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Stable Visual Servoing Through Hybrid
Switched-System Control

Nicholas R. Gans, Member, IEEE, and Seth A. Hutchinson, Fellow, IEEE

Abstract—Visual servoing methods are commonly classified as
image-based or position-based, depending on whether image fea-
tures or the camera position define the signal error in the feedback
loop of the control law. Choosing one method over the other gives
asymptotic stability of the chosen error but surrenders control over
the other. This can lead to system failure if feature points are lost
or the robot moves to the end of its reachable space.

We present a hybrid switched-system visual servo method that
utilizes both image-based and position-based control laws. We
prove the stability of a specific, state-based switching scheme and
present simulated and experimental results.

Index Terms—Switched-system control, vision based control, vi-
sual servoing.

I. INTRODUCTION

ISUAL servo control allows for the closed-loop control
Vof a robot end effector through the use of image data. It
provides a high degree of accuracy using even simple camera
systems and offers robustness in the face of signal error and
uncertainty of system parameters.

Classically, there have been two approaches to visual servo
control: Image-Based Visual Servoing (IBVS) and Posi-
tion-Based Visual Servoing (PBVS). In IBVS, an error signal
is measured in the image, and is mapped directly to actuator
commands. In PBVS systems, features are detected in an image
and used to estimate the current camera position. A position
error is then computed in the Cartesian task space, and this
error is used by the control system. There has been a great deal
of research on each of these [1]-[8].

Chaumette outlined a number of problems that cannot be
solved using the traditional local linearized approaches to vi-
sual servo control [9]. Many of these problems are fundamental
to the control law. For example, by zeroing the error in the image
space, IBVS provides no control over the specific position or ve-
locity of the camera and may perform unnecessary motions that
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can lead to system failure. Likewise, PBVS surrenders control
of the image features, which may allow them to leave the image,
in which case pose reconstruction may be impossible. Tasks that
fail can be well posed initially, so detection of impending failure
is often impossible.

A number of partitioned approaches have been introduced
to address these problems [10]-[13]. These approaches parti-
tion the system’s degrees of freedom into disjoint sets, each of
which is controlled by a different control scheme. Partitioning
the visual servo system along specific degrees of freedom of
motion gives access to new, potentially better, trajectories for
the system.

Other methods to address one or more of these problems
have been introduced as well. Taylor and Ostrowski [14] in-
troduced a unique, PBVS-like controller based on the funda-
mental matrix relating camera views. This system was shown
to be asymptotically stable even with large calibration errors.
Cowan, et al. [15], presented visual servoing methods based
on the use of navigation functions, similar to artificial poten-
tial functions. This system can avoid loss of feature points and
incorporate boundaries on the robot pose, in terms of distance
from the camera to the features. Mezouar and Chaumette [16]
developed an IBVS path planner to keep the pose error minimal
while keeping the features in the field of view. Kyrki ef al. [17]
developed a PBVS controller that maintained target visibility
while following a minimum distance path in Cartesian space by
allowing freedom in the orientation to keep the object in the field
of view. Garcia-Aracil et al., [18] allow feature points to leave
and enter the field of view while maintaining a smooth control
law.

We have proposed a new hybrid switched-system approach
[19], [20], in which system control is partitioned along the time
axis rather than along specific dimensions of the state space. A
hybrid switched system comprises a set of continuous subsys-
tems along with a discrete switching controller that switches
between them [21], [22]. Using hybrid switched systems, it
may be possible to increase the region of stability, increase the
rate of convergence, and to switch between unstable systems
in a pattern that makes the total system stable. Taking a simple
view of performance, IBVS performs well when PBVS per-
forms badly, and vice versa. Thus, rather than mitigating bad
performance along particular degrees of freedom (as with the
partitioned methods), we attempt to improve performance over
time.

We present a switching strategy that achieves stability in both
the pose space and image space simultaneously. More impor-
tantly, it is possible to specify neighborhoods for the image error
and pose error that the state can never leave. This insures that no
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feature ever leaves the image, and the robot never moves beyond
a specified distance to the goal pose. This is a strong result, and
to our knowledge, no other VS controller can guarantee never
to fail due to these reasons.

Recently, a few other switching approaches have been intro-
duced as well. Chesi and Vicino [23] introduced a switched-
system PBVS controller that keeps features in the field of view
by switching to a different PBVS controller when the features
approach the edge of the image. Deng, et al. [24], presented
a system that switches between to PBVS to avoid singularities
and local minima in the IBVS control law. In the same paper,
they developed an off-line path planner that incorporates image,
Cartesian and joint space constraints and avoids singularities
and local minima in the IBVS control law.

