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APPENDIX I1 

E(YJ = Y i  

E(X?) =x i ‘+d  
E(Y,z) = y ? + d  

E(X,ZY?) = $y,Z + (x?+y?)d + d 
E(X,ZY;) = xi’y; + y i d  

E ( X f )  
E ( Y f )  

= xf + 6x?d + 304 
= yf + 6y?d  + 3 d  

2 +kv2: 

E ( A N ) = M + ( l  + k ) d  
1 N  E(BN) = M 2  +-x, (6x: +6y: +2k(x? +y;))02 +(3+3k2 +2k)04 N 1=1 

From the last equation we see that E(BN) - (E(AN))2 is positive. Sec- 
ond, we can continue the calculations for E(&): 

E(BN) - 4 d S ~  = E 2 ( A ~ )  - 2( 1 + P)04 
But AN +,,,?(AN) and therefore 

2(1 + k2)Z2 - 4SNZ+ (BN - A i )  + 0 

where Z = d. Solving the quadratric in d and taking the positive 
square root as d must be positive gives the result. 

,? +kv=M:  

Continuing as in the last case we get the final result. 

REFERENCES 

[ I ]  

[2] 

[3] 

[4] 

R. Duda and P. Hart, Pattern Classification and Scene Analysis, Wiley, 
1973. 
H. Imai, K. Kato, and P. Yamamoto, “A linear time algorithm for linear 
11 approximation of points,” Algorithmica, vol. 4, pp. 77-96, 1989. 
C.H. Kummel, “Reduction of observed equations which contain more 
than one observed quantity,” The Analyst, vol. 6, pp. 97-105, 1979. 
A. Madansky, “The fitting of straight lines when both variables are 
subject to error,” Amer. Statistical Assoc. J . ,  vol. 54, pp. 173-205, 
1959. 

[5 ]  P.A.P. Moran, “Estimating structural and functional relationships,” J.  of 
Multivariate Analysis, vol. I ,  pp. 232-255, 1971. 

[6] F.P. Preparata and I.M. Shamos, Comptational Geometry, New York: 
Springer-Verlag, 1985. 

[7] A. Stein and M. Werman, “Finding the repeated median regression 
line,” Third Symp. on Discrete Algorirhms, 1992. 

[8] A. Stein and M. Werman, “Robust statistics in shape fitting,” CVPR, 
pp. 540-546, Champaign, Ill. 1992. 

[9] A. Wald, “Fitting of straight lines if both variables are subject to error,” 
Annals qfMuth. Statistics, vol. 1 I ,  pp. 284-300, 1940. 

[IO] M. Werman, A.Y. Wu, and R.A. Melter, “Recognition and characteri- 
zation of digitized curves,” Pattern Recognition Letters, vol. 5, pp. 

.. 

207-213, 1987. 

0 162-8828/95$04 

A Bayesian Segmentation Methodology 
for Parametric Image Models 

Steven M. LaValle and Seth A. Hutchinson 

Abstract - Region-based image segmentation methods require some 
criterion for determining when to merge regions. This paper presents a 
novel approach by introducing a Bayesian probability of homogeneity in 
a general statistical context. Our approach does not require parameter 
estimation and is therefore particularly beneficial for cases in which es- 
timation-based methods are most prone to error: when little information 
is contained in some of the regions and, therefore, parameter estimates 
are unreliable. We apply this formulation to three distinct parametric 
model families that have been used in past segmentation schemes: im- 
plicit polynomial surfaces, parametric polynomial surfaces, and Gaus- 
sian Markov random fields. We present results on a variety of real range 
and intensity images. 

Index Terms - Statistical image segmentation, Bayesian methods, 
likelihoods, Bayes factor, range images, Markov random field, texture 
segmentation. 

I.  INTRODUCTION 
The problem of image segmentation, partitioning an image into a set 

of homogeneous regions, is fundamental in computer vision. Ap- 
proaches to the segmentation problem can be grouped into region-based 
methods in which image subsets are grouped together when they share 
some property (e.g., [26]); edge-based methods, in which dissimilarity 
between regions is used to partition the image (e.g., [9]); and combined 
region- and edge-based methods (e.g., [22]). In this paper, we present a 
new, Bayesian region-based approach to Segmentation. 

