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Abstract. This paper addresses the problem of nding glass ob-
jects in images. Visual cues obtained by combining the syste
atic distortions in background texture occurring at the hdaries

of transparent objects with the strong highlights typicélgtass
surfaces are used to train a hierarchy of classi ers, id@ntjlass
edges, and nd consistent support regions for these edgaali-Q
tative and quantitative experiments involving a numberifbéint
classi ers and real images are presented.

1 Introduction

This paper address the problem of nding glass objects in im-
ages, focusing on the identi cation of their internal andezral
image contours in the output of an edge detector. Typicakgid-
jects such as bottles, glasses, plates, and vases havesrathath
surfaces, display strong highlights but weak diffuse réamce,
and—as pointed out by Murase [16]—reveal a distorted varsfo
the texture of surfaces lying behind them (Figure 1). Thesp
erties are used in this paper to identify a number of visuakcu
associated with the image regions surrounding glass e@jesn
a set of training images with hand-labeled glass edges, eveube
these cues to learn a hierarchy of classi ers and identégifnents
of glass boundaries in new pictures (see [12] for relateckviror
the image segmentation domain). A global integration stefges
these fragments and uses snakes to identify their supmpdne
as potential glass objects.

1.1 Background

The re ective and refractive properties of transparenteoty can
be used to recover their shape from images [2, 3, 8, 15, 16],
or identify known three-dimensional shapes in photogrgfB$
They can also be used to identify re ections in transpararfeses
and separate them from the background: Given the motioneof th
two layers, [22] uses a linear algorithm to recover the twdspa
Levin et al. [10] makes the observation that this can be dgne b
separating an image into two images such that the numbegesed
and corners is minimized. Adelson and Anandan [1] introdaice
linear model for the intensity of a transparent surface,elgm

1)

where is the intensity of the background, is a a blending

factor, and is the emission of the (semi) transparent surface it- 2

self. They use this model to derive a set of constraints on the
brightness patterns of X-junctions at the boundary of pansnt
objects. From these a junction can be classi ed as one otthre
types: non-reversing if the intensity shift is in the sameclion
along both edges of the X, single reversing if it switchesiglone
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Figure 1: An edge separating two regions. To determine if the edge is
caused by a glass surface we examine a small part of the edbeoampare

the patches on both sides. If the edge is from a glass objenttibth sides
should be similar and distorted. The distortion is requiiedorder to
distinguish the edge from other edges within textures.

edge, and double reversing if it switches along both edgesh B
non-reversing and single-reversing junctions allow f@ pgossi-
bility of a transparent edge being present, but doublersavg
ones do not. Singh [20] uses these constraints to sepaaate tr
parent overlays from their background: Regions with singtzor
and texture are clustered together, and their edges ard.f@ath
of the edge X-junctions are then labeled as either non-segr
single-reversing, or double-reversing. The connecteccedge
then followed until returning to the junction, in effect éning a
region covered by a transparent overlay, or running intoubbio
reversing junction. If a double-reversing junction, isaleed the
algorithm backtracks to any single-reversing junctioret tivere
seen along the way to try a different route. The reason for the
clustering is to reduce the amount of data and increase therop
tunity of successfully separating transparent regionsticdddhat
the constraints do not guarantee a transparent edge is\prbae
only the possibility. In fact it is very likely that an albegattern
may satisfy these constraints. Thus taken locally the caimss
only offer an indication of a possible transparent edge aust e
then looked at globally to see if a region can be found thatéesyr
with all the responses.

The method proposed in this paper does not rely on the detec-
tion of X-junctions, which is dif cult in realistic imagerybut it
does exploit the linear model of Eq. (1).

Edge Cues

Given contour fragments from an edge detector we would like
to identify those that are associated with glass. Kaufhald a
Hoogs [12] use various cues to remove edges that a persom woul
not consider to be true object boundaries. Basically, the o
to keep edges that are between two non-similar regions. Were



are not concerned with true object boundaries but instetdin any sense we must consider how textured the background was
ternal and external edges of glass regions. Since glassiddlyis  to begin with. A small shift on a highly textured background
clear, we focus on its refractive/re ective properties. sAming could just be noise while on a smooth background is much more
that a sample of the background is visible and undistortednn signi cant. We thus normalize the measured shifts by a measu
side of a glass edge, we identify ve cues to the presencedi su of the texture entropy which we take to be the standard dewiat

an edge. of the intensities on that side of the edge.