We present a simple set of switching rules to facilitate the
analysis of the system. However, our switched system is inclu-
sive to additional switching rules. For instance, alternate or ad-
ditional switching surfaces could be introduced to avoid colli-
sions in a known workspace. A switched system could also in-
corporate methods developed in [24] to escape local minima and
singularities in the image Jacobian, or switch to controllers like
those in [25] and [26] to avoid joint limits and joint space sin-
gularities.

The remainder of the paper is organized as follows. Section II
provides a brief review of hybrid switched systems and IBVS
and PBVS methods. Section III describes our new hybrid
switched-system controller, which incorporates both an IBVS
controller and a PBVS controller. Section IV contains the
proofs of stability for our state-based switching method. Re-
sults of experiments are given in Section V.

II. BACKGROUND

In this section, we provide background information on hybrid
systems and visual servoing. These topics are well covered in
literature. Our purpose here is to introduce notation and quickly
summarize relevant results.

A. Hybrid Switched-System Control

The theory of hybrid, switched control systems, i.e., systems
that comprise a number of continuous subsystems and a dis-
crete system that switches between them, has received notable
attention in the control theory community [21], [22], [27], [28].
In general, a hybrid switched system can be represented by the
differential equation

(t) = fou)(z,t) ro € {1...n} (1

where f,, is a collection of n distinct functions. The solution
to (1) is a pair {z(t),o(t)} giving the value of the state and
switching variable, respectively, over time. The functions z(t)
and o (t) are continuous from the right to insure both are locally
Lipschitz.

For our purposes, it is convenient to explicitly note that the
switching behavior can directly affect the choice of the control
mput v

i(t) = fo‘(t) (x,t,ug(t)) o €e{l...n}. )

A useful interpretation is to consider o to be a discrete signal,
switching among discrete values in {1...n} C Z. The value
o at time ¢ determines which function f,(z, u, ) governs system
behavior at time ¢. The signal o is often classified as state-depen-
dent or dependent, depending on whether switching is caused by
the state of x or the time ¢, although these classifications are not
firm and can overlap.

The stability of a switched system is not insured by the sta-
bility of the individual controllers. Indeed, a collection of stable
systems can become unstable when inappropriately switched
[27], [29].

Furthermore, stability of a switched system can be extremely
difficult to prove. For a specific switching rule, stability can be
established through a finite family of Lyapunov functions [29],
[30]. This will be discussed further in Section IV-B. It is gener-
ally more difficult to prove stability under arbitrary switching.
This generally requires finding a common Lyapunov function
for all subsystems [27], [31]. This will be discussed in further
detail in Section IV-A.

B. Position-Based Visual Servoing

The task in PBVS is to regulate the error between the current
camera pose and the goal pose. Given a current camera pose
X(t) and goal pose X* (throughout the paper, the superscript
* denotes values at the goal configuration), the transformation
relating them is described by a translation d € R® and rotation
of the camera frame R € SO(3).

Locally, SO(3) can be parameterized by the three-tuple ué,
in which 6 is an angle of rotation about the axis defined by the
unit vector u. Given a collection of feature points in the image,
there are numerous methods to extract X (¢) and thus d and uf
from X(t) [32]-[34].

For a PBVS system, we define the error e, in terms of the
rigid body motion that relates X to X*

d

. . . . T . .
If the camera is moving with velocity & = (vZ,wT)" (in twist
coordinates) the relationship between the error derivative and
the camera velocity is given by

. R 0
€p = |: 0 LwR:| 5 = Lpg “)
in which [10]

0 inc 0
Lo(u,6) = I = Jux + (1 - %) w2 )

sinc” 3
and uy is the skew symmetric matrix associated with u. Note
that by definition, sinc(0) = 1.

Since L, is non singular when 6 # kr, k € Z \ {0} [10],
we can achieve the error dynamics &€, = — e, using a simple
feedback control law

—Apep =€, = L¢ = £ = —A\ L e, (6)

in which A, is a positive gain scalar.
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We use a quadratic candidate Lyapunov function

1 I 0
Vo(ep) = ie;‘CHep, H= [% (1- 77>I} 7

1
Volep) =5 llep(t)llx (®)

where 7 € (0,1), I'is a 3 x 3 identity matrix and 0 is a 3 X
3 matrix in which each element is 0. Different n allow us to
scale effects of the translation with respect to rotation. We will
typically use a large 7 to focus on the effects of position error
without sacrificing the positive definiteness of V,,. For the case
where 1 = 0.5, ||ep(t)||12ﬁI is a trivial scaling of the 2-norm.

When L, is full rank and € (0.5, 1), it follows from (7) and
(6) that

lell® 9)

and

< =Mt =n)el (10)
A similar set of equations exists for the case that € (0,0.5).
Thus, this controller is asymptotically stable for all translations
d € R? and rotation of the camera frame R (u,f) such that
6 € (—m, ). See [35] for a more detailed proof of stability and
robustness.