A standard approach to region-based segmentation is to character- 
ize region homogeneity using parameterized models. With this ap- 
proach, two regions are considered to be homogeneous if they can be 
explained by a single instance of the model, i.e., if they have a com- 
mon parameter value. For example, in range image applications, ob- 
ject surfaces are often modeled as being piecewise algebraic (e.g., 
[30]). The parameters of such a surface are the coefficients of the cor- 
responding polynomial. Two regions are homogeneous and, thus, 
should be merged if they belong to a single polynomial surface (i.e., 
if the coefficients for their corresponding polynomials are the same). 

In practice, a region’s parameters cannot be observed directly but 
can only be inferred from the observed data and knowledge of the 
imaging process. In statistical approaches, this inference is made us- 
ing Bayes’s rule and the conditional density, p(ykl uk), which ex- 
presses the probability that certain data (or statistics derived from the 
data), Yk, will be observed, given that region k has the parameter 
value N. In typical statistical region merging algorithms (e.g., [27]) 
point estimates in the parameter space are obtained for different re- 
gions and merging decisions are based on the similarity of these es- 
timates. Often the maximum a posteriori (MAP) estimate is used, 
which is obtained by maximizing p(ykl uk). 

An inherent limitation of nearly all estimation-based segmentation 
methods reported to date is that they do not explicitly represent the 
uncertainty in the estimated parameter values and, therefore, are 
prone to error when parameter estimates are poor (one notable ex- 
ception to this is the work of Szeliski [29] in which both optimal es- 
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timates and the variance in the estimates are computed). To overcome 
this problem, we present a Bayesian probability of homogeneity that 
directly exploits all of the information contained in the statistical im- 
age models, as opposed to computing point parameter estimates. 

The probability of homogeneity is based on the ability to formu- 
late a prior probability density on the parameter space, and assess 
homogeneity by taking the expectation of the data likelihood over a 
posterior parameter space. This type of expectation was also used by 
Cohen and Fan to formulate a data likelihood for segmentation ap- 
plied to the Gaussian Markov random field model [SI. In their work, 
segmentations are defined by a space of pixel labelings and, through 
window-based iterative optimization, a segmentation is determined 
that maximizes the data likelihood. By considering the region-based 
probability of homogeneity, we introduce a different decomposition 
and prior on the space ofsegmentations. 

Our probability of homogeneity can also be considered as a function 
of the Bayes factor from recent statistical literature [l], [15], [23], [28] 
which has been developed for statistical decision making such as model 
selection. A detailed description of our model and the derivation of the 
Bayesian probability of homogeneity are given in Section 11. 

In addition to providing an explicit accounting of the uncertainty 
associated with a segmentation (which could feasibly be used in 
higher level vision processes, such as recognition), our method ex- 
tends in a straightforward way to allow application of multiple, inde- 
pendent image models. Furthermore, our framework does not require 
the specification of arbitrary parameters (e.g., threshold values), since 
context dependent quantities can be statistically estimated. 

We have applied our Bayesian probability of homogeneity to seg- 
mentation problems using three popular model families: implicit 
polynomial surfaces, in Section 111; parametric (explicit) polynomial 
surfaces, in Section IV; and Gaussian Markov random fields for tex- 
ture segmentation, in Section V. In Section VI1 we present experi- 
mental results from each of the model families. These results were 
obtained using the algorithm described in Section VI. 

Further, we have developed special numerical computation methods 
for directly computing the probability of homogeneity using the 
parametric models presented in this paper [ 171 without using large data 
set, asymptotic assumptions. For this reason, we were able to consider 
small region sizes for the implicit polynomial results presented in Sec- 
tion VII. Previous techniques that obtain expectations over the parame- 
ter space have used some form of this assumption [3], [5], [271. 

In principle, our Bayesian probability of homogeneity could be 
applied to most region-based segmentation algorithms. In related 
work we have used the probability of homogeneity as a key compo- 
nent for generating probability distributions of alternative segments 
and segmentations [ 181. 

11. THE GENERAL PROBABILITY OF HOMOGENEITY 

This section provides the formulation and derivation of the general 
probability of homogeneity. The version presented here determines 
the probability that the union of two regions is homogeneous; prob- 
abilistic treatment of more general region sets appears in [16]. Sec- 
tion 1I.A defines the random variables and densities used in our gen- 
eral statistical context. In Section I1.B we derive expressions for the 
probability of homogeneity. 