Color Similarity: the color tends to be similar on both sides
(Section 2.1). 2.3 Overlay Consistency

Blurring: the texture on the glass side is blurrier (Section Rather than using the constraints of [1] we directly use the
2.2). model given in Eqg. (1). The two parameterand can be used to
Overlay Consistency:the intensity distribution on the glass identify edges exhibiting transparent overlay effects. Awalue

side is constrained by intensity distribution on the noasgl near _and a low _value of |nd|cat_es that the edge |s_l|ke|y an
side (Section 2.3). intensity change in a textured region. Anless than with and

small may indicate that the edge belongs to a transparent object.
Texture Distortion: the texture on the glass side is slightly A jow  and/or high indicates a strong intensity change indicat-
different (Section 2.4). ing an edge between two very different regions. Thus these tw
Highlights: the glass side has a specularity (Section 2.5).  parameters will make up the values of this cue.

Equation (1) is a linear in two unknowns, and can thus be
solved given at least two distinct intensities on each sidéhe
edge. This is interesting and makes sense since given a feemog
neous background there is no reason to assume the presence of
a transparent overlay rather than just a change in interSitce
Eq. (1) is a 1D af ne transformation resulting in only a sagliand
translation (and assuming the texture is consistent ongid#s of
the glass edge and that our sample is large enough) we cam assi

and by clustering the intensities on the two sides of the edge
by percentages. In other words we can say that the top 10%tbrig
est on one side is equal to the top 10% on the other side and so on
The mean intensity of the clusters of one side becomes thewval
2.1 Color Similarity of in Eq. (1) and the means of the clusters on other side the

The value returned provides an indication of how similar values of . The value of and can now be solved as a linear
the colors are across the edge. To measure this a histogram ideast squares problem. The value o$hould be betweenand

Note that internal edges in glass regions often corresposdd-
den changes in object thickness or shape, and one can stibies
that the texture on one side of the edge is a distorted vedditire
texture on the other side.

Each of the ves cues used in this paper is characterized by
one or two scalar values that provide information relevarglass
properties. Similar color distributions and high alphaueal indi-
cate possible transparency. Blurring and distortion detl ve-
fractive properties, while emission and highlights deahweé ec-
tive properties. Below we describe how the values for eaehacea
obtained.

constructed for each side containing twenty bins for rarfgeue so if it is negative we simply switch the values of and .
values and twenty bins for the saturation values. The iitiens One may ask that since glass is clear shouldr&lways be 1
component is ignored in order to make the measure somewhatand always be 0 for glass edges. In practice thealue actually
invariant intensity differences. The two histograms anemaized tends to be a bit less than 1 on glass edges, again likely due to
to have a sum of one and the euclidean distance between thenthe smoothness phenomena. Also, the emission value appears
calculated. This distance is the value returned. correspond with weak re ections in the glass.
_ 2.4 Texture Distortion

2.2 Blurring Because of refraction we can expect that a textured backdrou

In our experiments it has been observed that the side colagred il be magni ed and/or skewed when seen through glass. The
glass is often a smoother version of the other side. We exfiié value returned from this cue should provide information @ t
as the result of impurities in the glass causing imperfefchction how similar the texture is on both sides of the edge.
as well as minor surface variations which create differguiical To measure the difference in texture we lter both sides ef th

properties along the surface. Thus the value returned Byctle  edge with a bank of gaussian Iters consisting of six ori¢iotes
should indicate how much smoother one side is compared to theand two scales [14]. Distributions of the lter outputs areated
other. for both sides of the edge. The similarity of the texture antthio

The method for measuring texture smoothness proposed bysides is then measured as the euclidean distance betwetmothe
Forsyth and Fleck [7] involves subtracting a smoothed wersi  {istributions.

of image from the original. Already smooth areas will have o

small differences where as highly textured areas will havgd 2.5 Highlights

differences. To measure the smoothness of a 2D sample we Glass is known to be highly specular, making highlights aval
turned to the discrete cosine transform. Once the two sides a able cue. The value returned from this cues is a binary vaildie i
transformed we compute the mean of the frequency coef sient cating if a highlight was detected on one side of the edge.

