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detection to determine which features can be reliably ex-
tracted from an image as well as which features are usefulWe present a general framework for determining probability

distributions over the space of possible image feature groupings. for higher level processing [17, 34].
The framework can be used to find several of the most probable Less progress has been made in determining how fea-
partitions of image features into groupings, rather than just tures should be organized into more abstract structures to
returning a single partition of the features as do most feature be used by higher level visual processes. Much of the work
grouping techniques. In addition to the groupings themselves, in this area has been driven by the early work of the Gestalt
the probability of each partition is computed, providing infor- psychologists, who claimed that humans group features
mation on the relative probability of multiple partitions that based on several principles, including proximity, symmetry,
few grouping techniques offer. In determining the probability

continuation, closure, and familiarity [21, 44]. The workdistribution of groupings, no parameters are estimated, thus
of the Gestalt psychologists has inspired a number of com-eliminating problems that occur with small data sets and outli-
puter vision approaches to perceptual grouping [2, 6, 19,ers such as the compounding of errors that can occur when
26, 23, 34, 38]. Typically, these computational approachesparameters are estimated and the estimated parameters are
rely on thresholds (e.g., a threshold on the difference be-used in the next grouping step. We have instantiated our frame-

work for the two special cases of grouping line segments into tween orientation of line segments [26], or on the linking
straight lines and for grouping bilateral symmetries with paral- radius described in [6]), or on certainty measures that are
lel axes, where bilateral symmetries are formed by pairs of derived in an ad hoc fashion (e.g., basing the certainty
edges. Results are presented for these cases on several real of grouping two line segments on the proximity of their
images.  1996 Academic Press, Inc. endpoints [23], or using a decaying exponential to define

a probability of termination for line segments [10]).
In this paper we present a new, probabilistic approach

1. INTRODUCTION
to the perceptual grouping problem. Our approach allows
the representation of every possible grouping of imageResearchers in the fields of biological and computer
features, either explicitly or implicitly, along with an associ-vision often conceptualize the overall vision process as
ated probability for each grouping. With this approach itcomprising a hierarchy of processing levels. At the lowest
is possible, for example, to enumerate several of the mostlevel, features are extracted from images. At higher levels,
probable groupings of features. This provides more infor-these features are grouped together into increasingly more
mation than the typical approach, in which only a singleabstract entities, until finally, at the highest levels, scene
grouping is determined. Another advantage to represent-interpretation occurs [1, 3, 5, 17, 18, 25, 39, 41, 43].
ing all possible feature groupings is that no thresholds orThe detection of image features has been studied exten-
arbitrary stopping criteria are needed. Further, no parame-sively by both psychologists and computer vision research-
ter estimation is performed during the process of determin-ers. The study of feature detection in biological vision
ing the highly probable feature groups. Thus, our methodsystems began with the seminal work of Hubel and Wiesel
avoids the problems encountered by parameter estimation[18]. Since then, psychologists have gathered strong empiri-
schemes when there are outliers in the data or when datacal evidence for a variety of feature detection mechanisms
sets are small, including the accumulation of errors that canin biological visual systems, including neurons for detecting
occur when estimated parameters are used in subsequentcolor, motion, depth, and orientation spatial frequency
grouping steps.[41, 43]. Computer vision researchers have studied feature

The criteria by which our system assesses the probability
associated with a feature grouping is based on a simple
grouping principle—features in an image should be* E-mail: becky@ai.uiuc.edu.

† E-mail: seth@uiuc.edu. grouped together when they participate in a common under-
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lying geometric structure. Several of the more commonly ing process has recently been advocated as a significant
capability in perceptual grouping. While perceptual group-investigated Gestalt laws for grouping are instances of this

principle, for example proximity, symmetry, and continua- ing is often treated as a bottom–up process in which fea-
tures extracted by the low-level vision system are organizedtion. The principle is also consistent with the idea that

preference should be given to a perceived structure when into progressively more abstract structures [35, 47], there
is strong evidence from studies of biological vision systems,that structure has a low probability of occurring only by

random chance, thus implying a single cause for the struc- particularly in the context of visual attention, that the
grouping process also involves a top–down component [1,ture [23, 30, 45]. Here, we assume that regular geometric

structure in an image does not often occur by chance. 39, 43]. The necessity of a top–down component in the
early- to mid-level visual processing has also been advo-Therefore, the existence of such geometric structure pro-

vides strong evidence in support of a corresponding fea- cated within the computer vision community. For example,
Tsotsos has argued that without a top–down component,ture grouping.

A realization of our criteria within a probabilistic frame- visual search is NP-complete [42]. Our approach provides a
mechanism to fuse bottom–up information with top–downwork requires a parameterized model of geometric struc-

tures (which defines a parameter space), a characterization control within a consistent probabilistic framework.
The results of using our new methods and probabilisticof how well a set of observed image features fits to a

particular geometric structure (which defines an observa- models on actual intensity image data are given in Section
6. In the final section, Section 7, conclusions are drawntion space), and a probabilistic model that describes the

image formation process and its effects on the distribution and directions for future work are suggested. We now turn
to a brief review of related research.of features in the image (which we refer to as the degrada-

tion model). In Section 3, we derive the parameter space,
2. RELATED WORKobservation space, and degradation model for the two spe-

cial cases of straight lines and bilateral symmetries. Al-
The only work that we are aware of that has similarthough we have chosen these two specific geometric struc-

goals to ours is that of Sarkar and Boyer [36]. Sarkar andtures for the present work, in principle, our approach
Boyer developed Bayesian perceptual inference networksgeneralizes to arbitrary parameterized geometric struc-
(PINs) as a hierarchical model of the spatial organizationtures.
of image features. Features represented by nodes higherEquipped with the models presented in Section 3, in
in the hierarchy are said to be caused by features repre-Section 4 we derive the probability that a set of features
sented by nodes lower in the hierarchy of the network.should be grouped together, conditioned on the observed
The probability of each feature is computed using Bayesianimage data associated with those features. Rather than
methods in which evidence comes both from nodes thatrely on parameter estimation, we compute marginalizing
are lower in the hierarchy (bottom–up information) andintegrals over the entire parameter space, which has the
from nodes that are higher in the hierarchy (top–downeffect of computing the sum of the probabilities of every
information). Lowest level features are determined usingpossible geometric structure, conditioned on the observed
a voting method. The problem that we deal with in thisdata. Computation of these marginalizing integrals is a
paper corresponds to that treated by the lowest levels thedifficult numerical problem, which is addressed in the Ap-
hierarchy in [36]; however, our probabilities are derivedpendix and in [33].
using mathematical models of image features and featureThe formalism that we use for representing all possible
noise, rather than voting methods.feature groupings is a modification of the method originally