Although the position error tends monotonically to zero, we
cannot control the position of all the image points. If there is any
rotation present, the feature points in the image will move along
curves in the image plane as the camera undergoes rotation and
translation. In a physical system with a limited imaging surface,
it is possible for the feature points to leave the image. In this
case, the system will fail to complete the task.

C. Image-Based Visual Servoing

With image-based visual servo control, the control law is a
function of an error that is measured in the image. If s(¢) de-
notes the vector of image features that are extracted from com-
puter vision data, the error is defined in the image feature space,
ei(t) = s(t) — s*. The relationship between camera velocity
and the measured feature values is given by

§=Li¢ (1n
in which L; is the image Jacobian (also called the interaction
matrix) [1]-[3], [7].

We can use a simple feedback control law

—dej=é =s=Li¢ = ¢ = -\Le (12)
where L = (LTL;)"'L7 is the general inverse of L; and ;
is a positive gain scalar.
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Using the candidate Lyapunov function

1
Vilei) = 5 les ()1 (13)

we obtain

Vi = —\elLiLte; (14)
and we have asymptotic stability when the matrix LiLi'" is pos-
itive definite.

Unfortunately, this condition is rarely achieved. When
dim(s) > 6 the image Jacobian is overdetermined; it will
have a nonempty null space, and local minima will exist [9].
However, when L; is full rank at the goal s*, then there is a
neighborhood of s* in which LiLi'" is positive semidefinite,
and thus IBVS is globally stable in the sense of Lyapunov, but
not globally asymptotically stable. It can be shown that IBVS
is locally asymptotically stable for some sufficiently small
neighborhood of the origin, though to our knowledge the region
of convergence has never been firmly established. See [3], [35],
[36] for more detailed discussions of stability and robustness.

In addition to the problems of singularities and local minima,
Chaumette has described problems that arise due to large
physical camera motions that are sometimes required to follow
IBVS-generated trajectories [9]. Thus, there are a number of
serious performance problems that confront an IBVS system.

III. A HYBRID SWITCHED-SYSTEM VISUAL SERVO
CONTROLLER

We combine IBVS and PBVS controllers in a switched-
system controller. To derive analytic results, we first establish
a common state space within which both systems can be de-
scribed. To this end we show that e, and e; are local coordinate
charts of the pose error in SE(3).

If a camera is posed with respect to a motionless set of fea-
ture points, the feature vector s can be defined as a mapping
s = m(X), 7 : SE(3) — R" from the camera pose to the
image points using the well-known perspective projection func-
tion. Likewise, the pose error in SFE(3) can be mapped to the
image error, SFE(3) — R™, and through the local mapping of
SE(3) — R® described in Section II-B, there is a function from
e, to e;. We can therefor define ¢; = 7'(e,,), 7’ : R® — R™.

Itis easy to see that w/(0) = 0. The matrix L; L, ! maps &, —
€; (i.e. it maps the tangent space of ey, to the tangent space of e;).
If rank(L;) = 6 at e; = 0, then LiL;1 is full column rank and
7’ is locally injective in a neighborhood of e, = 0. In this way,
both e;, and e; can be seen as local coordinates for the pose error
in SE(3). The inverse function of 7 (and 7’ by extension) can
be computed by any of the many pose reconstruction routines
for n feature points.

While e}, and e; are both local coordinates of the pose error in
SE(3), it is usually more intuitive to think of them as separate,
dependent measurements. In this spirit, we can map any error in
SE(3) to a point in W C R2. This mapping is described by a
function

1 1
W(ep,ei) = fwr,wa] = | Slleill”, 5 llen(®)[5| € W (1)

In an abuse of terminology, we will refer to an analysis “in the
space YW to mean analyzing the map of e, and e; to W.
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We have designed a state-based switching visual servo con-
troller that switches between controllers based on the values of
the two Lyapunov functions given in (7) and (13). Given the
locally injective map from e, to e;, we note that (13) can be
rewritten as

Vi(e) = Vi(n'(ep)) = Vi (ep) (16)
though we will rarely make the reliance of V; on the pose error
explicit.

To design our controller, we use level sets of these Lyapunov
functions to define switching surfaces; when the system encoun-
ters these surfaces it will switch to the appropriate system. These
level sets are defined by the constants -y, > 0 (which defines a
maximum acceptable pose error) and v; > 0 (which defines
a maximum feature point error). The specific switching rule is
given by:

* In IBVS mode, if V,(e,) >

mode.

* In PBVS mode, if Vi(e;) >

mode.
The function W will map the level sets of V}, and V; to straight
lines in YV, and the interior of the intersection of the level sets
will be mapped to a rectangle.

Under this control scheme, when using IBVS, the image error
will decrease, but the pose error may increase. If the pose error
becomes too large, the control switches to the PBVS controller.
Analogously, when using PBVS the pose error will decrease, but
the feature point error may increase. If the feature error becomes
too large, the control switches to the IBVS controller.

