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Abstract. This paper addresses the problem of �nding glass ob-
jects in images. Visual cues obtained by combining the system-
atic distortions in background texture occurring at the boundaries
of transparent objects with the strong highlights typical of glass
surfaces are used to train a hierarchy of classi�ers, identify glass
edges, and �nd consistent support regions for these edges. Quali-
tative and quantitative experiments involving a number of different
classi�ers and real images are presented.

1 Introduction
This paper address the problem of �nding glass objects in im-

ages, focusing on the identi�cation of their internal and external
image contours in the output of an edge detector. Typical glass ob-
jects such as bottles, glasses, plates, and vases have rather smooth
surfaces, display strong highlights but weak diffuse re�ectance,
and—as pointed out by Murase [16]—reveal a distorted version of
the texture of surfaces lying behind them (Figure 1). These prop-
erties are used in this paper to identify a number of visual cues
associated with the image regions surrounding glass edges.Given
a set of training images with hand-labeled glass edges, we then use
these cues to learn a hierarchy of classi�ers and identify fragments
of glass boundaries in new pictures (see [12] for related work in
the image segmentation domain). A global integration step merges
these fragments and uses snakes to identify their support regions
as potential glass objects.

1.1 Background
The re�ective and refractive properties of transparent objects can
be used to recover their shape from images [2, 3, 8, 15, 16],
or identify known three-dimensional shapes in photographs[18].
They can also be used to identify re�ections in transparent surfaces
and separate them from the background: Given the motion of the
two layers, [22] uses a linear algorithm to recover the two parts.
Levin et al. [10] makes the observation that this can be done by
separating an image into two images such that the number of edges
and corners is minimized. Adelson and Anandan [1] introducea
linear model for the intensity of a transparent surface, namely

I = �I

B

+ e (1)

where I

B

is the intensity of the background,� is a a blending
factor, ande is the emission of the (semi) transparent surface it-
self. They use this model to derive a set of constraints on the
brightness patterns of X-junctions at the boundary of transparent
objects. From these a junction can be classi�ed as one of three
types: non-reversing if the intensity shift is in the same direction
along both edges of the X, single reversing if it switches along one

Figure 1: An edge separating two regions. To determine if the edge is
caused by a glass surface we examine a small part of the edge and compare
the patches on both sides. If the edge is from a glass object then both sides
should be similar and distorted. The distortion is requiredin order to
distinguish the edge from other edges within textures.

edge, and double reversing if it switches along both edges. Both
non-reversing and single-reversing junctions allow for the possi-
bility of a transparent edge being present, but double-reversing
ones do not. Singh [20] uses these constraints to separate trans-
parent overlays from their background: Regions with similar color
and texture are clustered together, and their edges are found. Each
of the edge X-junctions are then labeled as either non-reversing,
single-reversing, or double-reversing. The connected edges are
then followed until returning to the junction, in effect outlining a
region covered by a transparent overlay, or running into a double-
reversing junction. If a double-reversing junction, is reached the
algorithm backtracks to any single-reversing junctions that were
seen along the way to try a different route. The reason for the
clustering is to reduce the amount of data and increase the oppor-
tunity of successfully separating transparent regions. Notice that
the constraints do not guarantee a transparent edge is present, but
only the possibility. In fact it is very likely that an albedopattern
may satisfy these constraints. Thus taken locally the constraints
only offer an indication of a possible transparent edge and must be
then looked at globally to see if a region can be found that agrees
with all the responses.

The method proposed in this paper does not rely on the detec-
tion of X-junctions, which is dif�cult in realistic imagery, but it
does exploit the linear model of Eq. (1).

2 Edge Cues
Given contour fragments from an edge detector we would like

to identify those that are associated with glass. Kaufhold and
Hoogs [12] use various cues to remove edges that a person would
not consider to be true object boundaries. Basically, the goal is
to keep edges that are between two non-similar regions. Herewe



are not concerned with true object boundaries but instead with in-
ternal and external edges of glass regions. Since glass is usually
clear, we focus on its refractive/re�ective properties. Assuming
that a sample of the background is visible and undistorted onone
side of a glass edge, we identify �ve cues to the presence of such
an edge.

� Color Similarity: the color tends to be similar on both sides
(Section 2.1).

� Blurring: the texture on the glass side is blurrier (Section
2.2).

� Overlay Consistency:the intensity distribution on the glass
side is constrained by intensity distribution on the non-glass
side (Section 2.3).

� Texture Distortion: the texture on the glass side is slightly
different (Section 2.4).

