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ABSTRACT

In the last two decades, there has been an enormous eff@ptoyda network of
autonomous mobile platforms in various scenarios relatadititary as well as
civilian applications. Interesting research problematesd to security range from
the development of secure communication protocols foraarétof autonomous
mobile agents to the development of novel deployment algos for a group of
mobile agents trying to secure a network or an area from mabdntruders.

In this thesis, we investigate the interaction between tbbilm agents and an
intruder in the environment or the communication network contradistinction
to the previous research in this area, we model the intrussos pursuit-evasion
game in continuous time and space. We model the intruder ant@gonistic
agent and apply tools from differential game theory in otdeybtain the optimal
motion strategies for the agents to track the intruder akasedvade intrusion.
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CHAPTER 1

INTRODUCTION

Pursuit-evasion games are a special class of problemselmidto the category
of zero-sum games. In the classical setting, there are tayept having con-
flicting objectives. One player is called tparsuerand the other player is called
theevader In agame of kindthe objective of one player (generally the pursuer)
is to steer the system to a terminal set whereas the objeditithee other player
(generally the evader) is to steer the system away from tharal set. In ggame
of degree each player receives a payoff based on the outcome of the.gahe
objective of one of the players is to increase the outcomeae@ssthe other player
wants to decrease it. The specific role played by the pursuditeoevader de-
pends on the game and its formulation. This idea of modelamilict scenarios
has been extended to include more than two players. In a-plajer setting,
there are teams of players having conflicting objectivesgdneral, the role of
each player and his/her payoff in a team depends on the gasiee consideration
and the capabilities of the player.

In this thesis, we address two problems that arise in diffeseenarios in mo-
bile platforms. The first problem is regarding visibilitgded target tracking and
the second problem is regarding motion strategies to edmjng in communi-
cation networks. A common theme underlying both parts isahmulation of the
problems as continuous time pursuit-evasion games. Th&treants of visibility
and communication on the vehicles manifest as a constraiheistate space. The
theory of differential games provides tools to obtain theessary conditions for
the optimal strategies. In Part I, we deal with a two-play@spit-evasion game.
An extensive analysis is performed by formulating the peabbf visibility-based
target tracking among obstacles agane of degreas well as agame of kind
Part Il of the thesis deals with multi-player differentiarges. We use tools from
differential game theory and algebraic graph theory toyasathe problem of
jamming in mobile communication networks.

The first part of the thesis is regarding visibility-baseyéd tracking in the



presence of obstacles. Target tracking is an interestamsaf motion planning
problems that considers motion strategies for a mobiletradérack a moving
target among obstacles. In case of an antagonistic tatgeproblem lies in the
framework of pursuit-evasion which belongs to a speciasslaf problems in
game theory. The goal of the pursuer is to maintain a linegiftsio the evader
that is not occluded by any obstacle. The goal of the evad&r escape the
visibility region of the pursuer (and break this line of digat any instant of time.

Most of the classical problems in pursuit-evasion deal wittyers in obstacle-
free space having either constraints on their motion ortcaimss on their control
due to under-actuation. Research in robotics is concerngdplanning feasi-
ble motion strategies for complex mechanical systems uvaigous constraints
imposed either by the internal restrictions in the motiothafrobot or the geom-
etry of the external environment due to the presence of olestaComplex envi-
ronments impose geometric free space constraints, andipavasion problems
in these environment inherit the complexity of motion plaungn An additional
source of complexity is visibility. If the players have advof-sight visibility, then
they can exploit occlusions in the environment. Therefgemmetric complexity
also imposes restrictions on the information availablédhtoglayers. Addressing
these issues requires an understanding of the combinaepeacts of the game.

In Chapter 2, we formulate the problem of target tracking garae of kind\We
use themethod of explicit strategige completely solve the game in the presence
of a corner. We extend this solution to multiple obstacleanrenvironment and
obtain a lower bound for the size for tkecapeand thecapture setFurthermore,
we also present bounds on the size of the escape and captioetbe case of a
circular obstacle and provide an algorithm to address thblpm in the presence
of non-polygonal obstacles. This work has appeared in pafi§ and [2].