Proofs of the stability of our system are given in Section IV.
We are able to prove asymptotic stability within some suf-
ficiently small neighborhood of zero pose and feature error.
Within a known, defined neighborhood, we are able to prove
stability, though not the stronger condition of asymptotic
stability. In Section V, empirical evidence suggests that the
switched system is attractive to the state e; = 0, e, = 0 overa
large region.

(1/2)y3, switch to PBVS

(1/2)~2, switch to IBVS

IV. ANALYSIS OF LOCAL STABILITY

We investigate the stability of our switched system. We are
able to prove asymptotic stability within a neighborhood of the
origin, however this neighborhood is not known. We are able to
prove local stability in both the image error and pose error within
neighborhoods of zero in both error spaces. More importantly,
this neighborhood is defined explicitly by the user.

A. Local Asymptotic Stability Under Arbitrary Switching

We first show that in a sufficiently small neighborhood of
the origin, a system arbitrarily switched between IBVS and
PBVS will be asymptotically stable. It has been shown that if
all systems in a family share a common Lyapunov function,
the switched system is stable under arbitrary switching. We
proceed to show that in a sufficiently small neighborhood, V; is
a common Lyapunov function for IBVS and PBVS

We assume that the feature points are stationary with respect
to the world frame, that the image features are well posed so that
the image Jacobian is full rank when the camera is at the goal
pose, and that Vi(0) < (1/2)77 and V;,(0) < (1/2)y2. These

assumptions are typical in the visual servo literature (see, e.g.,
[35], [36D).

In the proof and in our simulations, we assume perfect
camera calibration and that there is no signal noise. This grants
perfect pose estimation and feature point depth estimation. In
Section V, we present experiments on a real robot system to
demonstrate stability of the system when these assumptions are
relaxed.

Proposition: A hybrid switched-system visual servo system
is asymptotically stable in the sense of Lyapunov under arbitrary
switching within a sufficiently small neighborhood of the origin.

Proof: As discussed in Section III, there exists a function
n/ mapping e, — e;, which is injective in a neighborhood of
ep, = 0, and maps e, = 0 — e; = 0. In the region where 7’
is injective, the Jacobian J = (97’ /9e,) is full column rank. A
Taylor expansion about e, = 0 gives

ei =J(0)e, + O (17
where O, are terms second order and higher.
Combining (13) and (17) we get
1 1
Vi(e;) = —eTe; = =eTJ(0)7J(0)e, + Oy, (18)

2 2
which is positive definite within a small neighborhood of the
origin. Taking (6) and the derivative of (18), we see that under
PBVS

Vi =e"3(0)73(0)é,
—2,e73(0)73(0)e, + O,

(19)
(20)

which is negative definite in a neighborhood of the origin.
Section II-C showed that V;(e;) is a valid Lyapunov function
and proves global stability of e; under IBVS, and local asymp-
totic stability under IBVS within a sufficiently small neighbor-
hood of the origin. Equation (20) shows that in a sufficiently
small neighborhood of the origin V; is also a valid Lyapunov
function showing local asymptotic stability under PBVS. The
intersection of these two neighborhoods is a neighborhood of
the origin where V; is a common Lyapunov function for IBVS
and PBVS. [27]. O

B. Local Stability Through State Based Switching

In [29] Branicky gives a technique for establishing the
stability of switched-control systems. For our system, we will
use the two Lyapunov functions V,(e,) and Vi(e;) defined
in (7) and (13). We denote the set of switching times by
T = {to, t1,t2, - -}. Since we have exactly two controllers, the
set of times at which the system switches to PBVS from IBVS
is T, = {t1,ts,---}, and the set of times at which the system
switches to IBVS from PBVS is 7; = {tg, to, t4, -}

For our specific system, the conditions for stability given in
[29] are as follows:

1 V,(0) = Vi(0) = 0.

2) Vi(e;i) > 0 for ||ei]| # 0 and V,(ep,) > O for ||e,|| # 0.

3) Vi(ei(t)) < 0 for to, <t < topy1, fork =0,1,2---.

4) Vi(ei(tk)) < Vi(ei(tl)) for all ty,,t; € T; s.t. t; < ty,.

5) Vp(ep(t)) < Ofortop_1 <t <top, fork=1,2---.

6) Vp(ep(tr)) < Vp(ep(tr)) forall ¢y, € Ty st ty < ty.
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Vi(to)
V° .Vp(tl )
| Vi(t2)
‘ \ ' yp (t3)
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\\\ | Vilts)
) ' \
t t t3 ty t

Fig. 1. Stable family of Lyapunov function.