� Highlights: the glass side has a specularity (Section 2.5).

Note that internal edges in glass regions often correspond to sud-
den changes in object thickness or shape, and one can still consider
that the texture on one side of the edge is a distorted versionof the
texture on the other side.

Each of the �ves cues used in this paper is characterized by
one or two scalar values that provide information relevant to glass
properties. Similar color distributions and high alpha values indi-
cate possible transparency. Blurring and distortion deal with re-
fractive properties, while emission and highlights deal with re�ec-
tive properties. Below we describe how the values for each cue are
obtained.

2.1 Color Similarity
The value returned provides an indication of how similar

the colors are across the edge. To measure this a histogram is
constructed for each side containing twenty bins for range of hue
values and twenty bins for the saturation values. The intensity
component is ignored in order to make the measure somewhat
invariant intensity differences. The two histograms are normalized
to have a sum of one and the euclidean distance between them
calculated. This distance is the value returned.

2.2 Blurring
In our experiments it has been observed that the side coveredby

glass is often a smoother version of the other side. We explain this
as the result of impurities in the glass causing imperfect refraction
as well as minor surface variations which create different optical
properties along the surface. Thus the value returned by this cue
should indicate how much smoother one side is compared to the
other.

The method for measuring texture smoothness proposed by
Forsyth and Fleck [7] involves subtracting a smoothed version
of image from the original. Already smooth areas will have
small differences where as highly textured areas will have large
differences. To measure the smoothness of a 2D sample we
turned to the discrete cosine transform. Once the two sides are
transformed we compute the mean of the frequency coef�cients
on each side. The difference among the two means can then be
used to indicate relative smoothness (as being a shift into the
lower frequency range of the spectrum). For this measure to make

any sense we must consider how textured the background was
to begin with. A small shift on a highly textured background
could just be noise while on a smooth background is much more
signi�cant. We thus normalize the measured shifts by a measure
of the texture entropy which we take to be the standard deviation
of the intensities on that side of the edge.

2.3 Overlay Consistency
Rather than using the constraints of [1] we directly use the

model given in Eq. (1). The two parameters� ande can be used to
identify edges exhibiting transparent overlay effects. An� value
near 1 and a low value ofe indicates that the edge is likely an
intensity change in a textured region. An� less than1 with and
small e may indicate that the edge belongs to a transparent object.
A low � and/or highe indicates a strong intensity change indicat-
ing an edge between two very different regions. Thus these two
parameters will make up the values of this cue.

Equation (1) is a linear in two unknowns, and can thus be
solved given at least two distinct intensities on each side of the
edge. This is interesting and makes sense since given a homoge-
neous background there is no reason to assume the presence of
a transparent overlay rather than just a change in intensity. Since
Eq. (1) is a 1D af�ne transformation resulting in only a scaling and
translation (and assuming the texture is consistent on bothsides of
the glass edge and that our sample is large enough) we can assign
I and I

B

by clustering the intensities on the two sides of the edge
by percentages. In other words we can say that the top 10% bright-
est on one side is equal to the top 10% on the other side and so on.
The mean intensity of the clusters of one side becomes the values
of I

B

in Eq. (1) and the means of the clusters on other side the
values ofI . The value of� and e can now be solved as a linear
least squares problem. The value of� should be between0 and 1 ,
so if it is negative we simply switch the values ofI

B

and I .
One may ask that since glass is clear shouldn't� always be 1

and e always be 0 for glass edges. In practice the� value actually
tends to be a bit less than 1 on glass edges, again likely due to
the smoothness phenomena. Also, the emission value appearsto
correspond with weak re�ections in the glass.

2.4 Texture Distortion
Because of refraction we can expect that a textured background

will be magni�ed and/or skewed when seen through glass. The
value returned from this cue should provide information as too
how similar the texture is on both sides of the edge.

To measure the difference in texture we �lter both sides of the
edge with a bank of gaussian �lters consisting of six orientations
and two scales [14]. Distributions of the �lter outputs are created
for both sides of the edge. The similarity of the texture on the two
sides is then measured as the euclidean distance between thetwo
distributions.

2.5 Highlights
Glass is known to be highly specular, making highlights a valu-

able cue. The value returned from this cues is a binary value indi-
cating if a highlight was detected on one side of the edge.