Below, we briefly review other related research. Al-presented in [22]. The number of possible feature group-
though much work has been done in the area of perceptualings for a typical image will grow to be intractably large;
grouping, both in the biological and computer vision com-however, most of the groupings will have very low proba-
munities, here we restrict our discussion to research that isbility. Our formalism, which we briefly describe in Section
concerned with grouping straight line segments and finding5, exploits this property by representing explicitly only
symmetries in images. For a review of computational ap-those groupings with high probability, while implicitly rep-
proaches to perceptual grouping we refer the reader to [35].resenting large sets of grouping hypotheses that have small

probability. Using this formalism, the probabilities of only
2.1. Finding Straight Lines in Images

the most probable grouping hypotheses are computed. The
resulting representation can be used to focus the attention The process of detecting edges formed by intensity dis-

continuities in images is a frequent early level image pro-of higher level processes on more likely feature groupings
and, in turn, can facilitate a top–down influence on the cessing task. The extraction of edge contours from an im-

age reduces the amount of data to be processed, whilegrouping process by higher level processes.
The ability to handle a top–down influence on the group- retaining important information about the structure of a
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scene or object. A further justification for this simplifica- proximity in several splitting and merging algorithms for
clustering collinear straight line segments.tion is that humans are able to make many interpretations

using the edge contours of scenes and objects [4, 23, 38]. A different approach to grouping line segments is taken
by Nacken [27]. Nacken constructs a metric for quantifyingA great deal of work in computer image understanding

uses image contours. For this reason the extraction of im- how well two line segments can be replaced by a single
longer segment. Segments are parameterized by centerage intensity edges continues to be a topic of active re-

search. point, length, and angle. Noise is assumed to be reflected as
noise in these parameters. In contrast, our method assumesDetection of edges involves identifying edge points and

possibly thinning the edges to a width of a single edge that the noise is in the location of the edge elements and
does not estimate parameters in determining whether twopoint. Edge elements are then grouped and possibly fitted

with a desired curve model, such as linear, polynomial, segments are part of one longer segment.
Another work that uses probabilistic methods for group-spline, or circular (see, for example, [29]). Edge detection

often results in incomplete and broken edges that are diffi- ing edge elements is that of Cox et al. [10]. They present
a probabilistic method of recovering smooth contours fromcult for higher-level processing systems to use. To improve

the output, edges may be grouped together before a higher the edge elements of an image, refraining from making a
grouping decision until sufficient information has accumu-process receives the data. This is the first task to which

we apply our framework: grouping straight line segments. lated.
None of the approaches described above allow the repre-There have been various approaches to determining

straight edges in an image, and we now discuss a few sentation of multiple feature grouping hypotheses (al-
though [10] incrementally constructs a tree representationof these.

Burns et al. [7] emphasized similarity of gradient orienta- of possible groupings, until the moment at which the best
grouping is selected). Furthermore, most of these methodstion in grouping edge pixels into regions called line support

regions. These regions were then fitted with straight lines do not permit a probabilistic assessment of the quality of
a candidate grouping; instead, ad hoc confidence assign-using other image factors.

One of the most well-known procedures for determining ments are made based on subjective criteria.
Methods based on the Hough transform suffer whenstraight lines in an image is the Hough transform [11]. The

Hough transform involves discretizing the feature (line) peaks in the accumulator array are blurred or do not exist,
sometimes to the point where no feature groupings can beparameter space. Each edge element ‘‘votes’’ for all lines

of which it might be a part. Peaks in the accumulator grid made. With our method, as noise in the input image in-
creases (effectively blurring peaks in the Hough accumula-represent lines in the image. A drawback of this method

is that there is no facility for representation of proximity tor array), our method continues to enumerate the correct
feature groupings, although the resulting probability distri-of elements or location of the line segment in the image.

Huddleston and Ben-Arie [19] modified the Hough butions show increasing entropy and the most probable
feature grouping may no longer be the ‘‘correct’’ featuretransform to eliminate these shortcomings. Their trans-

form for circular and linear edge segments combines a grouping. In Section 6, we present an example using syn-
thetic data to illustrate this effect.measure of the Gestalt principle of proximity with a mea-

sure of nonaccidentalness to assign weights that are accu- Finally, the traditional Hough transform is global in na-
ture and therefore does not readily allow consideration ofmulated for each edge element.

Foresti et al. [13] presented the labeled Hough transform, local effects on the feature grouping process. In Section 6,
we present examples of cases for which proximity of lineanother modification of the basic Hough transform. Edge

points are partially grouped using local information. The segment endpoints can be used effectively to constrain the
grouping process.groups of points are labeled before points vote in the

Hough transform accumulation array. By separating the
voting into an array for each grouping, local information

2.2. Detection of Symmetries in Images
is used in the Hough transform. The basic Hough transform
with its global information can be obtained by summing Most of the work on finding symmetries in images as-

sumes as a starting point a figure on a noiseless background.the accumulation bins that correspond across the group-
ing levels. Friedberg [14] finds the axis of symmetry and axis of the

skewed plane of a skewed symmetric figure. Marola [24]The Gestalt principles of perceptual grouping are explic-
itly used by Saund [37] to group edge tokens into coarser presents a region-based method for determining the axes

of symmetry of a possibly noisy figure. He defines symme-level tokens and for grouping edge tokens into structures
such as corners and curves. Boldt et al. [6] also use percep- try as invariance with respect to reflection about one or

more straight lines. Glachet et al. [16] find the axis andtual organizational principles to group segments into edges.
Scher et al. [38] exclusively use the grouping principle of plane of bilaterally symmetric planar objects viewed under
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perspective projection. Rom and Medioni [31, 32] compute
a hierarchical axial description of a planar shape in which
a figure is represented by its constituent parts. A work in
which the background is cluttered is that of Zielke et al.
[46] who detect bilaterally symmetric figures with vertical
axes in real time using a combination of a region and edge
information. We work with bilateral symmetries formed by
image edges and do not require elimination of background
distractions. Mohan and Nevatia [26] also work with clut-
tered scenes. They use curvature extrema to identify sym-
metric curves with axes that are invariant to viewpoint
direction. These pairs of curves are used along with addi- FIG. 1. Normal parameters for line L.
tional information obtained using other principles of per-
ceptual organization to segment a scene.

