of pdfs. Moments can be used
as statistics that summarize the information in the pdfs. Con-
sider, as an example, a second-order approximation. Recall
from Section 4.2.2 that from any sensing and action history
(i.e., {ui, U2t .... 2G/~-1, YI, !/2.....~}). the pdf on the state
space can be inferred, p(~k ~ rik). Let J.1.k and Ek repre-
sent the mean vector and covariance matrix, respectively, of
p(~k ~ I 77k). From any history, we can now obtain the mo-
ments ~c~ and £k .

If rik are -Yk(77k) given, recall that a density for the next
information state p(rik+i ~ I rl~,7k(~1k)) will be obtained.
This was used in (46) as part of the principle of optimal-
ity, which can be used to compute an optimal strategy. When
using moments, we can replace p(T/k+1 ~.7A:(~)) with
P(ILk+l, ~k+i ~ I J.1.k, Ekt ’Yk(ILkt Ek)) in (46). This can be

used to determine optimal strategies from moments (optimal
on the approximated information space).
An information feedback strategy ̂ tk(71k) is then replaced

by a moment feedback strategy -y~(~k, Ek). The hope in
using moment approximation is that ~yk(rik) -: -Yk*(Pk, Ek)
for all ?7k E Nk.

6.5. Computational Performance

We briefly discuss the computational performance of the dy-
namic programming computations. Let Q denote the number
of cells per dimension in the representation of Cfree. Let n

denote the dimension of the information space (which be-
comes the dimension of the state space in the case of perfect
information). Let U ~ denote the number of actions that
are considered. Let I 8 denote the number of actions that
are considered by nature. The space complexity of the algo-
rithm is O( Qn), which is proportional to the size of the state
space. For each iteration of the dynamic programming, the
time complexity is O(Q’~ ~ U ~ ~ 8 1). and the number of iter-
ations is proportional to the robot velocity and the complexity
of the solution strategy. The number of iterations required
is directly proportional to the number of stages required for
the longest (in terms of stages) optimal strategy that reaches
the goal. The computation at each cell (in the application of
(38)) has time complexity 0(1 U ~ ~ 8 1). with n fixed. This
analysis assumes constant time for interpolation; typically,
however, the interpolation complexity itself is exponential in
dimension.
The computational cost of dynamic programming in-

creases exponentially in the dimension of the state space
for perfect information and the information space for imper-
fect sensing; however, most algorithms that solve the basic

motion planning problem without sensing and control un-
certainty have exponential complexity in the dimension of
the configuration space (for surveys and comparisons, see
Hwang and Ahuja 1992; Latombe, 1991). We consider
the current approach to be reasonable for a few dimensions,
which includes many interesting motion planning problems.
For more difficult problems, some additional computational
techniques may need to be developed.

In our simulation experiments, we have considered prob-
lems in which X C R2. We typically divide the state space
into 50 x 50 cells, 64 quantized actions to approximate trans-
lational motion. We have considered similar quantizations
of the information space under sensor feedback.
The computation times vary dramatically depending on the

resolutions of the representation. For the examples that we
present in this paper, the computation times vary from about a
few minutes to a few hours on a SPARC 10 workstation. It is

important to note that the dynamic programming equations
are highly parallelizable. For example, under probabilistic
uncertainty with perfect state information, the computation
of the optimal action at each location zk depends only on a
very local portion of the representation of L~+1 (~k+1 ) and
on no portion of Lk(~k). A parallelized implementation of
the algorithm would significantly improve performance.

6.6. Computed Examples

In this section, we present computed examples of optimal
strategies that were determined by the computational meth-
ods discussed in Section 6. For these strategies, we show
forward projections and preimages that can be compared to
the results in Sections 4.3 and 5.3.

For the results in this section, we used the loss functional
(13) with l(Uk, TCk) =11 v II [ At and cj = 10, 000. We have
found the loss functional (12) to not be as useful for deter-
mining optimal strategies. For most problems, the cost-to-go
is zero at every state from which it is possible to achieve the
goal. Therefore, there are many strategies that are considered
equivalent, while in reality the expected time (or worst-case
time) for some of the strategies to achieve the goal may be ar-
bitrarily longer. For fixed motion commands, however, (12)
provided useful information because a strategy was chosen
that in many possible trajectories did not achieve the goal.