on each side. The difference among the two means can then be As discussed by Klinker et al. [13] highlights can be found in
used to indicate relative smoothness (as being a shift ilto t color images by assuming a dichromatic color model and look-
lower frequency range of the spectrum). For this measureat@m  ing for dog leg like structures in a plot of the colors obseri@
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Figure 2:Typical pro le of a highlight on a smooth specular surface. the previous plot as a function of the intensity thresholbe ihtensity at
which the error is no longer small is chosen as the thresholdetermine

small windows. While an effective technique in areas coraj highlights. The chasen threshold of 0.71 is indicated byrava

monochrome surfaces, searching for the dog leg structoresq

tured areas can be a nuisance. Since highlights are ushally t

brightest part of the image (being re ections of the lightsze) a

simple technique is to threshold based on intensity (e.gpike

pixels above of the brightest value). However we can do bet-

ter. Clearly it is desirable to set the threshold as low asiptes

in order to get as much of the highlight as possible. At theesam

time we do not want to introduce bright patterns resultingrfr 3 A Local Classi er

non-specular re ections. Each of the parameters, except for highlights which areeeith
We use the following heuristic to detect highlights in a-eli 0 or 1, should occupy a small range of values at a glass edg®: co

able fashion. First note that highlights on smooth shinjesmss differences should be small, smoothness shifts small buizeoo,

such as those of most glass objects tend to have a pro le ssich a alphas near one, emissions low, and distortion somewhht fig

the one shown in Figure 2, where a sharp spike is overlaid on alearn the space of parameters occupied by glass we use asuppo

mostly bright Lambertian regions. For example if a whiteethe

of paper is placed in the image at an appropriate angle as to be
fairly bright, the threshold would be set just above its maxn
brightness. While this is what we want it is undesirable fis to
suppress highlights through out the image. We overcomebthis
examining sub-windows instead of the whole image at once.

(locally) smooth intensity pro le due to diffuse re ectioand/or, vector machine with a gaussian kernel. The result is a hyqeep
in the case of transparent objects, background textureioar  in the space described by the kernel function that maxintizes
analytical models for the shape of this spike exist, fromrthe- margin between the positive and negative data.

physical Phong model commonly used in computer graphics, to  We must be very conservative when labeling an edge as glass.
physical models related to the microscopic roughness oftine There are many situations in which non-glass edges aressitoil
face, such as those proposed by Healey and Binford [9] and Na-glass edges as de ned by the cues. One example is a lined sur-

yar et al. [17]. For our purposes, it is suf cient to note than face such as the mat shown in Figure 7. Across the lines there
each side of the spike and over most of its (small) extentjrthe is a similar color distribution, the possibility of a low &g value
tensity pro le is close to a straight line. In turn, this meathat and non-zero emission value (due to shading). Something sim
the perimeter of a two-dimensional highlight region found by lar could be said for shadows. However, we have another cue in
thresholding should also be a roughly af ne function that we know the glass in the image encloses a region. Thhs if t
of the threshold . The perimeter of a bright diffuse region, on the precision of the classi er is somewhat high we can use a globa
other hand, tends to be (roughly) piecewise constant. integration step to link sparsely found glass edges togéec-
Thus to nd the proper highlight threshold we create a plot of tion 5). Thus our goal when training the classi er should be t
highlight perimeter as a function of intensity thresholdnc® an ~ Minimize the number of false positives.
image has been thresholded, such that pixels below thehtbicks A method of minimizing false positives is to have a large num-

are black and pixels above are white, we estimate the pezimet ber of negative examples and weighting the negative dathein t
simply by counting the number of sides on each white pixef tha training set more than the positive data. Thus to discoucafje
face black pixels. As can be seen in the middle plot of Figutee3 ~ ing such edges glass we can collect a large collection of-nega
tip of a spike can be seen lying on its side near the end of tite pl
As argued above, we can approximate the edge of the spike by a
straight line. Thus to nd the threshold we iteratively t aé to
the perimeter values , starting from a threshold of 1.0 antithe
t error (see Figure 3). As can be seen the error is nearly @ unt
the bottom of the spike region is hit (indicated by an arrovhia
gure). An example is shown in Figure 4 where the threshold is
set to 0.71 for a glass plate. Had the threshold been set teG x
value of of the brightest intensity, a value of 0.87 for this
image, much of the highlights would have been lost.