As discussed by Klinker et al. [13] highlights can be found in
color images by assuming a dichromatic color model and look-
ing for dog leg like structures in a plot of the colors observed in



Figure 2:Typical pro�le of a highlight on a smooth specular surface.

small windows. While an effective technique in areas containing
monochrome surfaces, searching for the dog leg structures in tex-
tured areas can be a nuisance. Since highlights are usually the
brightest part of the image (being re�ections of the light source) a
simple technique is to threshold based on intensity (e.g. keeping
pixels above90% of the brightest value). However we can do bet-
ter. Clearly it is desirable to set the threshold as low as possible
in order to get as much of the highlight as possible. At the same
time we do not want to introduce bright patterns resulting from
non-specular re�ections.

We use the following heuristic to detect highlights in a reli-
able fashion. First note that highlights on smooth shiny surfaces
such as those of most glass objects tend to have a pro�le such as
the one shown in Figure 2, where a sharp spike is overlaid on a
(locally) smooth intensity pro�le due to diffuse re�ectionand/or,
in the case of transparent objects, background texture. Various
analytical models for the shape of this spike exist, from thenon-
physical Phong model commonly used in computer graphics, to
physical models related to the microscopic roughness of thesur-
face, such as those proposed by Healey and Binford [9] and Na-
yar et al. [17]. For our purposes, it is suf�cient to note that, on
each side of the spike and over most of its (small) extent, thein-
tensity pro�le is close to a straight line. In turn, this means that
the perimeterP of a two-dimensional highlight region found by
thresholding should also be a roughly af�ne functionP = aT + b

of the thresholdT . The perimeter of a bright diffuse region, on the
other hand, tends to be (roughly) piecewise constant.

Thus to �nd the proper highlight threshold we create a plot of
highlight perimeter as a function of intensity threshold. Once an
image has been thresholded, such that pixels below the threshold
are black and pixels above are white, we estimate the perimeter
simply by counting the number of sides on each white pixel that
face black pixels. As can be seen in the middle plot of Figure 3the
tip of a spike can be seen lying on its side near the end of the plot.
As argued above, we can approximate the edge of the spike by a
straight line. Thus to �nd the threshold we iteratively �t a line to
the perimeter values , starting from a threshold of 1.0 and plot the
�t error (see Figure 3). As can be seen the error is nearly 0 until
the bottom of the spike region is hit (indicated by an arrow inthe
�gure). An example is shown in Figure 4 where the threshold is
set to 0.71 for a glass plate. Had the threshold been set to a �xed
value of 90% of the brightest intensity, a value of 0.87 for this
image, much of the highlights would have been lost.

By setting the threshold in this way we can set it as low as
possible to get as much of the highlight without worry of including

Figure 3:The relationship between intensity threshold and perimeter of
iso-intensity rings within highlights.Left: Plot of perimeter as a function
of the intensity threshold.Right: Plot of line �t error to perimeter in
the previous plot as a function of the intensity threshold. The intensity at
which the error is no longer small is chosen as the threshold to determine
highlights. The chosen threshold of 0.71 is indicated by an arrow.

mostly bright Lambertian regions. For example if a white sheet
of paper is placed in the image at an appropriate angle as to be
fairly bright, the threshold would be set just above its maximum
brightness. While this is what we want it is undesirable for this to
suppress highlights through out the image. We overcome thisby
examining sub-windows instead of the whole image at once.

3 A Local Classi�er
Each of the parameters, except for highlights which are either

0 or 1, should occupy a small range of values at a glass edge: color
differences should be small, smoothness shifts small but non-zero,
alphas near one, emissions low, and distortion somewhat high. To
learn the space of parameters occupied by glass we use a support
vector machine with a gaussian kernel. The result is a hyperplane
in the space described by the kernel function that maximizesthe
margin between the positive and negative data.

We must be very conservative when labeling an edge as glass.
There are many situations in which non-glass edges are similar to
glass edges as de�ned by the cues. One example is a lined sur-
face such as the mat shown in Figure 7. Across the lines there
is a similar color distribution, the possibility of a low alpha value
and non-zero emission value (due to shading). Something simi-
lar could be said for shadows. However, we have another cue in
that we know the glass in the image encloses a region. Thus if the
precision of the classi�er is somewhat high we can use a global
integration step to link sparsely found glass edges together (Sec-
tion 5). Thus our goal when training the classi�er should be to
minimize the number of false positives.