A. General Model Definitions 

The elements of an image, D ,  are arranged in a 2D array. A given 
point D [ i ,  j]  will have a set of neighbors. Using standard four- 
neighbors, this set is: D [ i  - 1 ,  j], D [ i  + 1 ,  j], D [ i , j  - 1 3 ,  D [ i , j  + 11. A 
region, Rk, is some connected subset of D .  Two regions, R I  and R2, 

will be called adjacent if there exists some D [ i l ,  j l ]  E RI and D[iz , jz]  
E R2 that are neighbors. 

It is often profitable to begin with some initial partition of the im- 
age into small regions, and to construct new segmentations by com- 
bining these regions. This is a standard approach taken in the region 
merging paradigm. For instance, Sabata et al initially generate an im- 
age of sels, which corresponds to regions that have near-constant 
differential properties [26], and Silverman and Cooper begin with an 
initial grid of small regions [27]. We denote the initial set of regions 
as R, which represents a partition of D .  

TABLE I 
THE KEY COMPONENTS IN OUR GENERAL STATISTICAL FRAMEWORK 

Parameter space: 
A random vector, uk, which could, for instance, represent 
a space of polynomial surfaces. 

A random vector, Yk, which represents the data or 
functions of the data x E Rk . 

A conditional density p ( y k l u k )  which models noise and 
uncertainty. 

An inital parameter space density. 

Observation space: 

Degradation model: 

Prior model: 

For each Rk E R we associate the following: a parameter space, an 
observation space, a degradation model, and a prior model (see Ta- 
ble I). The parameter space directly captures the notion of homogeneity: 
every region has a parameter value (a point in the parameter space) as- 
sociated with it, which is unknown to the observer. The observation 
space defines statistics that are functions of the image elements, and that 
contain information about the region’s parameter value. We could use 
the image data directly for the observation or we could choose some 
function (possibly a sufficient statistic, depending on the application) 
that increases the efficiency of the Bayesian computations. 

Although the parameter values are not known in general, a statisti- 
cal model is introduced which uses two probability density functions 
(pdfs), yielding the prior model and the degradation model. The prior 
model is represented by a density on the parameter space (usually 
uniform) before any observations have been made. The degradation 
model is represented by a conditional density on the observation 
space for each given parameter value and can be considered as a 
model of image noise. These components have been used in similar 
contexts for image segmentation [8], [29]. 

In order to determine the probability of homogeneity, it will be 
necessary to consider a statement of the form H(Rl U R 2 )  = true, 
which corresponds to the condition that RI U R2 is homogeneous, 
and H(Rl U R 2 )  = false ,  which corresponds to the condition that 
RI U R2 is not homogeneous. We will use H to represent the condi- 
tion H(Rl U R 2 )  = true, and 4 to represent H(Rl  U R 2 )  = false .  
Note that if H is true then RI and R2 share the same parameter value. 

B. Probability of Homogeneity Derivation 

In this section we derive an expression for the Bayesian probabil- 
ity of homogeneity, given observations from RI and R2. The result is 
an expression requiring three integrations on the parameter space, 
given by (2) and (6). The vectors Y 1  and Y z  represent the observation 
spaces of R I  and R2, respectively. In other words, the random vector 
Y l  corresponds to applying functions to the data variables, D [ i ,  j], 
which belong to R I .  Similarly, Y z  is obtained from R2. The observa- 
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tions serve as the evidence used to determine the Bayesian probabil- 
ity of homogeneity, which is represented as P(H I y1, yz). We can 
apply Bayes’s rule to obtain 

The denominator of (1) is the standard normalizing factor from 
Bayes’s rule, over the binary sample space, ( H ,  4). The expression 
P(H) represents the prior probability of homogeneity, i.e., the prob- 
ability that two adjacent regions should be merged, when y1 and yz 
have not been observed, and in practice we usually take P(H)  = 
P ( 4 )  = 1/2. This represents a uniform distribution over the binary 
sample space. The implications of this and other prior distributions 
are discussed in [18]. 