As in the case of grouping straight lines, to date there
ized by a pair (u, d), where u represents the normal of thehave been no reported attempts to compute probability
line and d represents the normal distance from the origindistributions over the space of candidate symmetries in
of the reference frame to the line, as shown in Fig. 1.an image.

For the application of grouping features into bilateral
symmetries we restrict the symmetry contours to straight3. PROBABILISTIC MODELS
lines. There are various ways to parameterize the space of
all symmetries of this form. We have chosen to use aIn this section, the models used for computing grouping
parameterization in which the axis of symmetry and sweep-probabilities will be formally introduced. The equations
ing rule are explicit and the lines of symmetry are implicit.for computing the probabilities using these models will be
This parameterization facilitates comparison of axes inde-developed in Section 4, and in Section 5 the framework
pendent of the sweeping rules. The four parameters are u,that enables us to selectively compute the probabilities of
d, a, D. The two parameters u and d define the axis ofonly the most probable groupings is presented.
symmetry while a and D define the sweeping rule, as shownWe begin by defining parameterizations of geometric
in Fig. 2. Thus the parameter space for the symmetries isstructures. We then use the concept of an observation space
h(u, d, a, D) : u [ [0, 2f), d . 0, a [ [0, f), D . 0j.to formally characterize how well an extracted feature fits

to a specific geometric structure. Next we characterize the
3.2. Observation Spaceeffect of the imaging process on features by defining a

degradation model to be the conditional probability den- The set of all features in an image is denoted by S . Each
sity function of observations, given a particular geometric feature, Sk , consists of a set of image data points, Sk 5
structure. Finally, we define the prior model as the ex- hx1 , x2 , . . . , xuSk uj, each of which can be represented by
pected distribution of structures. These types of models xi 5 kxi , yil. Since noise is introduced into the system during
have been used by other researchers in the context of
region segmentation (e.g., [15, 22]).

In this paper, we consider two geometric structures rep-
resenting properties of edges suggested by Biederman [5]:
straight lines and bilateral symmetries. Thus, the probabil-
ity that some set of features should be grouped together
is a function of how well those features fit either a straight
line or a bilateral symmetry.

3.1. Parameter Space

Both straight lines and bilateral symmetries admit a finite
unique parameterization (i.e., the parameterization is bi-
jective). For simplicity, we represent a parameter space by
a finite vector of random variables, Uk 5 [U1

k U2
k ? ? ? Ur

k].
A vector value that Uk can take on is denoted by uk .

The parameter space (sample space of parameter vec-
tors) we use for the line segment application is [0, 2f) 3

FIG. 2. Symmetry parameterization.R1, representing all straight lines. This space is parameter-
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the imaging, digitization, and edge extraction processes, note that a point (u, d, a, D) in the parameter space defines
two lines in the image plane,each component of xi is modeled as a random variable.

Hence, we have Xi 5 kXi 5 x, Yi 5 yl, where x and y are
values that the random variables Xi and Yi can take on. x cos(u 1 a) 1 y sin(u 1 a) 2 dB 5 0, (4)
Appropriate measurability conditions on the random vari-

x cos(u 2 a) 1 y sin(u 2 a) 2 dC 5 0, (5)ables as specified in [40] are assumed.
In order to evaluate the probability that a set of features

labeled as lines B and C in Fig. 2. From the figure we seeshould be grouped together, it is necessary to evaluate how
that the point (x, y) 5 ((d 1 D) cos u, (d 1 D) sin u)well the features fit to a single geometric structure (in our
satisfies (4). Substitute the known point into (4) to obtaincase, either a straight line or bilateral symmetry). For this

purpose we define an observation space as follows.
(d 1 D) cos u cos(u 1 a)

(6)Let Uk denote the parameter space for a particular
1 (d 1 D) sin(u) sin(u 1 a) 2 dB 5 0.grouping of features that contains Sk . Let Sk denote the

set of all random variables of all data points in feature Sk .
Now solve for dB to obtainLet ck(Sk , Uk) be a vector-valued function of the random

variables in Sk and the parameter space, Uk . Each element
dB 5 (d 1 D) cos(a). (7)ci

k(Sk , Uk) is a random variable. Define Yi
k 5 ci

k(Sk , Uk).
The observation space of the set Sk is defined as

Using an analogous procedure
Yk 5 [Y1

k , Y2
k , . . . , Yq

k]
dC 5 (d 2 D) cos(a). (8)

5 [c1
k(Sk , Uk), c2

k(Sk , Uk), . . . , cq
k(Sk , Uk)].

Expressing the two lines implicitly as f1(uk) and f2(uk)
Here, Yk is a vector of random variables. Let yk denote a we have
vector of values that Yk may take on. The number of
functions, q, will depend on the class of structures and f1(uk) 5 h(x, y): x cos(uk 1 ak) 1 y sin(uk 1 ak)
features that are modeled. We now derive two observation 2 (dk 1 Dk) cos(ak) 5 0j, (9)
spaces, corresponding to straight lines and bilateral sym-

f2(uk) 5 h(x, y): x cos(uk 2 ak) 1 y sin(uk 2 ak)
(10)metries.