A method of minimizing false positives is to have a large num-
ber of negative examples and weighting the negative data in the
training set more than the positive data. Thus to discouragecall-
ing such edges glass we can collect a large collection of nega-

Figure 4:A glass plate and its detected highlights at a threshold of 0.71.



tive samples embodying as many cases of such undesirable edges
as possible and then give them a high weight. Even with a large
weight forcing no false positives on the training data the learned
classi�er tends to have too many false positives on test data. We
encounter this problem due to our quantized view of the space.
We would like the number of false positives to be extremely low,
perhaps one in one million edge samples. In order to reach such a
rate we would have to acquire an amount of negative samples that
would be impractical to train a classi�er with.

A more practical option to limiting false positives on test im-
ages is to set the recall rate low enough such that only the strongest
true glass edges are labeled as glass and the weaker glass edges
along with these false glass edges are labeled as non-glass.To do
this we turn to another technique to adjust the recall of an SVM
which is to adjust the position of the hyperplane away from the
negative data. In other words we shift the constant parameter so
that the decision boundary passes into the positively labeled data,
increasing the number of negatively labeled data. We do thisuntil
the number of true positives drops below 30% on the training data.

4 Multiple Classi�ers
Let us consider the range of values for each of the cues pa-

rameters in glass as logical propositions. From this we makethe
observation that for an edge to be glass only two of these proposi-
tions must always be true given that one of the other four is true as
well:

g l ass ( simil ar col or ^ hig h al pha ^

( l ow emission _ hig hl ig ht _

smoother _ distor tion )

The above statement can be re-written as four different statements
of three propositions:

g l ass ( simil ar col or ^ hig h al pha ^ l ow emission

g l ass ( simil ar col or ^ hig h al pha ^ hig hl ig ht

g l ass ( simil ar col or ^ hig h al pha ^ smoother

g l ass ( simil ar col or ^ hig h al pha ^ distor tion

The underlying structure comes from the fact that the color and al-
pha parameters are suf�cient in eliminating most non-glassedges.
What is left is to distinguish among the two types of edges that
satisfy the proposition associated with these parameters,internal
texture edges and glass edges. Thus we need information fromat
least one, not all, of the other cue parameters.

Since the problem has this structure it may prove bene�cial
to use it and learn four classi�ers in the lower three dimensional
spaces of the four statements above, rather than a single classi-
�er using all six cue parameters. To combine the outputs of these
classi�ers we consider the three methods described below.

4.1 Logical OR
The most obvious means of combining the classi�ers is to OR

their outputs. That is if one classi�er labels an edge as glass then
the edge will be labeled glass.

4.2 Weighted Sum
An alternative to OR'ing the classi�er outputs is to weight them

and see if their sum is above some threshold. By combining the

cues in this way we are able to give less weight to cues that do not
perform as well as the rest. It may also be the case that sets of
cues labeling an edge as glass is better than considering each one
separately. If this is the case then no one weight will be above the
threshold.

One method of �nding the weights and threshold is to use gra-
dient ascent to maximize the classi�er's accuracy on the training
set. However, one should notice that the parameters we are looking
for de�ne a support vector classi�er with linear boundaries.

4.3 Exponential Model
One can combine boolean classi�ers so as to return a proba-

bility of a given label given their outputs. Maximum likelihood is
used to learn the parameters of an exponential model, whose form
is given by entropy considerations as:

p ( y j x ) = Z ( x ) e

P

i

�

i

f

i

( x;y )

where p ( y j x ) is the probability of a labely being assigned to the
SVM classi�er outputsx [4]. �

i

is a weight for a particular feature
de�ned by the functionf

i

( x; y ) . These feature functions return a
value of 1 if x takes a particular form giveny and 0 otherwise.
Z ( x ) is a normalizing factor. The parameters are found with gen-
eralized iterative scaling [6]. Once the parameters are found we
can classify a particular set of sub-classi�er outputs by threshold-
ing on a probability of0 : 5 .

5 Global Integration
Once a part of an edge has been classi�ed as glass we should

more easily believe that the rest of the edge is glass as well.We
can increase the number of positive results by connecting two edge
samples labeled as glass if they have a path connecting them.As
will be described in the following section, edges from the edge
detector are broken into smaller edge samples for classi�cation.
Some of these may be labeled as glass while some may not, even
if the whole edge is glass. These false negatives can occur ifthe
assumption is locally violated (i.e. the background is not the same
on both sides) or because of the conservative training of theclas-
si�er. This hysteresis style of approach provides us with a means
of recovering these falsely labeled glass edge samples.

We now have a number of long edges that are labeled as glass.
To �nd the glass region that these edges enclose we can use an
active contour approach such as the one described by Kass et
al. [11]. Initialized at the boundary of the image a polygon is
iteratively updated so as to minimize an internal energy function
enforcing smoothness and an external energy function preferring
to be near edges. Once the contour has converged all pixels within
its boundary are labeled as glass.