The first two conditions establish that each candidate Lyapunov
function is positive definite in a neighborhood of the origin. The
third and fourth conditions establish the Lyapunov-like prop-
erty that Vj is nonincreasing when IBVS is active as well as
at the switching instants for IBVS. The final two conditions
establish the Lyapunov-like property that V|, is nonincreasing
when PBVS is active as well as at the switching instants for
PBVS. This is illustrated in Fig. 1, for a family of two Lya-
punov functions. Function V; becomes active at switching times
to, t2 and t4, while function V> becomes active at switching
times ¢; and ¢3. Furthermore Vi (to) > Vi(t2) > Vi(ts4) and
Va(t1) > Va(ts).

We now show that our hybrid switched system is stable in a
known neighborhood. The proof assumes that the system begins
with IBVS, but a proof for the system beginning with PBVS
parallels this one.

Proposition: The hybrid switched-system visual servo
system, with switching surfaces described by

* In IBVS mode, if V,(e,) > (1/2)y2, switch to PBVS

mode

« InPBVS mode, if Vi(e;) > (1/2)~2, switch to IBVS mode
is stable in the sense of Lyapunov within a well-defined neigh-
borhood {X € (SE(3)le, < (1/2)72,ei < (1/2)47}.

Proof:

* To establish that both V; and V], are positive definite in
a neighborhood of the origin (conditions 1 and 2), it is
sufficient to note that if rank(L;) = 6,

ei=0&e,=0

since any error in pose will cause an error in the observed
image features, and conversely, an image error implies that
there must be some pose error. Therefore, we have

Vilei) = Vo(ep) =065 =¢, =0.

Since both V; and V}, are norms, they are positive definite.
This satisfies conditions 1 and 2.

¢ Condition 3 follows from (14).

* Condition 4 requires two steps. First, Vi(e;(t)) = (1/2)~2
for all ¢ € 7; \ {to}. Branicky showed that his method
can be extended to allow more Lyapunov functions than
component systems [29], because the same controller
using multiple Lyapunov functions can simply be treated
as additional controllers. We can add an additional Lya-
punov function, V; = «Vj;, where « is a scalar such that

IEEE TRANSACTIONS ON ROBOTICS, VOL. 23, NO. 3, JUNE 2007

A 2
Slle,l )
o B s e R e
RO
\ NS e
I\ N
\ \\ N e
\ N b
\ \\\ v 7
\ ~ar
N
] .
~
~ .
.
.
.5lle]?

Fig. 2. A switching sequence that increases the error over time.

aVi(ei(0)) = (1/2)y2. This scaled Lyapunov function
will be used only once before the first switch.

¢ Condition 5 follows from (10).

* Condition 6 follows from the fact that

Vi(ep(t)) = (1/2) forall t € T, O

Consider the case that the current state is near the intersection
of the boundaries 7, and ;. While both errors never increase at
the same time, the accumulated result of switches can result in
a general increase in both errors. In this case the system would
head toward the intersection of +; and +y,,. An illustration of such
an occurrence, in the space W, is shown in Fig. 2. This does not
violate the condition of stability; the system is heading to an
accumulation point at the intersection and cannot move past it.

However, the time between switching will become increas-
ingly shorter as the system approaches the intersection. There
is no condition on the number of or time between switches,
however rapid switching is undesirable. There are several ways
to handle this problem. One is to sense when the system is
switching too rapidly and enter a “shut down” mode where the
robot stops moving. A second method is to impose a minimum
time between switches.

A related problem is finite sensor update time. As the time
between switches decreases, the system could move from one
boundary past the other boundary in less than the sensor update
time. Once beyond the switching boundaries, the system has no
guarantee of reentering the stable subspace. This problem would
likely be exacerbated if a minimum time between switches is
imposed.

We address this issue analytically and offer a modification to
the system to insure the system slows down near intersections
of the switching surfaces and cannot move past the switching
surfaces due to a minimum switching time. In order to slow
the system near the switching surfaces, we introduce nonlinear,
time-varying, scalar gains, K; and K. To simplify the fol-
lowing equations, we define two values 7/, = (1/2)y; and
7 = (1/2)2.

)\i 7’7‘/1) ’Yi’f‘/i . +
2Ll [ EAR } DL =1,
‘/i S ’71,7 Vp S Fyll)

K; =< ) [%=V -V + (21)
[+ <y
Vi<, Vo <,
Ai; else
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A [V | vV,
e [+ 5] >,
Vi<ai, Vo <
K,={ X [%nW -V 22
e K | M @
Vi<, Vo <,
Ap; else
where || - || for a vector is the standard 2-norm, or Euclidean

norm, and for a matrix is the 2-norm and equals the largest sin-
gular value of the matrix. Note that K; and K, are smooth if
Vi <vfand V;, < ;. This is true at the initial conditions under
the assumptions of the proof, and it remains true for all time at
the completion of the proof.