2 (dk 2 Dk) cos(ak) 5 0j.
3.2.1. Straight Lines. A point, uk 5 (uk , dk), in the

parameter space defines a line in the image plane. Let
Let d(xi , fj(uk)) be defined, as before, to be the displace-

f(uk) be the implicit mapping of points in the parameter
ment of the point xi from the line fj(uk), where j [ h1, 2j.space to a line in the image plane

Two line segments Sk1
and Sk2

may be grouped together
in a symmetric relationship. An observation is then de-

f(uk) 5 h(x, y): x cos uk 1 y sin uk 2 dk 5 0j. (1) fined as

Let d(xi , f(uk)) be the signed distance of the data point yk(Sk1
, Sk2

, uk)
xi to the line represented by the parameter vector uk , i.e.,

5 [d(x11
, f1(uk)), d(x12

, f1(uk)), . . . , d(x1uS
k

1
u
, f1(uk)),the displacement of the point xi to the line described by

the zero set f(uk). We can write d(xi , f(uk)) as d(x21
, f2(uk)), d(x22

, f2(uk)), . . . , d(x2uS
k

2
u
, f2(uk))].

d(xi , f(uk)) 5 xi cos uk 1 yi sin uk 2 dk . (2) (11)

3.3. Degradation ModelLet Sk be an input line segment, represented by a set of
data points hx1 . . . , xuSk uj. We define the observation yk(Sk , In the ideal case, a set of features would be grouped
uk), to be a vector in which each component is the distance together if and only if they exactly fit a single geometric
of a data point to the line f(uk) structure. In this case, all observation values y for either

(3) or (11) would be equal to zero. In reality, the imaging
yk(Sk , uk)

(3) process is not perfect. Therefore, we must model how the
5 [d(x1 , f(uk)), d(x2 , f(uk)), . . . , d(xuSk u , f(uk))]. imaging process affects the observation values. For this

purpose a conditional probability density function,
f(yk u uk), called the degradation model, is used. The degra-3.2.2. Bilateral Symmetries. To establish an observa-

tion model corresponding to bilateral symmetries we first dation model represents the conditional density of an ob-
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servation vector, yk , given a parameter value, uk , of the g(Sk1
, Sk2

, uk)
underlying geometric structure

5 2
1

2s2 F O
xi[Sk

1

(d(xi , f1(uk)))2 1 O
xj[Sk

2

(d(xj , f2(uk)))2Gf(yk u uk)
5 f([d(x1 , f(uk)), d(x2 , f(uk)), . . . , d(xuSku , f(uk))] u uk)

5 p
xi[Sk

f(d(xi , f(uk)) u uk). 5 2
1

2s2 F O
xi[Sk

1

(xi cos(u 1 a) 1 yi sin(u 1 a) 2 (d 1 D) cos(a))2

(12)

1 O
xj[Sk

2

(xj cos(u 2 a) 1 yj sin(u 2 a) 2 (d 2 D) cos(a))2G.The second line follows from the first, since each data point
xi is assumed conditionally independent of every other data
point given the parameter vector uk . That is, given uk , Equations (14) and (15) can be used to quantify the
every xi [ Sk is independent of every xj [ Sk ;i ? j. deviation of a set of image data points from a line bilateral

The degradation model represents the uncertainty in symmetry, respectively, with given parameter uk .
the measured data due to noise and other factors. It is a
characterization of the deviation of observations and, thus, 3.4. Prior Model
features from a specific geometric structure. Various fac-

The joint pdf of uk , f(uk), is called the prior model,tors could contribute to the deviations of the observation
which is a density over the parameter space that representsvalues. Noise in the data may be introduced at any stage
the expected distribution of features over the space. Inof the process: imaging, digitization, or edge detection.
this paper, we will assume that all feature parameter valuesOcclusion, shadows, and lack of contrast are all problems
are equally likely. Thus, f(uk) will be a uniform distributionthat could cause errors when detecting edge contours. The
over the parameter space.only factor that we model is noise. In this case, the degrada-

tion model is a function of the noise in the system.
4. ASSESSING THE PROBABILITY OFThe model we have selected is i.i.d. Gaussian with zero

FEATURE GROUPINGSmean and variance s 2. Each observed point is assumed to
be displaced along a line perpendicular to the ideal line Using the models defined in Section 3, we will now
by an amount characterized by the Gaussian distribution. develop an expression for the probability that a set of
Cox et al. [10] also used a Gaussian distribution to charac- features should be grouped together. The hypothesis that
terize the noise of edge points. Using the Gaussian distribu- features hSai

j should be grouped together is represented
tion in (12), we can write the degradation model for lines as by Ha1,...,an

, where Sai
[ S . For example, H12 represents

the hypothesis that S1 and S2 should be grouped. We note
f(yk u uk) 5 p

xi[Sk

1

Ï2fs 2
e2(1/2)(d(xi,f(uk))/s)2

(13) that the hypothesis H12 is equivalent to asserting that S1

and S2 fit the same geometric structure and therefore that
u1 5 u2 . We begin by considering the case of grouping

5
1

(2fs 2)uSku/2 e2(1/2)oxi[Sk
(d(xi,f(uk))/s)2

. (14) two features, and then extend this to the general case of
grouping n features.

The degradation model for symmetries is
4.1. Probability Assignments for Grouping Feature

Pairsf(yk u uk)
5 f([d(x11

, f1(uk)), d(x12
, f1(uk)), . . . , d(xu1S

k
1

u , f1(uk)), We denote by P(Hij u yi , yj) the probability that the
features Si and Sj associated with a pair of observations yj

d(x21
, f2(uk)), d(x22

, f2(uk)), . . . , d(x2uS
k

2
u
, f2(uk))] u uk) and yj should be grouped together. Note that the observa-

tion space Yi and the parameter space Ui are continuous,
while the hypotheses Ha1,...,an

are discrete, since they are5 p
xi[Sk1

f(d(xi , f1(uk)) u uk) p
xj[Sk2

f(d(xj , f2(uk)) u uk).
either true or false. Our notations are to denote the proba-
bility density function (pdf) of continuous random vari-
ables by f( ) and to denote the probability mass functionApplying the Gaussian noise model, we have
of discrete random variables by P( ).