In Chapter 3, we formulate the problem of target tracking garae of degree
We perform the regular analysis and obtain saddle poinegfies for the players.
Using these strategies we provide the optimal trajectdoethe players near the
termination situations. Finally, we perform the singulaalysis and compute the
dispersal surfaces that arise when optimal trajector@® fiwo different termi-
nation situations intersect in an environment containug point obstacles. We
extend this technique to provide an algorithm to computedibpersal surfaces
arising due to two corners in the presence of multiple olbstac\We conclude
by providing an insight to extending the previous resultsdmpute all possible
dispersal surfaces in a polygonal environment containiatjiple obstacles. This
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work has appeared in parts in [3], [4] and [5].

The second part of the thesis addresses the problem of jagimmobile net-
works. We analyze the behavior of multiple vehicles in coapee as well as
non-cooperative scenarios in the presence of a maliciausdier in the commu-
nication network. We envision a scenario in which a mobiherjger intrudes upon
the communication channel in a multiple vehicle formatibnparticular, we are
interested in computing strategies for spatial reconfigmmaof a formation in the
presence of an intruder to reduce the jamming on the comrmatioincchannel.

In Chapter 4, we analyze a multi-player differential gameneen two UAVS
and an aerial jammer. The jamming, communication and nighiibdels for the
UAVs are presented. Based on the aforementioned modeldtiaptayer pursuit-
evasion game is analyzed. In the first problem, we assuméthaivo UAVS are
not communicating initially. The goal of the jammer is to jime communication
channel for the maximum amount of time possible and the gidhleoUAVS is to
restore the communication as soon as possible. In the sgcobm, we assume
that the UAVs are initially communicating. The goal of thenjaer is to jam the
communication channel in the minimum amount of time possanid the goal of
the UAVs is to communicate for the maximum amount of time.i@pt strategies
are obtained that guarantee a minimum payoff for each playars work has
appeared in parts in [6].

In Chapter 5, we extend the problem of jamming to addressdke m which
the mobile network has heterogeneous dynamics. The nodeaadeled either
as aerial vehicles (unmanned aerial vehicles) or tere¢stehicles (autonomous
ground vehicles) having constraints in their configuragpace and control. Op-
timal strategies are provided for each kind of vehicle delpgmon the objective
of the vehicle. This work has appeared in parts in [7].

In Chapter 6, we analyze the problem of maintaining conaggin a network
of mobile agents in the presence of a jammer. This is a vanatf the standard
connectivity maintenance problem in which the issue arigesto limitations in
communications and sensing model for each agent. In our,vileeklimitations
in communications are due to the presence of a jammer in theityi In the
beginning, we present a differential game-theoretic fdation of the problem
and provide the necessary conditions for optimal contaigéch agent. Then we
present a model that constructs a state-dependent gragth tmathe state-space of
the agents. We use tools from algebraic-graph theory ortdéte-dependent graph
in order to provide locally optimal control laws for the agem the formation.
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Finally, we present some simulations to validate the pregasontrol scheme.
Parts of the this work are in [8].
In Chapter 7, we present some future research directioateceio each chapter.
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CHAPTER 2

TARGET-TRACKING: A GAME OF KIND

In this work we model the target-tracking problem agaane of kind In agame
of kind there are only two possible outcomes at the end of the gaheepiirsuer
favors one of the possible outcomes and the evader favorsliee possible out-
come. The set of initial positions of the players that leads tavorable outcome
for the pursuer is called theapture set The set of initial positions of the players
that leads to a favorable outcome for the evader is calledsbape set