When using IBVS, V, is a function of e; and e,. Using the
gain, K, defined in (21), along with (6), (9) and (12), and the
fact that || L || = 1 we have

Vo, = — Kiel L,Lie (23)
IVoll < K; [T llelllles]] (24)
. v =V
Vol S/\q:pr\/Vp%’- (25)

P

While IBVS is the active mode, the time-varying gain affects V;
as well. From (21) and (14)

Vi= — Kie[LiL{e; (26)
Vil < = KGllLal ||| e I? 27)
/
. -V,
IVAll < = A pr=nt, (8)
i | 7p

assuming ||L|| > 1. As expected, while in IBVS mode, V;
remains negative semidefinite, but Vp does not.

It can be shown that ||L;'|| is bounded from below by some
£ > 0. However, 3 will depend on the number of feature points,
the relative positions of the feature points, the camera parame-
ters, etc. Due to the uncertainty of the lower bound of ||L; ||, we
bound it at 1 in K. It seems this may be unnecessary. Simula-
tion of a sampling of 30,000 error poses about a goal pose gave
histograms for values of ||L;"|| and || L;|| for 4 points. These are
shown in Fig. 3 Both are clearly bounded from below by 3 > 1.

Assume that at time £; the system has just switched to IBVS
mode, so Vi(t1) = /. Define the minimum update time as fa.
We seek to pick a K; such that

Vo(ti +ta) = Vip(t1)ta < 7. (29)

In the case that the number of feature points is greater than
three and e; is in the null space of Li+, a subset of three feature
points can be temporarily used. It remains to prove that if Vp is
positive definite, (29) is satisfied.

y /Fy}g_vp(tl)

Vo(t1)ta <Xiy/7p7 ; ta<v, — Vp(t1) (30)

P
/
)\i”’z_; (v = Vo (t1)) ta <~ —Vp(t1) (3D
P
!
Ny [ 2 (32)
ia\ v

1400
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Fig. 3. Histograms of ||L;"|| and ||L]|| for 4 points.

So the condition in (29) is met if \; is sufficiently small. As
expected, as the minimum time between switches increases, \;
decreases to insure a slower velocity.

We have sought a proof of minimum dwell time between
switches, but have been unable to prove this. One recurring
problem with analysis of visual servoing systems is the inability
to find a closed-form solution for the inverse of the image Jaco-
bian, L;. This prevents us from saying anything definitive about
the effects of IBVS on the pose error, and relegates us to numer-
ical results or imposing bounds on L.

Fig. 4 shows a simulation of the trajectory of the errors
in W for a task involving a translation of [1},T,,T.]" =
[0.7500, —0.6495,0.3750]7 in meters and a rotation of
fu = 0.8932[0.1075, —0.4012, —0.9097]7 where 6 is given
in radians. Note that 1/2||e;(0)||> > +;. Fig. 4(a) shows the
result for the non-time-varying gain with A; = X, = 0.05
and 7; = 150 and v, = 0.5. The system moves far outside
the boundaries since the sensor time delay does not detect the
boundary until it is past. Fig. 4(b) uses the time-varying gains
with \; = A, = 0.25. The system heads to the intersection and
becomes stuck there. While this does not alter the stability of
the system (the system does not fail due to lost features or task
space constraints), failure to converge is not desirable. Fig. 4(c)
shows the results for the time-varying gains, but increases 7,
to 0.75. The system now goes to zero error eventually. This
suggests that if the state becomes trapped, and the boundaries
are known to be conservative, temporarily increasing the
boundaries may free it, though careful consideration of the
state should be taken first. Further results for the use of the
time-varying gains will be given in Section V.

It must be emphasized that this stability proof is a local re-
sult, and given the reliance upon the local stability of the IBVS
and PBVS controllers, and the existence of a local diffeomor-
phism between e, and e;, the sufficient region of stability may
be small. However, this is only a sufficient condition, and in
Section V we experimentally demonstrate that the region of sta-
bility appears to be quite large. Furthermore, while this proof is
only for stability, not asymptotic stability, experiments suggest
that the switched system is attractive to the origin over a large
region.
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One goal of the switching method is to insure that the system
never fails due to the robot moving to the end of its reachable
space or losing feature points from the image. The choice of ~;
and ~y,, can keep the system from failure, but the best choices
may require some knowledge of the goal. The goal image and
goal pose must be known for IBVS and PBVS, respectively, so
this does not add additional knowledge requirements.

For instance, given n feature points, a conservative ; is 1/n
times the least distance from any goal feature point to any edge
of the image. While very restrictive, this will guarantee that no
feature point can leave the image. If 7 is large, the feature points
are tightly clustered and are roughly centered in the goal image,
then ; can be increased over the conservative estimate. Addi-
tionally, knowledge of the goal pose will aid in selecting ;. If
the goal pose is known to be far from the 3D feature points, a
large -y, will be necessary.