For the first example, we refer back to the peg-in-hole
problem that was introduced in Section 4.3. We assume, as
considered previously, that I I v I At = 3 and ee = 48.8°.
Figures 7a and 7b show computed results that were obtained
under probabilistic uncertainty with perfect state informa-
tion. Figure 7a depicts the optimal strategy by showing the
direction of the motion command Uk = ~~(~~) at different
locations in the state space. Figure 7b shows isoperformance
classes for every six units (i.e., there is a contour for every
two expected stages of motion). This can be compared to the
preimage results from Section 5.3; under the implementation
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Fig. 7. Optimal strategies and performance preimages for the
peg-in-hole problem under probabilistic control uncertainty
and nondeterministic control uncertainty.

of the optimal strategy, the curves emanate radially from the
goal region.

Figures 7c and 7d show computed results that were ob-
tained under nondeterministic uncertainty with perfect state
information. The isoperformance curves are closer together
because worst-case analysis causes the computed loss to be
greater.

Figure 8 shows several more computed optimal strategies
for probabilistic uncertainty with perfect state information.
We assume for each of these examples that j j v II At = 3
and Ee =48.8°.

Figure 9 shows the computed optimal strategies for prob-
abilistic uncertainty with imperfect state information. We
assume for each of these examples that ~ ~ v ~ ( At = 3 and
co = 48.8°. We used the sensing model from Section 3.5
and let ep = 5 and e f = 0. Without perfect sensing, the
expected time to reach the goal increases, which causes the
isoperformance curves to be closer together. In addition, the
sample paths under the implementation of the optimal strate-
gies involve more variations.
The strategy representation and the isoperformance curves

in Figure 9 do not align completely with the obstacles in the
workspace because the optimal actions and isoperformance
curves are defined in the information space. For these ex-

amples, the information space is represented by the set of

possible sensor values. Sensed force values are not shown in
the figures.

Figure 10 shows computed optimal strategies for non-
deterministic uncertainty with imperfect state information.
A solution strategy could not be found using the same un-
certainty models as for the probabilistic case. This occurs
because worst-case analysis eliminates the consideration of
many reasonable strategies, as mentioned in Section 2. We
therefore use 11 v 11 At = 10, Ee = 0.8, Ep = 2.5, and

E f = 0. The isoperformance curves are shown for every 30
units of loss.

7. Discussion

In this section, we briefly discuss some aspects of the current
framework and future directions that could be taken with this
research.

7.1. Randomized Strategies

In Erdmann (1989, 1992, 1993), useful manipulation plan-
ning methods were developed around randomizing the ac-
tions of the robot. It is important to note that in our work
the robot strategy is deterministic even though the execu-
tion of the strategy can be considered as a random process.
Erdmann has argued that two important benefits result from
using randomized strategies: (1) robustness with respect to
incorrect models can be obtained and (2) multiple attempts
can be made to solve a task instead of requiring a guaranteed
solution.

By conditioning our strategies on state feedback or infor-
mation feedback, the robot is capable of making multiple
attempts to solve a task. In a motion planning context, one
can imagine a robot that attempts to execute a motion plan,
reports failure, and then replans to make another attempt;
this behavior is exhibited in the error detection and recovery
strategies in Donald (1987, 1988, 1990). An &dquo;attempt&dquo; is
not as distinct in our approach, however, because the robot
responds dynamically to its information. Rather than recom-
puting a new strategy, the response corresponds to the optimal
behavior that was determined through global analysis of the
motion planning problem and its uncertainties.

Robustness with respect to incorrect modeling represents
a useful feature, which has not been considered by our frame-
work thus far. In the approach that we present, the assumption
is made that the models are correct. Under nondeterministic

uncertainty, the correctness of the model can become critical
since it then becomes impossible to &dquo;guarantee&dquo; a particu-
lar loss (unless the model truly represents an upper bound on
the uncertainty). Under probabilistic uncertainty, the effect of
modeling errors appears to be less drastic. One difficulty with
introducing randomization is that it can arbitrarily increase
the loss required to complete the goal even though robust-
ness is strengthened. In the limiting case, pure Brownian
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Fig. 8. Examples that were computed under probabilistic uncertainty and perfect state information.

motion can be executed. This essentially makes no model-
ing assumptions and will achieve the goal, but the loss can be
extremely high. It remains to be seen whether randomized
actions can be incorporated into our framework to provide a
reasonable trade-off between the distance of a strategy from

optimality and the potential incorrectness of the models.