We can write (1) as 

in which 

and 

1 - P ( H )  a,, = - 
P(H) 

(3) 

This utilizes the reasonable assumption that p(y1, yzl 4) = p(y1) p(yz), 
which is further discussed in [16]. The &, and hl(yl, yz) ratios represent 
a decomposition of the factors contributing to the posterior probability 
of homogeneity. When either of these ratios takes on the value of 1, it 
essentially does not bias the posterior probability of homogeneity. 

Using a common prior density p(u12), and an assumption that the 
observations y 1  and y2  are independent when given the common pa- 
rameter value, u12, we can write the denominator of hl(yl, y ~ )  as a 
marginal with respect to Ul2: 

Using (5) and the marginal over Uk for each term of the numberator 
we obtain: 

The ratio above (and similar forms) has appeared recently in work 
from the statistics literature and is termed a Bayesfactor.  Smith and 
Speigelhalter used a similar ratio for model selection between nested 
linear parametric models [28]. Aitkin has developed a Bayes factor 
for model comparison that conditions the prior model on the data [ 11. 
Kass and Vaidyanathan present and discuss some asymptotic ap- 
proximations and sensitivity to varying priors of the Bayes factor 
[15]. Pettit also discusses priors, but with concern for robustness with 
respect to outliers 1231. 

Our approach extends in a straightforward way to the case in 

which we have m independent observation spaces and parameter 
spaces. In this case, the posterior probability of homogeneity can be 
expressed as [16]: 

in which A, (yi, y:) is similar to (6). 

111. IMPLICIT POLYNOMIAL SURFACES FOR RANGE DATA 

Surface models that correspond to the solution sets of implicit al- 
gebraic equations are treated in this section, and parametric (or ex- 
plicit) polynomial models are treated in Section IV. Bolle and Cooper 
have modeled objects appearing in range images with patches of planes, 
spheres, and cylinders for position estimation [3]. Faugeras and Hebert 
have used implicit quadric and planar models for object modeling, seg- 
mentation, and recognition 171. Taubin has developed an efficient esti- 
mation procedure for implicit polynomial curves and surfaces of arbi- 
trary order, with application to object recognition [30]. 

For this model D[i ,  j ]  represents a point in %’, specified by 1x1, XZ, 

x3] coordinates. For simplicity of notation, we will denote some ele- 
ment of the image D by x instead of D[i, J]. Rather than using the i, J 

indices, we will index points that belong to some region Rk by x E &. 

A .  The Parameter Manifold 

An implicit polynomial equation is represented as 

, b  
$(;U) = ~ u j x ~ x z l x >  = 0 with a ,  = b ,  = c ,  = 0 .  (8) 

The constants ai, bj, and c, are positive integers, representing the ex- 
ponents of each variable. The . used here indicates that we have an 
implicit function with x as the variables. 

With the present formulation, there are redundant representations 
of the solution sets (i.e., there are many parameter vectors that de- 
scribe the same surface in %’). It is profitable to choose some restric- 
tion of the parameter space that facilitates the integrations in (6) but 
maintains full expressive power. We use the constraints 1 1 ~ 1 1  = 1 and 
u1 > 0, to constrain the parameter space to a half-hypersphere, EN, 
termed the parameter manifold. 

j=l  

B. The Observation Space 

The observation considered here is a function of the signed dis- 
tances of the points x E Rk from the surface determined by uk, termed 
displacements. Define 6(x, $(., U,)) to be the displacement of the 
point x to the surface described by the zero set (x:$(x, uk)  = 0). The 
function 6(x,$(,uk)) takes on negative values on one side of the 
surface and positive on the other. 

We consider the following observation space definition (others are 
mentioned in [16]) and distance approximation [3], [30]: 

Note that we use yk instead of yk when the observation space is scalar. 
We chose to use the sum of squares since we obtained improved in- 
tegration efficiency with similar segmentation results when experi- 
mentally compared to using the displacements directly. The distance 
approximation is good for small displacements and, for our approach, 
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good approximations are only required for small displacements. 
Large displacement errors will not cause difficulty because of the ap- 
proximately zero tail values of the chi-square pdf, which will be pre- 
sented in Section 1II.C. 