The switching system can be extended to guard against other
common causes of failure as well. Local minima can exist
in IBVS, thus if IBVS has zero velocity for a nonzero error,
switching to PBVS may free the system from the attraction of
the local minimum. Likewise, it is possible to carve out other
“forbidden regions” in the image space that correspond to such
things as obstacles in the workspace or joint limits in the joint
space. If IBVS approaches these regions, the system can switch
to PBVS or a joint space control to avoid the region. This topic
was explored by Deng, et al. [24].

V. EXPERIMENTAL RESULTS

We present experimental results using the state based
switching rule. These results support our stability proof and
offer insight into the performance characteristics of the system.
Calibration of both the camera intrinsic parameters and the
extrinsic parameters relating the camera position to the robot
end effector are left coarse. This was done intentionally to
demonstrate the robustness of the switched-system.

We use IBVS with feature points as described in Section II-C.
For PBVS we used epipolar geometry, specifically the homog-
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Fig. 6. Experiment of PBVS under large general motion.

raphy relating coplanar points in the goal and current camera
pose. Planar homography has been used in visual servoing, [10],
[12], [37], and specific details can be found in [38].

In our experiment, we used a Puma 560 robot arm and a Sony
VW-V500 color camera. The feature targets are the centroids of
four colored dots. Depth was estimated using knowledge of the
target geometry. Since many of these tasks involve large errors
in the image and position, the gains must be kept small or the
early motions can be so large as to be potentially damaging for
the robot. This also means that when the errors have been mostly
reduced the motions are often very small.

We performed many simulations and experiments. For the
sake of brevity, we present the results of two difficult tasks. Re-
sults for more experiments and simulations are available at [39].
One task involved rotation and translation about all axes. Goal
and initial images are shown in Figs. 5(a) and 5(b) respectively.

PBVS results are in Fig. 6. The feature point trajectories,
shown in Fig. 6(a), quickly leave the image and the task fails.
The values of V; and V}, are shown in Fig. 6(b). The effects of
coarse calibration are apparent in these graphs as the pose error
initially increases under PBVS. Please note the scale of each
graph when comparing results.

Results for IBVS are shown in Figs. 7(a) and 7(b). IBVS ex-
periences camera retreat, and in this case fails due to the robot
encountering joint limits on its elbow joint. The camera trajec-
tory brings the camera back toward the robot base, and the robot
is unable to accommodate this. Coarse calibration affects perfor-
mance, and image error increases a little. Results for the hybrid
system are shown in Figs. 8(a) and 8(b). We set ; = 150 pixels
to keep the features in the image surface and set v, = 100 where
the translation is measured in mm and rotation in radians. The
system switches twice asymptotically, approaching the goal.

As described above, stability is a local property, and the
neighborhood proven to ensure stability may be overly con-
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Fig. 9. Initial and goal images.

servative. We have performed a number of experiments to
demonstrate the performance of our system when the initial
configuration does not lie in a conservatively defined region of
stability. Here, we present the example of a very large rotation
about the optical axis, with the feature points close to the edge
of the image.

Goal and initial images are shown in Fig. 9. Results of PBVS,
IBVS and Hybrid VS are shown in Figs. 10-12. The feature
points leave the image under PBVS control. IBVS undergoes
severe camera retreat and encounters its joint limits. The Hybrid
VS system begins outside the region of stability proven for the
switched system in Section IV-B. After undergoing an initial
camera retreat, the system encounters v; = 100 and switches
to PBVS. PBVS reduces the retreat slightly, but the image error
lies outside v, and the system switches back to IBVS. Rapid
switching occurs, during which both the IBVS and PBVS modes
reduce the rotation error. Eventually rotation error is reduced to
a level that IBVS does not experience camera retreat and the
system converges to Zero error.

As seen in Fig. 4, it is possible for a system to switch forever
and converge to an accumulation point other than the goal. This
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Fig. 10. Experiment of PBVS under large rotation.

Feature point trajectory, *-start to o-goal

100 500,
o= J
o 450
200 5
400
300, £ a0
400, 300

500 0 5 10 15 2 2 30 3 40 45

magnitude V(e)

pixels

O
200 Se 150
)
300 3 100
= H
2 50
E
0 100 200 300 400 500 600 0 5 10 15 20 25 30 35 40 45
pixels time
(a) (b)

Fig. 11. Experiment of IBVS under large rotation.

Feature point trajectory, *-start to o-goal

100/ 500

magnitude Vl(e)

500 0 50 100 150 200 250 300

pixels

@
8
magnitude \/p(e)

0 100 200 300 400 500 600 0 50 100 150 200 250 300
pixels time

(a) (b)

Fig. 12. Experiment of Hybrid VS under large rotation.

does not violate the condition of stability, but it is not desirable
behavior. Arguably, however, this is preferable to a loss of fea-
tures or the robot reaching its joint limits.