We will assume that Y1 is marginally independent of Y2f(yj u uk) 5
1

(2fs2)(uSk
1
u1uSk

2
u)/2 eg(Sk

1
,Sk

2
,uk), (15)

given ¬H12 , i.e.,

f(y1 , y2 u ¬H12) 5 f(y1) f(y2). (17)where
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By making this assumption, we have chosen to let the 4.2. Straight Lines
observations be independent if they do not correspond to

For the line grouping application, we use the degradation
the same geometric structure. This assumption is reason-

model of (14) to obtain
able under conditions in which features occur indepen-
dently. For instance, if lines in an image are independent,
then segments that are not on the same line are unrelated. E f(yk u uk) f(uk) duk

There may be conditions under which the independence
assumption is not reasonable, such as if it is known that

5 E 1
(2fs 2)uSku/2 e2(1/2)oxi[Sk

(d(xi,f(uk))/s)2
f(uk) duk (23)

all segments are connected or that intersecting segments
are orthogonal. Something about the image would have
to be known a priori in order to make the decision that 5 E E 1

(2fs2)uSku/2 e2(1/2)oxi[Sk
(d(xi cos u1yi sin u2d/s)2

f(u, d) dd du.
the independence assumption is invalid and to know what

(24)model of the relationships would better represent the situ-
ation.

This double integral can be reduced to a single integralIf the parameter value associated with a grouping is
(see the Appendix). Using (24) in (20) we can determinegiven, the degradation model completely describes the
the probability that any two sets of points are samples ofdensity of the corresponding observations, i.e.,
the same line.

f(y1 u u1 , y2 , H12) 5 f(y1 u u1) (18)
4.3. Bilateral Symmetries

which implies that To obtain a similar expression for symmetries, (15) can
be used to obtain

f(y1 , y2 u u1 , u2) 5 f(y1 u u1) f(y2 u u2). (19)

E f(yk u uk) f(uk) dukThat is, if the parameter value of the grouping to which a
feature belongs is known, no other observations will affect

5 E2f

0
Ey

2y
Ef

2f
Ey

2y
f(yk u uk) f(u, d, a, D) dD da dd du.the density of the observation of that feature.

(25)When Eqs. (17), (18), and (19) are satisfied, it can be
shown (by derivations analogous to those in [22]) that

The sets of segments with the highest probability of
forming a bilateral symmetry can be computed. EachP(H12 u y1 , y2) 5

1
1 1 l0l1(y1 , y2)

, (20)
symmetry consists of two groups of segments, each of
which forms a straight line. Thus, it may be observed that
this is a more complicated (computationally expensive)in which
method for finding collinear line segments. A more
interesting problem is that of determining pairs of lines

l0 5
P(¬H12)
P(H12)

(21) that have the same axis, but not necessarily the same
sweeping rule. To compare symmetries with the same
axis, but different sweeping rules, it is necessary to

represents the prior probability that two features should
generalize the notion of the hypothesis. Consider two

be grouped together and
observations y1 and y2 and their respective parameter
values u1 and u2 , where

l1(y1 , y2) 5
E f(y1 u u1) f(u1) du1 E f(y2 u u2) f(u2) du2

E f(y1 u u12) f(y2 u u12) f(u12) du12

(22) u1 5 (u1 , a1 , d1 , D1)

u2 5 (u2 , a2 , d2 , D2).

represents the effect that the observed data have on the
probability of a grouping hypothesis. The integrals in the Recall that H12 represented the hypothesis that u1 5 u2 ,

i.e., u1 5 u2 , a1 5 a2 , d1 5 d2 , and D1 5 D2 . We nownumerator of (22) are used to compute marginal pdfs f(y1)
and f(y2). Any of these integrals can be replaced by a define H912 to be the hypothesis that u1 5 u2 and d1 5 d2 .

If we are interested only in collinear axes, no restrictionssummation for the case of discrete variables. Finally, note
that (22) is expressed only in terms of the degradation and will be placed on the sweeping rules, that is, the relation-

ship of a1 to a2 or the relationship of D1 to D2:prior models previously defined.
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representing sets of feature groupings (Section 5.1) andE f(y1 u u12) f(y2 u u12) f(u12) du12
partitions of the set of all feature groupings (Section 5.2).

5 E f(y1 u (u12 , d12 , a1 , D1))f(y2 u (u12 , d12 , a2 , D2))
5.1. Representing Feature Groupings

f(u12 , d12 , a1 , D1 , a2 , D2) du1 du2 We denote by fi the set of feature groupings that contain
some specific feature, Si . For example, Fig. 3a shows f1

(labeled as B1) for an image in which four features have5 E2f

0
Ey

2y
HEf

2f
Ey

2y
f(y1 u (u12 , d12 , a1 , D1)) (26)

been detected. In the figure, the set hS1 , S2j represents the
hypothesis that S1 and S2 should be grouped together, butf(u12 , d12 , a1 , D1) da1 dD1
they should not be grouped with either S3 or S4 . Note
that this does not imply anything about the relationshipEf

2f
Ey

2y
f(y2 u (u12 , d12 , a2 , D2))

between S3 and S4 .
We define a feature grouping sample space by the triple

f(u12 , d12 , a2 , D2) da2 dD2J dd12 u12 . (fi , B i , Pi), where B i is the set of all subsets of fi and
Pi is a probability mapping on B i . Elements of B i are
referred to as events. The probability associated with an

Equation (26) follows, since the sweeping rules are inde- event is the sum of the probabilities of each of the individ-
pendent, and therefore we can separate the integrals over ual groupings in the event, since the groupings are mutually
a and D. Equation (26) can be used in (20) to determine exclusive and union of all groupings is the space fi .
P(H912 u y1 , y2). We define an implicit representation of events in terms

of include sets and exclude sets by
4.4. Probability Assignments for Grouping n Features

The expression for the probability of the hypothesis that t(I, E) 5 hT [ fi: I # T, E > T 5 Bj. (29)
n features are consistent given the n associated observa-
tions is more complicated than the expression for two fea- Thus, the event specified by t(I, E) corresponds to the set
tures. These issues are addressed in [9]. We use the approx- of all feature groupings that contain every feature in the
imation derived in [9], include set I, but none of the features in the exclude set

E. Figure 3 illustrates several examples of the mapping
P(H1..n21 u y1 , . . . , yn) from I, E to events in f1 .

A cover, C, of the space fi is defined to be a set of
5 1@F1 1

P(¬H1..n21 u y1 , . . . , yn21)
P(H1..n21 u y1 , . . . , yn21)