In this chapter, we exploit the geometry of the environmerdrider to provide
lower bounds on the size of theapture setand escape set In the beginning,
we provide a complete spatial decomposition of the worksgaca simple en-
vironment based on thmethod of explicit policy9]. Extending these strategies
to the general environment provides us with a lower bounchersize of thees-
cape setand thecapture se{10]. The main contributions in this chapter along
with the organization of the sections are as follows. Fiks&t show in Section 2.2
that in an environment with one corner, the target-trackiraplem is completely
decidable. Second, we prove in Section 2.3 that in an enviem containing
obstacles, the initial positions of the pursuer from whichban track the evader
are bounded. Though this result is trivially true for a boethevorkspace, for an
unbounded workspace it is intriguing. Third, while the gaheroblem of de-
ciding whether the evader can escape or the pursuer cantt@avader forever
in any arbitrary polygonal environment is still, so far as kmew, an open prob-
lem, we offer partial solutions to it. In Section 2.3, we pd®/polynomial-time
approximation schemes to bound the set of initial positionthe pursuer from
which it might be able to track successfully. If the initiadgtion of the pursuer
lies outside this region, the evader escapes. The size oéti@en depends on the
geometry of the environment and the ratio of the maximum ewvageed to the
maximum pursuer speed. Fourth, in Section 2.4, we preserifiaisnt condition
for tracking. Based on this sufficient condition we provideegion around the
initial position of the evader from which the pursuer carckréhe evader. Fifth,



in Section 2.5, we address the problem of target trackingniaravironment con-
taining non-polygonal obstacles. In the past, researdhéihave addressed the
problem of searching an evader in non-polygonal envirorimédtowever, we do
not know of any prior work that addresses the problem of iragkan evader in
non-polygonal environments.

In the next section, we provide a brief introduction to thelppem of target
tracking.

2.1 Introduction

Target tracking involves maintaining knowledge of the eatiocation of a target.
In case of visibility-based target tracking, an observesntonstantly maintain a
line of sight with a target. A challenging problem in thissago is to plan motion
strategies for the observer in the presence of environreotiusions. Complex
environments impose geometric free space constraintgasdit-evasion prob-
lems in these environment inherit the complexity of motideinping. An addi-
tional source of complexity is visibility. If the playersV¥®a line-of-sight visi-
bility, then they can exploit occlusions in the environmehherefore, geometric
complexity also imposes restrictions on the informatioailable to the players.
Addressing these issues requires an understanding of mhigiicatorial aspects of
the game. In this chapter, we address the problem of a mob#ereer trying to
maintain a line of sight with a mobile target in the presentelistacles in the
environment. Both the observer and the target are holonandchave bounded
speeds. The observer has no knowledge about the futur@scidhe target. In
this scenario, we address the following problem: Given aralrposition of the
observer and the target, is it possible for the observeratktthe target forever,
and if so, what should be its strategy?

Target tracking is related to the game of pursuit-evasidre dgoal of the pur-
suer is to maintain a line of sight to the evader that is nolust=sd by any obstacle.
The goal of the evader is to escape the visibility polygorhefgursuer (and break
this line of sight) at any instant of time. Apart from sunlailce applications, a
mobile robot might be required to continuously follow andnitor at a distance a
target performing a task not necessarily related to thetargcking game such as
relaying signals to and from the target [12]. The observey aiso be monitoring
the target for quality control, verifying the target does$ perform some undesired



behavior, or ensuring that the target is not in distresspplieations that involve
automated processes that need to be monitored, such asssemlay work cell,
parts or sub-assemblies might need to be verified for acgoreare determined to
be in correct configurations. Visual monitoring tasks as® aluitable for mobile
robot applications [13]. In home care settings, a trackotgpt can follow elderly
people and alert caregivers of emergencies [14]. Targeking techniques in
the presence of obstacles have been proposed for the geapitiation of digital
actors, in order to select the successive viewpoints untiehaan actor is to be
displayed as it moves in its environment [15]. In surgicgblagations, control-
lable cameras could keep a patient’s organ or tissue undéncous observation,
despite unpredictable motions of potentially obstrucpegple and instruments.
In wildlife monitoring applications, autonomous undereravehicles use target-
tracking algorithms to navigate in cluttered environmeslsle tracking marine
species.

Target-tracking using sonar and infrared sensors has hedied traditionally
in the field of automatic control for naval and missile apglions [16]. With the
emergence of computer vision, a combination of vision anatrob techniques
were used to design control laws to track a target usingwisemsors [17, 18, 19,
20]. A major drawback of pure control approaches is that Hreylocal by nature
and it is difficult to take into account the global structuféh® environment such
as the configuration of workspace obstacles.