C. The Degradation Model 
To define the degradation model, we first need to express the 

density corresponding to the displacement of an observed point from 
a given surface. We use a probability model for range-scanning error 
used and justified in [3] and also used in [30]. The model asserts that 
the density, p(6(u) of the displacement of an observed point from the 
surface, @(x, U), is a Gaussian random variable with zero mean and 

known variance, 0 2 .  
This degradation model is merely chosen as a representative of pos- 

sible models that can be used. In practice, for different imaging systems, 
other models may be more appropriate. For instance, Mina and Boyer 
use a t-distribution to model the degradation for robustness with respect 
to outliers [20]. Ikeuchi and Kanade provide a detailed discussion of the 
modeling of a variety of range-imaging sensors [ 121. 

Since taking the sum of squares of independent standard Gaussian 
random variables yields a chi-squared random variable, the degrada- 
tion density using (9) is 

Here yk is the sum-of-squares for a given region, Rk, and parameter 
value uk, given by (9). Also, r(.) is the standard gamma function and 
mk = lRkl (the number of elements in Rk). The variance 0 2 i s  esti- 
mated, and considered as part of the specified degradation model. 

D. The Prior Model 

Since the parameter space has been restricted to a bounded set, we 
can define the prior pdf to have equal value everywhere on the pa- 
rameter manifold. This captures the notion of uniformity due to the 
lack of information; however, it is important to note that our choice 
of parameter manifold affects the prior distribution on the space of 
surfaces. If other constraints were used on the parameter space and 
we assumed a constant-valued pdf, the distribution would be some- 
what different from the one we have selected here. Once some infor- 
mation is present (i.e., some observed data points) this distinction be- 
comes less important. 

Since the density over the parameter manifold must integrate to 
one, the uniform density is just the inverse of the surface area of the 
half hypersphere that defines the parameter manifold. The prior 
model is p(uk) = AN', in which A N  represents the area of the N pa- 
rameter manifold which can be obtained through straightforward in- 
tegration techniques 1161. 

IV. PARAMETRIC (EXPLICIT) POLYNOMIAL SURFACES 

Parametric polynomial surfaces have been used in past segmentation 
work to model surface patches in range imagery and sets of intensities 
in intensity images. In early work by Haralick and Watson, thefacet 
model was introduced in which intensity image subsets were approxi- 
mated by polynomials, representing an idealized image [lo]. Besl and 
Jain have used polynomials of variable order for segmentation and se- 
lect the best model by analyzing fitting-error signs and the mean-square 
error [2]. Leonardis et al have also used bivariate polynomials of vari- 
able order and select an appropriate image description through a 
cost/benefit objective function to obtain a segmentation [ 191. Silverman 

and Cooper have used explicit quadric and planar equations to model 
surfaces patches in intensity images for clustering-based segmentation 
[27]. Sabata et al have used parametric polynomials to model surfaces 
in a hierarchical range image segmentation scheme [26]. 

The general form of the parametric polynomial model is 
N 

y(u; i, j )  = u1 + zumuum j b m  , (1 1) 
m=2 

in which a, and b, are positive integers. 
The observation space, Yk, represents a vector of point-to-surface 

displacements of the intensities in Rk, given a parameter value uk. For 
degradation, we use an additive Gaussian iid zero-mean noise model, 
as considered in [27]. Hence, there is a Gaussian pdf associated with 
each element of the observation space vector. Due to the independ- 
ence of the noise model, the joint density is obtained by taking the 
product of the individual displacement densities: 

We define the prior model by assigning a uniform density to a 
compact portion of the parameter space. The problem of selecting 
bounds for a uniform prior has been known to lead to difficulty in 
Bayesian analysis, referred to as Lindley's paradox [28]. As the vol- 
ume over which the uniform density is defined increases, the ratio (6) 
decreases. We select P(H)  in our experiments to appropriately cancel 
the effects of the volume; however, it must be understood that the 
choice of prior in this case significantly affects the probability of ho- 
mogeneity. For our purposes, a problem of this type only changes hl 
by some scaling factor, leading to the correct ordering of likely 
merges, but an ambiguous termination criterion. 