(27)
pairwise disjoint events in B i that form a partition of fi .
Figures 3a–e each illustrate one possible cover for f1 . The
probability mapping for the events in a cover is an approxi-

3
1 2 P(H1..n u y1 , . . . , yn , H1..n21)

P(H1..n u y1 , . . . , yn , H1..n21)
G, mation of the probability map on fi (it is only an approxi-

mation, because not all events are represented).
A cover, Ci , is a better approximation to the probability

where mapping than another cover, Cj , if Ci can be obtained by
partitioning an element of Cj . This is accomplished by

P(H1..n u y1 , . . . , yn , H1..n21) removing one event from the current cover, partitioning
this event into two events and by forming a new cover by
including the two new events. We refer to this process as5 S1 1

P(¬H1..n u H1..n21)
P(H1..n u H1..n21)

f(yn) f(y1 , , . . , yn21 u H1..n21)
f(y1, . . . , yn21

, yn u H1..n) D21

.
refinement. The procedure for obtaining probabilities of

(28) feature groupings consists of refining covers until a suffi-
cient approximation to the probability mapping has been
obtained. For example, the cover in Fig. 3c is obtained5. COMPUTING DISTRIBUTIONS
from the cover in Fig. 3b by partitioning the event B3 into
the new events B4 and B5 .We could, in principle, compute the probabilities for all

possible combinations of features using the methods from It is possible, in principle, to determine the exact proba-
bility mapping for fi by refining covers until each singletonSection 4; however, such an endeavor is computationally

infeasible and unnecessary in practice. Most feature group- event is explicitly represented, as shown in Fig. 3e; how-
ever, in practice this is neither desirable or necessary. Forings are so unlikely that effort need not be spent computing

their probabilities. In this section, we briefly review meth- example, consider Fig. 3d, in which the event B6 , an indi-
vidual feature grouping, has a probability of 0.35. No otherods that were originally presented in [22] for efficiently



GROUPING IMAGE FEATURES 407

FIG. 3. Covers of f1 .

event in the cover has a probability of 0.35 or greater. partition in P contains exactly one feature grouping that
includes Si . This feature grouping is, by definition, an ele-Therefore, B6 must be the most likely feature grouping
ment of fi . Thus, every partition contains exactly one ele-since the probability of each event in a cover is the sum
ment of fi . By extension, each cover on fi induces a coverof the probabilities of each feature grouping in the event.
on P. For example, the cover hB2 , B3j on f1 , shown in Fig.Thus, it is not necessary to refine events B2 and B5 further
3b, partitions P into two sets, as shown in Fig. 4a.in order to know that no feature grouping in either of

We can refine P indirectly by refining fi up to the pointthese events has a greater probability than that of B6 .
where a singleton event in B i is obtained. For the exampleWe have developed algorithms, reported in [9, 22], that
shown in Fig. 3, the cover on P when f1 has been com-efficiently explore the space of covers and are guaranteed
pletely refined to individual groupings is shown in Fig. 4b.to find the n most probable groupings, where n may be
As can be seen from the figure, often an individual group-specified according to user preference.
ing in fi will not map to a single partition in P. In this
case, we may further refine the cover of P by focusing on5.2. Representing Partitions of Feature Groupings
feature grouping sample spaces for other features. For

In many applications, we wish to consider sets of feature example, in Fig. 4b, all partitions in the event A7 contain
groupings rather than individual feature groupings. In this the feature grouping hS1j. We can further refine A7 by
section, we briefly describe how the representation scheme refining covers for f2 relative to the feature set S 2 hS1j.
described above can be extended to represent the space (Note that since S1 has already been assigned to a grouping,
of all partitions of image features into groupings. we may not now consider it when constructing f2.) In Fig.

Let P be the set of all possible partitions of S . The 5a f2 is shown along with the corresponding elements of
feature partition sample space is defined by the triple (P, P. Successive P refinements are illustrated in Fig. 5a and b.
A , P), where A is the set of subsets of P, and P is a

5.3. Selection of Initial and Refinement Featuresprobability mapping on A . As described in [22], there is
an implicit mapping of events on fi to events on P. This The efficiency of the algorithms depends on effective

selection of both initial and refinement features. The se-can be seen by noting that for a particular feature, Si , every
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FIG. 4. II cover induced by f1 cover.

lected feature should have an associated data set that con- space it represents will never have to be refined. Thus,
prudent selection of feature data sets can greatly reducetains as much information as possible. Those sets with little

information will not affect probabilities very much. If a set the space of results that are refined, yielding a reduction
in running time and storage space. The effectiveness ofwith very little information content is used, the event that

includes the set and the event that excludes the set will the information depends on features, parameterizations,
and data samples. In practice, we select features with thenearly evenly split the probability of the refinement event.

For example, in the case of line segments, the angle of most feature data points.
long segments can vary much less than the angle of short
segments. Longer segments contain more information 6. EXPERIMENTAL RESULTS
about the segment angle than short segments. When the
probability is evenly split across the include event and In this section, we show a number of experimental results

using the framework. In Section 6.1 the results of ourexclude event, both halves of the space will have to be
refined further. However, if one event, either the include framework on several images with synthetically generated

noise are compared with the results of a Hough transformevent or the exclude event, is very unlikely, the entire half

FIG. 5. Refinement of f (1)
2 .
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FIG. 6. (a) s 5 0.0, (b) s 5 0.5, (c) s 5 0.75.
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FIG. 7. (a) s 5 1.0, (b) s 5 1.5, (c) s 5 2.0.
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FIG. 10. Edge points found using Canny edge detector.