In case of a completely predictable target, the problem esadaressed using
techniques from optimization. Such techniques have beething21] and [22] to
provide algorithms for an observer to track a predictabigeibamong obstacles.
In case of an unpredictable target the hardness of the proivlereases due to
the lack of information about the current as well as the ®itsirategies of the
target. A plausible way to reduce the hardness of the prolideta solve the
problem for specific environments. For instance, [23] sethe problem of target-
tracking around a regular polygonal obstacle for a speaiit@l position of the
observer and the target. In a similar vein, in this work weehgltown that for
an environment having a single corner, the problem is cotelyldecidable [24].
Although many computationally intensive approximatiod &euristic techniques
[14, 25] have been used to address the target-trackinggmlbbhe decidability in
general environment still remains an open question.

In the past, various techniques have been proposed to devategies for an
observer that optimizes a local cost function based on theiguconfiguration
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of the target and observer in the environment. In [26, 27,228, the authors
formulate a risk function that takes into account the positf the target and the
observer with respect to the occluding vertices of the emvirent. The strategy
for the observer is to move in a direction that minimizes ibk function at every
instant. In [30], the authors design a planner for targstking that takes into ac-
count the positioning uncertainty of an observer that haagohthe environment.
The observer tries to minimize a utility function that maxies the probability of
future visibility of the target and minimizes the uncertgim its own position.
In [31], a motion strategy for the observer is obtained by im&ng the target’s
shortest distance to escafrem the observer’s field of view. Due to the greedy
nature of the above techniques, the resulting strategeesa@rguaranteed to be
optimal for the observer.

Maintaining visibility of a moving target can also be castaasonnectivity
problem on a graph that encodes a pertinent cell decompositithe workspace.
In [32], the authors draw the similarity between the tatgatking problem and
piano-mover’s problem. They extend the three-dimensioatililar decomposi-
tion of Schwartz and Sharir [33] to represent the four-digie@mal configuration
space of an observer trying to maintain a fixed distance freanget. The authors
reduce the problem to a recursive update and reachabibtylggm on a graph that
is constructed using the cellular decompositions. In [84¢, authors introduce
the notion ofstrong mutual visibilityandaccessibility Using these two notions,
they model the problem of maintaining visibility of a moviegader by means
of a pair of graphs. They show that the decision problem oftladrea pursuer
is able to maintairstrong mutual visibilityof the evader is NP-complete. In this
work, we present a complete cell decomposition of the freekggace around a
single-corner and extend these decompositions to genevabements. Hence
we feel that the underlying theme of our work belongs to taiegory.

There have been some efforts in the past to address the-teagkihg problem
in the scenario where multiple observers try to track mldttprgets. In [35], the
authors present a method of tracking several evaders wiltipheupursuers. Un-
like our work, they do not view the problem from the perspectf computing
geometric visibility. Instead they investigate the powka aveighted force vector
approach distributed across robot teams in simple, ureckdtenvironments that
are either obstacle free or have a random distribution oplEroonvex obstacles.
In [36], the problem of tracking multiple targets is addexssising a network
of communicating robots and stationary sensors. A regaset approach is in-
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Figure 2.1: The problem environment.

troduced which controls robot deployment at two levels, elgna coarse deploy-
ment controller and a target-following controller. In [3]d [38], authors present
a behavior-based solution to the the problem of observintjipleitargets using
multiple robots. They propose a distributed behavior-dasmtrol system where
robots share workload by assuming responsibilities cariegithe observation of
certain targets. In [39], the authors investigate the stemawhich the number
of trackers is strictly less than the number of targets. Adgnat-approximation
algorithm is proposed to generate paths for mobile agertsaterse a sequence
of target points. In [40], the authors propose centraliagdre&ghms for many mo-
bile agents to stay within an “observation range” of as mangets as possible in
the absence of sensing constraints. The algorithms are bag€-means cluster-
ing and hill-climbing algorithms. None of these works (gxci6]) consider the
effect of occlusion in visibility due to the presence of @réés.

In the next section, we analyze the problem of target-tragki an environment
containing a single corner.