Empirically, it appears that switching forever, or ending in
such an accumulation point happens rarely. We have presented
results of that showed attraction to the origin, including when
the switched-system visual servoing started outside its proven
region of stability. However, this is not conclusive. In an effort
to determine how often the system may not reach the goal, we
ran Monte Carlo analysis. The results lend strong support to the
notion that the system is nearly always attractive to the goal (in
our experiments, the system reached the goal 99% of the time
using time-varying gains). This analysis also sheds light on the
practical performance of the system.

We ran Monte Carlo analysis in simulation for PBVS, IBVS
and our switched-system approach using time-varying gains and
constant gains. We sampled the six-dimensional configuration
space (translation and rotation about three axes), resulting in
30,000 unique initial camera poses with the feature points in
front of the camera. Many of these starting poses are outside of
the sufficient region of stability of the switched system, in which
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case rapid switching may result. Gains were chosen such that
each system completed a series of simple test tasks in about 120
iterations. The thresholds for the switched system (both with
and without time-varying gains) are -y, = 1000 and ~; = 150.

For each starting pose, we recorded the time needed for each
of these systems to reach the goal pose. Histograms of the time
to convergence are seen in Fig. 13. PBVS and the switched
system with constant gains have similar distributions. IBVS has
several tasks that complete very quickly, but for the majority of
tasks it performs similarly to PBVS. The switched system with
time-varying gains is notably slower for a number of tasks than
the other methods, as the gains will slow it down. Additionally,
.97% of the tasks took longer than 5000 iterations to complete.
These cases were assumed to be “stuck” at an intersection of
the switching surfaces. Such cases were be deemed failures, al-
though the system remains stable.

We also recorded the maximum value of ||e,|| and ||e;|| en-
countered during each task. In Figs. 14 and 15 we show his-
tograms of the maximum values encountered. In order to main-
tain detail, the vertical scales vary between some of the his-
tograms.

For ||ei||, PBVS has a maximum ||e;|| > 350 pixels in many
cases. The distribution of the hybrid switched system with con-
stant gains also has a portion of the distribution greater than
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TABLE 1
TABLE OF FAILURE RATES

[ System ][ Typel [ Type2 | Type 3 | Total |
PBVS 0% 48.2% 0% 48.2%
IBVS 0% 0% 33.9% | 33.9%

Switched 0% 38.8% | 11.7% | 50.5%
Sw. Varying || 0.97% | 15.4% | 2.5% | 18.0%

350 pixels. However, the distribution lies to the left of the dis-
tribution for PBVS, indicating an expected lower image error.
The distribution of the maximum image error for the switched
system with time-varying gains is very close to that of IBVS,
indicating few expected failures. If a feature leaves the 512 x
512 imaging surface, the system was said to fail. Note that the
square imaging surface and multiple features means that losing
a feature point does not correspond to ||e;|| exceeding a specific
threshold.

Similarly, for ||e,||, IBVS experienced ||e,|| greater than
three meters for many tasks, while PBVS was never greater
than 2.66 meters. For our purposes, ||e,|| greater than three
meters or less than zero was considered a failure. With constant
gains, the switched system experiences several instances where
the camera retreat was greater than three meters, though far
less than IBVS. The switched system performs much better
using the time-varying gains, although some tasks were greater
than three meters since many tasks begin outside the sufficient
region of stability.

We compile the above info into a set of failure rates. The
system was considered to fail in three situations:

1) The system failed to converge within 5000 iterations.

2) A feature point left the image.
3) The system experienced |le,|| > 3000, where translation
is measured in mm and rotation in radians.
The failure rates are given in Table I. The switched system with
time-varying gains outperformed the other systems.

VI. CONCLUSION

Visual Servoing remains hampered by the fact that no single
control method is suitable for all cases. Motivated by this
problem, we propose the use of hybrid switched-system control



GANS AND HUTCHINSON: STABLE VISUAL SERVOING THROUGH HYBRID SWITCHED-SYSTEM CONTROL 539

methods. In this way, a system switches between multiple can-
didate controllers when it is known that one has an advantage
in the current conditions.

We present one such method that incorporates image-based
and position-based visual servoing. This is one of the simplest
possible switched system visual servo controllers, yet it demon-
strates the strength of the idea. We have proven that, within a
sufficient neighborhood of the goal, our controller will never
fail due to features leaving the image or the camera moving too
far from the goal pose. Furthermore, the region of stability is
defined by the user, which provides a great deal of control over
system performance.

However, this particular system is stable, not asymptotically
stable, within part of the region of stability. This introduces the
possibility of converging to a point other than the goal, which
can be deemed failure. This system also remains susceptible
to local minima and singularities in the IBVS control law. Fu-
ture work will focus on more complicated switched system con-
trollers, possibly integrating controllers besides pure IBVS and
PBVS to mitigate these problems.
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