V. A GAUSSIAN MRF TEXTURE MODEL 

Models of texture have been used extensively for segmentation. In 
this section, we consider the application of our general probability of 
homogeneity to a Gaussian Markov random field (GMRF) model for 
the problem of unsupervised texture segmentation. This problem has 
been considered in numerous contexts, and an extensive survey that 
covers fractal models, operator models, structural texture methods, 
and frequency domain techniques is provided in [25]. For our pa- 
rameter space, we use a special MRF formulation known as the SAR 
model, which is described in [14]. This model has been applied to 
texture segmentation of intensity images in [4], [5], [27] and has re- 
cently been extended to texture modeling and segmentation of color 
images [21]. In particular, Cohen and Fan have considered maximiz- 
ing likelihoods formulated through the integration on the GMRF pa- 
rameter space [5 ] ,  which is similar to the approach taken here; how- 
ever, we are interested in iteratively merging region pairs that maxi- 
mize the probability of homogeneity. 

An image element, D[i ,  j ]  represents a single intensity, X [ i ,  j ] ,  
treated as a random variable. We have an N-dimensional parameter 
space, which represents the interaction of a pixel with a local set of 
neighboring pixels. The order of an MRF indicates the size of the lo- 
cal neighborhood that is considered. In a first order MRF, N = 4, cor- 
responding to interactions of X [ i ,  j l  with X [ i  + 1, j], X [ i  - 1, j ] ,  
X [ i ,  j + 11, x[i, j - 11. For any general order of MRF interactions, the 
image element of the lrh parameter interaction is denoted by Tl(x). 
Hence, in general, at some point X [ i ,  j ]  = x, the model is 
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Fig. I ,  Some 0 1  our range image segment:ltion resultr 

Fig. 2. Some of our parametric polynomial and texture segmentation? 
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We could also consider the intensity mean in Rk, p k ,  as part of the 
parameter space; instead, we chose to estimate the mean using the 
region data for our experiments. 

The observation space, Yk, is defined as a vector that corresponds 
to all of the intensity data, x[ i ,  j], in some region Rk. Hence, the di- 
mension of Yk is equal to the number of pixels in Rk. 

We assume that the noise process that occurs in the linear predic- 
tion (13) is Gaussian. The joint density that we use over the points in 
Rk is not a proper pdf; however, it has been considered as a reason- 
able approximation and used in previous segmentation schemes [4], 
[21], [27]. We obtain the degradation model by taking the product of 
the density expressions over each of the individual pixels: 

in which 0: represents the variance over Rk. The variance could also 
be considered as part of the parameter space; however, we estimate 
the variance for each region. 

For the texture model we used the same prior that was used in 
Section IV. 

VI. COMPUTATION ISSUES 

We provide an outline of the algorithm that was used to generate 
the experiments presented in Section VII. Our algorithm resembles 
agglomerative clustering [27]; however, the standard metric-based 
merging criterion is replaced by our probability of homogeneity: 

1) For each pair of adjacent regions Ri, Rj E X, compute 
P(H(Ri  U R,)ly,, y j ) ,  and store the result in a priority queue 

with elements sorted by probability. 
2) Remove the first pair from the queue, R,,, Rm2, and update R 

by adding R, I R,, U Rm2 and removing RmI and Rm2. 

3 )  For each Ri that is adjacent to R,, compute P(H(Ri  U R,)ly,, y , , , ) ,  
and insert the result into the priority queue. 

4) If the probability of the first pair in the queue is less than P, (or 
alternatively, the number of regions in R i s  c) then terminate. 

5) Go to 2. 

With regard to Line 4, many clustering algorithms require the speci- 
fication of the number of final clusters. Some recent work has been 
done specifically addressing the problem of determining the number 
of clusters (known as cluster validation) in the context of image seg- 
mentation applications [ 131, [32]. 

The integrals arising from (6) were computed using a specialized 
Monte Carlo-based technique for the implicit surface model and an 
ellipsoidal decomposition technique on the parameter spaces for 
parametric polynomials and MRFs. These computation methods are 
discussed in [ 171. 

VII. EXPERIMENTS 

This section presents experimental results using the models pre- 
sented in Sections 111 - V. For each of the three models, we have 
performed segmentation experiments on dozens of real images. 

Fig. 1 shows eight range image results, using either an implicit 
planar or quadric model. For each result, we first show the intensity 

image (or a synthetic rendering) for the range image, and then the 
segmentation result. Fig. l(a) also shows the initial region set, K 

The variance in the degradation model was only estimated once 
for a given range image set. To yield accurate placement of points 
that are close to segment boundaries, we performed maximum- 
likelihood supervised clustering on the segmentation output from our 
merging algorithm. We first discard very small final segments, and 
then for each image point, x, we choose the region label, I ,  such that 

in which ;% represents the set of regions containing the points that are 
adjacent to x, and bk is a least-squares parameter estimate in region Rk. 