2.2 Analysis of a Corner

In this section, we address the problem of target-trackirysimple environment
containing one corner. The workspace contains a semid@foistacle with one
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corner that restricts pursuer and evader motions and mdydethe pursuer’s
line of sight to the evader. Without loss of generality, ttasner is placed at the
origin and one of the sides lies along the -x axis as showngargi2.1. A mobile
pursuer and evader exist on a plane and move with veloaitiaad v, respec-
tively. Their speeds are bounded Byandw., respectively. The positions of the
pursuer and the evader are expressed in polar coordinaggs)as (r,(), ¢,(t))
ande(t) = (r.(t), ¢.(t)), respectively. They can also be expressed in Cartesian
coordinates ap(t) = (z,(t),y,(t)) ande(t) = (x.(t), y.(t)), respectively. Let
the initial position of the pursuer and the evader be denbteg, ande,. The
tangential velocities of the pursuer and the evader aretddrasu, (t) andv,(t),
respectively. The tangential velocities are consideréeoositive in the direction
shown in the figureu,(t) andv,(¢) describe the radial velocities of the pursuer
and the evader respectively. The radial velocities areidersd to be positive if
they point away from the origin. In Figure 2.1, the radialogties of the pursuer
and the evader are in the negative direction. The pursueharelader know each
other’s current position as long as they can see each otheedver the pursuer
knows the evader’s current velocity. The initial positidntioe pursuer and the
evader is such that they are visible to each other. Both tneps have a complete
map of the environment.

The unshaded region is the visibility region of the pursuésibility extends
uniformly in all directions and is only terminated by workse obstacles (omnidi-
rectional, unbounded visibility). To prevent the evadenirescaping, the pursuer
must keep the evader in its visibility polygo¥i(p(t)). The visibility polygon of
the pursuer is the set of points from which a line segment fifwarpursuer to that
point does not intersect the obstacle region. The evadapesdf atany instant
of time it can break the line of sight to the pursuer.

The two obstacle edges meeting at this corner are consitiedend for an
infinite length, so that there is no other geometry that tlaelevcan hide behind in
the workspace. The two sides of the obstacle form an anglea: > 7 then every
point in the free workspace is visible to every other poind éme pursuer will
trivially be able to track the evader indefinitely. Thus, weyoconsider obstacles
wherer > o > 0.

Analogous to a star domain [41] in computational geometeygdefine thestar
region associated with a vertex as the region in the free workspaoaded by
the lines supporting the vertex of the obstacle. The shaggidm in Figure 2.2
shows the star region associated with the verteXhe concept of star region is
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Figure 2.2:Star regionassociated with the vertex.

only applicable for a convex vertex (a vertex of angle least). As can be seen
in Figure 2.1, in the case of a semi-infinite obstacle havirsgngle corner, the
star region extends outward from the corner of the obst#desemi-infinite and
bounded by the ray and thez-axis. In case of a single corner, the entire free
space is visible from any point in the star region. If the perscan enter the star
region before losing sight of the evader, it will triviallglable to track the evader
at all future times.

In this setting, we address the following problem. Giygne,, 7. andv,,, does
there exist a policy for the evader to escape the visibikyion of the pursuer
in finite time, or does there exist a policy for the pursuerrszk the evader for
all time? In the following sections, we present a partitidriree workspace for
an environment having a single corner so that we can answelibve question
depending on the rati%, po andey.

2.2.1 Pursuer-based partition

We now present a decompositiondfp(0)), the visibility region of the pursuer
at initial position, into regions in which the evader mayb&sed on the outcome
of the game. These partitions can be constructed at any tinregckthe game with
the current knowledge of the pursuer’s position. Dependinghe partition in
which the evader lies currently, we present instantanetategies for the winner
of the game.

The number of partitions and their geometry depend on thliqosition of
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the pursuer. If the initial position of the pursuer is in thh& segion of the corner,
the pursuer can see the entire workspace at all times. Henaay initial position
of the evader, the pursuer wins the game. In the remainingpseeve consider
the initial positions of the pursuer in which it does not inside the star region.
Due to symmetry of the environment, the analysis is the sthe initial position
of the pursuer lies below the-axis or if it lies in the left half-space df Without
loss of generality, we analyze the former situation.