FIG. 8. 512 3 512 image.

on the same data. Section 6.2 contains the results of parti- form is shown for each test in Figs. 6d–e and 7d–e. For
tioning the edge data of images into straight lines, and input to our framework, each set of 30 points was divided
Section 6.3 contains the symmetry axis results. into two sets of 15 points each. In Figs. 6g–i and 7g–i we

In both cases of image data, the initial input to our show lines fitted to the sets of points that are input to our
algorithms was obtained by first processing the image with framework. These are the lines that would be estimated if
a Canny edge detector [8]. The edge detector yields edge no grouping were performed.
contours represented by sets of connected points. These The most probable grouping of the segments into
edges were divided into straight segments using an algo- straight lines, as determined by our algorithms, is shown
rithm similar to the iterative endpoint fitting algorithm in in Figs. 6j–l and 7j–l. As the noise increases the most
[12]. After fitting the edges into straight segments, we have probable grouping is no longer what might be considered
for each segment a set of constituent points. Any deviations as the correct grouping. The correct grouping, however, is
of the points in a segment from linearity are treated as always among the several most probable groupings. It is
noise. not surprising that as the amount of information in the

data points is reduced, due to increased noise, the most
6.1. Comparison to Hough Transform probable grouping is no longer the ‘‘correct’’ grouping.

The Hough transform does not yield meaningful resultsThe Hough transform is a very popular method of de-
as the variance of the noise increases past 1.0. In particular,termining straight lines in an edge image. Here we compare
the peaks of the Hough transform become indistinguish-the results of our framework to that of a Hough transform
able as the noise increases.under various noise conditions. Our experimental method-

In the case of reduced information (high noise), high levelology was as follows. Thirty sample points were generated
information must be used to make a decision among thefor each of three lines. Six tests were performed, each with
most probable partitions; however, it should be noted thatdifferent levels of Gaussian noise added to the data points.
the partitions computed by our methods will still containThese input points are shown in Figs. 6a–c and 7a–c. The
useful information, unlike the Hough transform. Finally, wesurface of the (u, r) accumulation grid of the Hough trans-
note that as the noise in the input image is increased, the
probability of the most probable groupings decreases from
0.995 for the case of no variance to 0.17 for the case with a
variance of 2.0. Thus, our methods provide intuitively satis-

FIG. 11. Edge detector output fitted with straight lines. Lines with
five pixels or fewer have been removed.FIG. 9. Probability of 10 most likely partitions.
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FIG. 12. Four most probable partitions (not using distance factor).

FIG. 13. Four most probable partitions (using distance factor).
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FIG. 16. Edges found by Canny edge detector.

FIG. 14. 440 3 431 image. Figures 12 and 13 demonstrate how proximity can be
incorporated as a factor in grouping. We used a proximity
factor to reduce the grouping of distant lines in the image
for the results in Figs. 13 and 17. The factor was ignoredfying results: as noise increases, the entropy in the probabil-
if the distance between the closest pair of points wasity distribution increases and the probability assigned to the
less than 25% of the sum of the number of points inmost probable grouping decreases.
each line. If the distance between segments was greater

6.2. Line Segments than this cutoff, the proximity factor was e2(dist–weight)2
,

where the weight is the sum of the number of pixels inLine segment grouping results are shown for two images
each segment. This factor was incorporated into the joint(Fig. 8 and Fig. 14). For each image the four most probable
density f(y1 , y2 u H12) of (20). These figures illustratepartitions are shown (Figs. 12, 13, and 17), and the distribu-
the value of being able to consider local properties intion of the 10 most probable partitions are shown (Figs. 9
the grouping process.and Fig. 15). The distribution of 10 most probable parti-

tions gives an indication of how many partitions have 6.3. Symmetry Axes
nearly the same probability and how rapidly the probability

The partitioning of the symmetry axes of two imagesof alternate partitions decreases. The edges found by the
are shown. The images were first processed by groupingCanny edge detector (Fig. 10 and Fig. 16) and the edge
line segments. The most probable partition of line seg-detector edges fitted with straight lines (Fig. 11) that are
ments was used as input for the symmetry axis partitioning.used as input to the probabilistic framework are shown.
All pairs of segments were initially considered. Those pairsFor each figure of partitions (i.e., Figs. 12, 13, and 17) the
whose projections onto an estimated axis overlapped lesspartition with the highest probability is shown in (a) and
than a threshold were thrown away. A variance of s 5 3.0the partition with the fourth highest probability is shown
was used for all experiments in this section. We show thein (d). A variance of s 5 0.5 was used for the phone image
two most probable partitions of the axes into sets of paral-and a variance of s 5 1.0 was used for the building image.
lel axes.

Partitions of parallel axes are shown as a series of
figures. Groupings are shown as individual figures. For
example, Fig. 21 represents one partition with four sets
of groups.

All axes in an individual figure belong to the same
group. Each figure shows the axes in a group (black)
and, for reference, the input lines are also shown (gray).
The axes shown are the estimated axes. The algorithm
groups sets of data, but does not estimate any symmetry
axes. We have estimated the projection of the lines of
symmetry onto the axis for visualization purposes.

The first example, shown in Figs. 18–22, while very
simple demonstrates the information that can be obtained
from the probabilities of the top several partitions. From
the distribution of the top five partitions, it can be seen

FIG. 15. Probability of 10 most likely partitions. that the most likely partition is significantly more likely
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FIG. 17. The four most probable partitions.

than any other partition. This is due to the fact that not by low-level grouping algorithms such as those that
we propose.every input line carries significant information and leads

us to conclude that no other partitions need be considered
as viable alternative explanations of the data, 7. CONCLUSIONS AND FUTURE RESEARCH

The final example is shown in Figs. 23–26. By looking
We have presented a framework for determining theat the groupings of parallel axes, one can infer a great deal

most probable partitions of data sets representing imageabout the symmetry in the input image. For example, Fig.
features into consistent feature groupings. Probabilistic26d contains many parallel axes. From this, a higher level
models of noise and image features are used to computeprocess could infer the existence of specific symmetric

structure in the input image; likewise for Figs. 26e, f, g,
and k. We do not intend to imply that every grouping of
symmetry axes is significant. Indeed, such inferences
should be made only by higher level grouping processes,

FIG. 18. 512 3 512 image. FIG. 19. Probability of five most likely partitions.



GROUPING IMAGE FEATURES 415

FIG. 20. Straight edge segments. There are nine lines.

the probability that features are consistent, given data sets
representing the features. The framework has been demon-
strated to perform well for partitioning line segments into
collinear sets and bilateral symmetry axes into sets of paral-
lel axes.