By setting the threshold in this way we can set it as low as Figure 4:A glass plate and its detected highlights at a threshold B 0.
possible to get as much of the highlight without worry of urdihg




tive samples embodying as many cases of such undesiralds edg
as possible and then give them a high weight. Even with a large
weight forcing no false positives on the training data theried
classi er tends to have too many false positives on test.déta
encounter this problem due to our quantized view of the space
We would like the number of false positives to be extremely, lo
perhaps one in one million edge samples. In order to readhauc
rate we would have to acquire an amount of negative sampdgs th
would be impractical to train a classi er with.

A more practical option to limiting false positives on test-i
ages is to set the recall rate low enough such that only tbegsst
true glass edges are labeled as glass and the weaker glass edg
along with these false glass edges are labeled as non-gias®
this we turn to another technique to adjust the recall of aMSV
which is to adjust the position of the hyperplane away from th
negative data. In other words we shift the constant paransete
that the decision boundary passes into the positively ¢éabdhta,
increasing the number of negatively labeled data. We dauttié
the number of true positives drops below 30% on the trainatg.d

4 Multiple Classi ers

Let us consider the range of values for each of the cues pa-
rameters in glass as logical propositions. From this we ntiade
observation that for an edge to be glass only two of theseggiop
tions must always be true given that one of the other fouuis &is
well:

The above statement can be re-written as four differerdsizimts
of three propositions:

The underlying structure comes from the fact that the catoral-
pha parameters are suf cient in eliminating most non-gkdges.
What is left is to distinguish among the two types of edges$ tha
satisfy the proposition associated with these parametgesnal
texture edges and glass edges. Thus we need informatiorafrom
least one, not all, of the other cue parameters.

Since the problem has this structure it may prove bene cial
to use it and learn four classi ers in the lower three dimenal
spaces of the four statements above, rather than a singlsi-cla
er using all six cue parameters. To combine the outputs ef¢h
classi ers we consider the three methods described below.

4.1 Logical OR

The most obvious means of combining the classi ers is to OR
their outputs. That is if one classi er labels an edge asgythsn
the edge will be labeled glass.
4.2 Weighted Sum

An alternative to OR'ing the classi er outputs is to weighem
and see if their sum is above some threshold. By combining the

cues in this way we are able to give less weight to cues thabtlo n
perform as well as the rest. It may also be the case that sets of
cues labeling an edge as glass is better than considerihgoaac
separately. If this is the case then no one weight will be altbe
threshold.

One method of nding the weights and threshold is to use gra-
dient ascent to maximize the classi er's accuracy on thaing
set. However, one should notice that the parameters weeakimtp
for de ne a support vector classi er with linear boundaries

4.3 Exponential Model

One can combine boolean classi ers so as to return a proba-
bility of a given label given their outputs. Maximum liketibd is
used to learn the parameters of an exponential model, wioose f
is given by entropy considerations as:

where is the probability of a label being assigned to the
SVM classi er outputs [4]. is a weight for a particular feature
de ned by the function . These feature functions return a
value of 1 if takes a particular form given and O otherwise.

is a normalizing factor. The parameters are found with gen-
eralized iterative scaling [6]. Once the parameters aradoue
can classify a particular set of sub-classi er outputs lgshold-
ing on a probability of

5 Global Integration

Once a part of an edge has been classi ed as glass we should
more easily believe that the rest of the edge is glass as Wll.
can increase the number of positive results by connectingtige
samples labeled as glass if they have a path connecting them.
will be described in the following section, edges from thged
detector are broken into smaller edge samples for clagsbea
Some of these may be labeled as glass while some may not, even
if the whole edge is glass. These false negatives can octhe if
assumption is locally violated (i.e. the background is hetgame
on both sides) or because of the conservative training ofldse
si er. This hysteresis style of approach provides us witheans
of recovering these falsely labeled glass edge samples.