6 Experiments and Results
Given an image we �nd edges with the Canny edge detector.

From an edge point we then walk 25 pixels in each direction, and
using the center pixels normal we take a sample 25 pixels outward
in the positive and negative direction. The edge samples arethen
transformed into a 6-vector using the described cues. The results
from the various cues can be seen in Figure 6.

To train the classi�er 15 images were used. Six of these images
contained glass objects in front of various backgrounds. Edges



Classi�er True Positive Rate (Recall) False Positive Rate Precision
Single SVM 47.01% 3.09% 68.76%

Multiple SVM's + OR 88.30% 10.04% 56.04%
Multiple SVM's + Weighted sum 83.94% 8.53% 58.78%

Multiple SVM's + Exponential model 88.30% 10.04% 56.04%
Multiple SVM's + Weighted sum (sampled) 79.72% 4.12% 73.7%

Table 1:Results from the described classi�ers, all tested on a test set of 50 images where glass pixels were marked by hand. The true positive rate, or
recall, indicates the percentage of glass pixels that were correctly identi�ed. The false positive rate indicates the percentage of non-glass pixels that were
identi�ed as glass. Precision is the percentage of identi�ed glass pixels that are actually glass.From top to bottom: an SVM trained on all six values of
the cues, a classi�er consisting of the OR'ed output of the four sub-classi�ers as described in section 4.1, a classi�er consisting of a weighted sum of four
sub-classi�ers as described in section 4.2, and a classi�erconsisting of the outputs of four classi�ers combined through an exponential model as described
in section 4.3. The last row contains results from a classi�er consisting of the weighted sum of four sub-classi�ers trained on a subset of the training data
as described in section 6.

were manually labeled and broken into 333 positive trainingsam-
ples. The other nine images contained no glass. An edge detec-
tor provided the edges which were then broken into 4581 negative
samples. To test the various classi�ers a set of 50 images wasused.
Thirty �ve of these images contained glass objects in front of vari-
ous backgrounds. Glass regions were manually labeled and stored
in a separate image mask. The remaining �fteen images contained
non-glass objects.

To measure how well the classi�ers found glass each one was
run on the set of 50 hand labeled test images. The regions iden-
ti�ed as glass by the classi�er are then compared with the masks
associated with each image. True positives are measured as the
number of pixels within the intersection of the two regions while
false positives were measured as the number of pixels withinthe
snake but outside the mask. The results can be seen in Table 1.The
classi�er trained using the six cues has a recall of 47% and a pre-
cision of 68%. The classi�ers made of sub-classi�ers have higher
recall rates, all around 80%, but at a somewhat lower precision.

In addition to the four classi�ers discussed before we experi-
mented with the idea of training a classi�er on subsets of thetrain-
ing data rather than the whole set. The subsets were chosen ran-
domly so that we had 50 positive samples and 100 negative sam-
ples. A classi�er trained on such a subset was considered good if it
could correctly classify the edges on the dif�cult image discussed
earlier of a glass plate on a lined mat. The best of these classi�ers
is shown in the last row of Table 1. This classi�er out performed
the others with a high recall rate as well as a high precision.

Six examples where the glass was successfully identi�ed are
shown in Figure 7. Figure 5 shows an example of where the clas-

Figure 5: Test image showing edge samples that are falsely labeled by
the local classi�er (shown in white).

si�er falsely labels edges as glass. The falsely labeled edges are
the result of the large texture pattern in the image. Since weare
looking at each side of the edge through a window of �nite size
we fail to get accurate statistics from larger texture patterns. In
this example the color is similar on both sides of the edges along
the internal of the brick pattern. The alpha value is likely high as
well. Due to our limited view, the texture appears to be different
on each side of the edge, thus these non-glass edges are labeled
as glass. It should be pointed out that in this image there area
signi�cant amount of edges within the brick that were correctly
classi�ed as non-glass.

7 Conclusion
We have presented a method for identifying glass edges and

regions in an image. It is not limited to glass since most of the
cues we have used are valid for other smooth transparent media.
It does, however, assume that the background is similar on both
sides of all glass edges. This is of course not true when refraction
is too strong, or when transparency is overwhelmed by very bright
highlights.
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Figure 7:Test images and output from the described system.Left: Six sample test images,Middle left: Edges from edge detector,Middle right: Edges
that have been labeled as glass.Right: Regions of glass found by shrinking a snake around the labeled glass edges.