The initial region set, R, was obtained by combining a small grid 
with the edge map produced by running the Canny edge detector on 
the corresponding intensity image. When building an initial region 
set we would like as few nonhomogeneous initial regions as possible, 
and the application of the edge detector provides slightly improved 
performance near boundaries. The edge detector was applied to syn- 
thetic renderings of the range data (generated by the method dis- 
cussed by Sabata et a1 [26]) for the images in Figs. l.(a)-(c), and a 
true, corresponding intensity image was used for the remaining range 
images. We performed no parameter tuning with the Canny edge de- 
tector; therefore, there are many missed edges and extra edges in the 
initial region maps. 

The first three images presented in Fig. 1 belong to the MSU 
range image set, which is often used for evaluation of segmentation 
algorithms. Hoffman and Jain performed smoothing on this data, and 
then iteratively clustered the range points based on position and sur- 
face normal estimation [ 1 11. A conservative clustering is obtained 
and additional merging occurs after surface type classification and 
boundary analysis is performed. Sabata et a1 also provide some re- 
sults on this imagery [26]. They also perform smoothing on the data, 
use a pyramidal clustering algorithm on synthetic renderings of the 
range data, and finally merge regions using a squared-error criterion. 

We obtained the remaining images in Fig. 1 in our lab using the 
K2T GRF range scanner setup. This range image set is more suitable 
for demonstrating our framework since typical segments have ap- 
proximately 400-500 points, while the typical segment sizes in the 
MSU images have around 4000-5000 points (the noise levels for the 
two sets are comparable). This leads to greater uncertainty in the 
probabilities; however, good segmentations were obtained. 

The next two images show the application of the parametric poly- 
nomial model to the segmentation of intensity images. We do not 
necessarily propose parametric polynomials as the most appropriate 
model for intensity-based segmentation but, instead, are demonstrat- 
ing the success of our methodology for this given model family, 
which has been considered previously [27]. Fig. 2(a) is an image of a 
tape dispenser, and Fig. 2(b) shows a plastic slinky. Since the model 
family is not as accurate (i.e., the images are not likely to have an un- 
derlying polynomial model with additive Gaussian noise), the num- 
ber of classes is more difficult to select; therefore, we show results in 
this section for user-specified, fixed class numbers. 

Fig. 2(c)-(f) show four texture results, which were obtained using 
a third-order MRF. Fig. 2(c) is composed of Brodatz textures. 
Fig. 2(d) is a texture image that was constructed for testing texture 
segmentation algorithms [6]. Fig. 2(e) shows a four-class textuie re- 
sult from an image that was obtained by piecing together photographs 
of different quilts. Fig. 2(f) is an image of NASA Magellan space 
probe data of Venusian terrain. Some recent discussion and compari- 
sons of models for texture segmentation can be found in [6], [24], 
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[25] and some texture segmentation experiments on similar imagery 
appear in [4], [27], [31], [32]. 

We have only considered coarse segmentations, which are obtained 
from an initial region set, X, that is formed by partitioning the image 
into square blocks. We present these coarse segmentations since: 1) 
some minimal region size is needed before the model contains useful 
information [25], 2) supervised methods exist for providing good 
boundary localization, given a coarse segmentation [4], [ 5 ] ,  [6]. 

VIII. CONCLUSIONS 

In this paper, we have presented a new approach to region-based 
segmentation. The key to our approach is a new formulation for the 
probability that the union of two regions is homogeneous. Our ap- 
prbach does not require parameter estimation and is, therefore, par- 
ticularly beneficial for cases in which estimation-based methods are 
most prone to error. Our experiments provide strong support for our 
Bayesian formalism based on the quality of the segmentation results 
and the broad class of models considered, which indicates the general 
applicability of our methods. The segmentations that we obtained 
with the highest-probability-first algorithm are good, in the context of 
other recent segmentation results, for each of the model types. Fur- 
ther, our Bayesian formalism has been used in algorithms that gener- 
ate probability distributions of alternative segments and segmenta- 
tions on real imagery [ 181. 
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