We now have a number of long edges that are labeled as glass.
To nd the glass region that these edges enclose we can use an
active contour approach such as the one described by Kass et
al. [11]. Initialized at the boundary of the image a polygan i
iteratively updated so as to minimize an internal energyftion
enforcing smoothness and an external energy function pirede
to be near edges. Once the contour has converged all pixigwi
its boundary are labeled as glass.

6 Experiments and Results

Given an image we nd edges with the Canny edge detector.
From an edge point we then walk 25 pixels in each directiod, an
using the center pixels normal we take a sample 25 pixelsandtw
in the positive and negative direction. The edge samplethare
transformed into a 6-vector using the described cues. Thdtge
from the various cues can be seen in Figure 6.

To train the classi er 15 images were used. Six of these irmage
contained glass objects in front of various backgroundsge&d



Classi er True Positive Rate (Recall) False Positive Rate Precision
Single SVM 47.01% 3.09% 68.76%
Multiple SVM's + OR 88.30% 10.04% 56.04%
Multiple SVM's + Weighted sum 83.94% 8.53% 58.78%
Multiple SVM's + Exponential model 88.30% 10.04% 56.04%
| Multiple SVM's + Weighted sum (sampled) 79.72% | 4.12% | 73.7% ]

Table 1:Results from the described classi ers, all tested on a tesb§50 images where glass pixels were marked by hand. Thepusitive rate, or
recall, indicates the percentage of glass pixels that wereectly identi ed. The false positive rate indicates thergentage of non-glass pixels that were
identi ed as glass. Precision is the percentage of iderdtiglass pixels that are actually glasErom top to bottom: an SVM trained on all six values of
the cues, a classi er consisting of the OR'ed output of the fub-classi ers as described in section 4.1, a classi ensisting of a weighted sum of four
sub-classi ers as described in section 4.2, and a classtensisting of the outputs of four classi ers combined tlylo@n exponential model as described
in section 4.3. The last row contains results from a clagscensisting of the weighted sum of four sub-classi ersreal on a subset of the training data
as described in section 6.

were manually labeled and broken into 333 positive trairsiam- si er falsely labels edges as glass. The falsely labelecesdge
ples. The other nine images contained no glass. An edge-detecthe result of the large texture pattern in the image. Sincanse
tor provided the edges which were then broken into 4581 hegat looking at each side of the edge through a window of nite size
samples. To test the various classi ers a set of 50 imagesised. we fail to get accurate statistics from larger texture page In
Thirty ve of these images contained glass objects in frdntawi- this example the color is similar on both sides of the edgesal
ous backgrounds. Glass regions were manually labeled aretist  the internal of the brick pattern. The alpha value is likellyhhas
in a separate image mask. The remaining fteen images aoedai  well. Due to our limited view, the texture appears to be défe
non-glass objects. on each side of the edge, thus these non-glass edges aredlabel
To measure how well the classi ers found glass each one wasas glass. It should be pointed out that in this image thereaare
run on the set of 50 hand labeled test images. The regions iden signi cant amount of edges within the brick that were cothgc
ti ed as glass by the classi er are then compared with theksas classi ed as non-glass.
associated with each image. True positives are measurdteas t
number of pixels within the intersection of the two regionisiles
false positives were measured as the number of pixels wiig@n
shake but outside the mask. The results can be seen in Talihe 1.
classi er trained using the six cues has a recall of 47% ancka p
cision of 68%. The classi ers made of sub-classi ers havghleir
recall rates, all around 80%, but at a somewhat lower pi@tisi
In addition to the four classi ers discussed before we exper
mented with the idea of training a classi er on subsets oftthi-

ing data rather than the whol_e_ set. The subsets were chqsen ra acknowledgements. This work is partially supported by the Na-
domly so that we had 50 positive samples and 100 negative SaMsjgnal Science Foundation under grant [1S-0308087, Toltdtor
ples. A classi er trained on such a subset was considered fdto Corporation, and the Beckman Institute.
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Figure 7:Test images and output from the described systeasft: Six sample test imagebtiddle left: Edges from edge detectddiddle right: Edges
that have been labeled as glag¥ight: Regions of glass found by shrinking a snake around the ldgss edges.