7.2. Hierarchical Strategies

In the methods developed in this paper, the robot executes
a fixed command at each At. In traditional preimage plan-
ning, however, a fixed action is executed until the termination
condition is met. If the goal is not yet reached, another ac-
tion is executed. In general, a sequence of fixed actions with
termination conditions is executed until the goal is reached.

Recall that the performance preimage can be used to eval-
uate a particular strategy. One interesting approach would be
to implement preimage backchaining and subgoals by perfor-
mance preimages. We can define G1 as a subgoal for a larger

problem, and define a g and TC that achieves Gt in a satis-
factory way. The resulting posterior density p(XK+t) would
be used as the initial information state for the achievement
of a second goal G2. We can consider abstract actions of
the form ~G2, q) that attempt to achieve some original goal.
Backchaining from G under explicit performance measures
and a given set of choices for abstract actions is another form
of dynamic programming. The relationship between standard
preimage planning and dynamic programming is discussed in
Erdmann (1993). The reason for considering abstract actions
and subgoals is the hope that a simple set of abstract actions
exists that can be composed to provide quick and efficient
solutions for a wide class of problems (as was the case with
backprojection planning (Erdmann 1984).

7.3. Determining Accurate Uncertainty Models

The flexibility of our approach permits the use of a variety
models for sensing and control uncertainty. In many previ-
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Fig. 9. Examples that were computed under probabilistic uncertainty and imperfect state information.

ous approaches, the results were strongly dependent on the
particular model chosen. For instance, worst-case analysis in
the backchaining approach has often used bounded disk un-
certainty for position and bounded angular error for control
uncertainty. With our approach, one important area of fu-
ture research is to develop models that accurately reflect the
uncertainty involved in a particular manipulation task. This
is particularly true for the case of probabilistic uncertainty.
The densities hold a large amount of expressive power; how-
ever, simple models are often chosen to obtain reasonable
results. Within our framework, different uncertainty mod-
els can be substituted and, through simulations or repeated
execution trials, better uncertainty models could be devel-
oped for a particular context. This direction of research was
also advocated in Brost and Christiansen (1996) to determine
valid error distributions for the computations of appropriate
probabilistic backprojections.

7.4. Sampling Issues

One important issue that has received little attention in ma-
nipulation planning literature is the sampling rates that are
available for sensing and control. In the typical preimage

planning formulation, the robot is allowed to issue a new
command at any point in time, implying continuous-time
controllability of the robot. The robot command is changed,
however, only during the few occurrences of meeting the
termination condition. In this paper, we have assumed a

sampling rate that essentially approximates continuous-time
control and sensing. By allowing the motion command to
change at any discrete stage, we obtain a significant amount
of control over the robot in the face of uncertainty. One use-
ful approach might be to consider a much lower sampling
rate. This models the situation in which fine motions are per-
formed before additional sensing or a new control input can
be applied. This seems to appropriately reflect a situation
in which the planning workspace is very small, such as in a
part-mating operation.

8. Conclusion

We presented a flexible framework for manipulation planning
under uncertainty in which motion strategies are selected to
optimize a loss functional. We have indicated through the dis-
cussion and simulation experiments that the efficiency of a
robot motion strategy is crucial in planning under uncertainty.
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Fig. 10. Examples that were computed under nondeterminis-
tic uncertainty and imperfect state information.

We have developed a performance preimage as a useful con-
cept for evaluating motion strategies, which generalizes the
classical preimage. This work identifies termination criteria
with optimal stopping problems from optimal control the-
ory and allows the incorporation of a termination condition
into the optimal strategy. We apply information space con-
cepts from stochastic control and dynamic game theory to
incorporate history into a motion strategy with uncertainty in
sensing. We additionally provide a computational approach
that numerically determines optimal motion strategies un-
der a wide class of performance functionals by applying the
dynamic programming principle to approximate stationary
cost-to-go functions and illustrate the concepts through com-
puted examples. One of the most important directions for
future research will be to investigate different methods of
approximately representing the information space.
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