Many of the most probable partitions determined were
very similar and nearly equally likely. For the image of
Fig. 18, however, one partition of the symmetry axes was
significantly more likely than any others. The four next
most likely partitions of symmetry axes were almost
equally probable. In the other figures there were less
marked drop-offs in the probabilities of the most likely
partitions. This information could be useful for a high level

FIG. 22. Parallel symmetry axes. This is the second most probable
partition. This partition divides the set of axes into four groupings as
shown in (a)–(e).

process. For the case of the image in Fig. 18, it may be
that additional processing to distinguish between the most
probable partitions is unnecessary, while in other cases,
the similarities of the partitions may be noticed and used

FIG. 21. Parallel symmetry axes. This is the most probable partition.
This partition divides the set of axes into four groupings as shown in
(a)–(d). FIG. 23. 512 3 512 image.
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A. APPENDIX

A.1. Line Segments

We now make an observation to reduce the double inte-
gral in (24) to a single integral. The best fitting line (min-
imizing the sum of squares of perpendicular distance to
the line) passes through the center of gravity (x, y) 5
(1/n) o xi , (1/n) o yi) of the data points [12]. Noise intro-
duces uncertainty in the angle of the line about the center
of gravity (x, y). There is virtually no noise in the direction
perpendicular to the best fitting line at the center of gravity
[20]. Therefore, we can assume d((x, y), f(uk)) 5 0. We
can use this assumption to eliminate d from (24), thus
simplifying it to a single integral rather than a double
integral. We are not eliminating d by estimating its value.

FIG. 24. Probability of five most likely partitions. We are assuming that the conditional density of the degra-
dation model over the portion of the parameter space
representing lines that do not pass through the center of
mass of the data set is negligible. We use this assumption

in conjunction with additional information to make distinc- to formulate one parameter, d, in terms of the second line
tions between the most probable partitions. parameter, u. We can then substitute for d and obtain an

It may be desirable to determine sets of collinear seg- expression dependent only on u and the data.
ments that are connected. Features would be segments We obtain an expression for d of the best fitting line by
with endpoints, rather than the infinite line model we used. minimizing the sum of squares distance to the line. This
Factors that could be used to influence the probability that is accomplished by setting the derivative of the expression
two segments are collinear and connected are the gradient for the sum of squares distance to the line with respect to
direction and magnitude, distance between the segments, d to zero. We have
and length of the segments. Modeling features as finite
segments rather than infinite lines would eliminate the ­ o (xi cos u 1 yi sin u 2 d)2

­d
5 22 O (xi cos u 1 yi sin u 2 d)need for the heuristic distance factor that was used.

The symmetry axis application can be easily extended
5 0.to skewed symmetries by adding a skew parameter. Other

contour models such as B-splines could be used.
We multiply by the constant 22/n (where n is the numberOther models of features and noise can be used in the
of data points) and solve for d to obtainframework. Features such as circles and corners could be

used if appropriate parameter spaces and models can be
d 5 x cos u 1 y sin u. (30)determined. For more complex models and high dimension

parameter spaces, the required integrals become difficult
We now have an expression for the line parameter d into calculate, so simplifications and approximations may
terms of the center of gravity, (x, y), of the data points andbecome necessary.
the line parameter u. Substituting (30) into the exponent
of (24), we have

2
1

2s 2 O [d(xi , f(uk))]2

5 2
1

2s 2 O (xi cos u 1 yi sin u 2 d)2

5 2
1

2s 2 O ((xi 2 x) cos uk 1 (yi 2 y) sin uk)2 (31)

5 2
1

2s 2 O ((xi 2 x)2 cos2 uk

FIG. 25. Straight edge segments. 1 (xi 2 x)(yi 2 y) cos uk sin uk 1 (yi 2 y)2 sin2 uk).
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FIG. 26. Parallel symmetry axes. Most probable partition. This partition divides the set of axes into 11 groups shown in (a)–(k).

The marginal density of an observation is now
g(Sk , uk) 5 2

1
2s 2 O

xi[Sk

((xi 2 x)2 cos2 uk

f(yk) 5 E 1
(2fs 2)uSku/2 eg(Sk,uk) f(uk) du, (32)

1 (xi 2 x)(yi 2 y) cos uk sin uk

1 (yi 2 y)2 sin2 uk).where
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FIG. 27. Lines A and B are the bilateral symmetry axes for lines 1 and 2.

The models described in this section are not affected by of initial symmetry axes considered. Bilateral symmetry
axes can be generated from every pair of lines by bisectingthe distance between segments. In particular, the model

determines only the probability that segments are collin- the angle between the lines, as shown in Fig. 27. In Figs.
27a and b axes A and B can be generated from lines 1 andear, not how probable it is that the segments are connected.
2. Notice that the axes pass through the point of intersec-

A.2. Approximations for Computing Symmetry Integral tion of lines 1 and 2 and that the two axes are perpendicular
to each other. In Fig. 27c, we see that the parallel lines 1The quadruple integral in (26) must be calculated thou-
and 2 yield only one axis, A.sands of times for a typical image; thus, it is advantageous

In an image, most line segments will not intersect as into find methods of reducing the complexity of computation.
Fig. 28a. If we project segments 1 and 2 onto each axis, AWe now describe the simplifications that we have imple-
and B, the projections do not overlap on A. Sometimesmented.
the projections do not overlap on either axis, as in Fig.The first reduction is the same simplification that was
28b. For n input segments there are 2(n

2) 5 n(n 1 1) initialmade in Section A.1 for lines. The best fitting line will
axes of symmetry. The axis onto which the projection ofalways pass through the center of gravity of the sample
two symmetry lines does not overlap will not be a perceptu-points. We can eliminate d and D from the integral (26)
ally significant axis of symmetry. We can eliminate manyin the same manner that we eliminated d in Section A.1.
initial axes by considering only those axes onto which theThe new expression for f(y1 , y2 u H912) is
line segments overlap.

Our final approximation is to concentrate the integration
f(y1 , y2 u H912)

(33)
on the range of angles over which there is a significant
probability of the axis. For symmetries whose data sets

5 E FE f(y1 u u1) f(u1) da2 E f(y2 u u2) f(u2) da2G du. have many points, the range of possible angles with signifi-
cant probability will be very small. Many integrations can
be avoided by observing that the ranges of axis angles do

Our next approximation involves reducing the number not overlap.
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