Let us first consider the case of a corner for whickt 7 andp, = (7,(0), ¢,(0))
is such that,(0) € [-,0). Definea = 7. /v, and letd, () denote the minimum
distance of the pursuer fromaxis. Letd = d,(t) |:—o.

Letx= (z,y) € R%. We define the minimum distance franto a segment, ray
or line asd(x, £) = minycp || x — y |2, whereE denotes an edge, ray or line.

Figure 2.3 shows the partition &f(p(¢)) and Figure 2.4 shows the geometry
of the partitions.V (p(t)) is decomposed into the following regions:

1. Region % {x | d(x, E1) < ad,(t)}.
2. Region 2= {x | d(x, E2) > ad,(t)}.
3. Region 3= {x | d(x, E2) < ady(t), || X||2> ary(t), = < —ary(t)}.

4. Region & {x | d(x,Es) < ad,(t), || X |[2< arp(t), d(x,Ep) >
ady ()}

5. Region 5= {x | d(x, E) < ady(t), z < —ar,(t)}.

Further, we define Region 6 as the set of points in the free sparée not be-
longing toV (p(t)). Before we give a set of propositions that define the winning
strategy for each region in the partition, these strategiesummarized in Table
2.1.

Proposition 1: If the evader lies in Region 1 df (p,y) and follows Policy A, no
pursuer policy exists that can prevent the escape of theeevad

Proof. If the evader lies in Region 1, the maximum time required leydixader to
reachF, by following Policy A ist, < &4 = %. The minimum time required by
the pursuer to reach-axis with any policy is at least, > %. Sincet,, > t. the

evader reacheg; before the pursuer can reach th@xis. If the evader lies on
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Figure 2.3: Pursuer-based partition.

Figure 2.4: The geometry of the partition.
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Table 2.1: Policies of the winner in the partitions

| Evader Policies Evader Region | Control Law
A landg. € [o —m, 5] | 7e(t) = —Te
1andg. € [5, 7+ ¢p] | ve(t) = T,
Pursuer Policies Evader Region Control Law
B 2,4 Up(t) = Ep
C 3 w(t) = r(t |Vt( )|
u, (1) = ré(t) | r(1)]
D 5 ut(t) =

E; and the pursuer has not yet reachedtkexis, the evader will be outside the
visibility region of the pursuer. Hence the evader escapes. O

Proposition 2: If the evader lies in Region 2 df (py) and the pursuer follows
Policy B, no evader policy exists that can escape the visilsgégion of the pur-
suer.

Proof. The time required by the pursuer to reach thaxis by following Policy
Bist, = %. If the evader lies in Region 2, the minimum time required log t
evader to reaclt, ist, > %—f = % Thus,t. > t,. If the pursuer follows Policy B,
V(po) € V(p(t)) |¢0; i.€., the visibility region for the pursuer is monotonigal
increasing during the execution of this policy. Since thader cannot reachs,

the only free boundary of (p,), before the pursuer reaches the boundary of the
star regione(t) € V(p(t)) Vt € [0,t,]. Once the pursuer reaches thaxis,

the entire free workspace belongsitop(t,)) and the evader remains in sight of
the pursuer for all future times. O

Proposition 3: For all initial positions of the evader in Regions 3 and 4 ¢py),
the pursuer can track the evader by following a reactive amaind switching be-
tween policies B, C and D appropriately.

Proof. In order to prove the Proposition, we need the following Leasm

Lemma 1 If the evader lies in Region 3 df (p(¢)) and the pursuer follows Pol-
icy C, for every evader policy the evader can either stay igi&te3 or move to
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region 2 or region 5 o¥/ (p(t)).

Proof. If the pursuer follows Policy C, then it follows both the radand angular
movements of the evader. According to the control law of thesper in Region
3 ju| = |v| T”Et The maximum speed of the evadetisand the geometry
of Region 3 is such tha{P— < 1. Hence| u |< % = 7,. Thus, the pursuer
velocities of Policy C are always attainable in Region 3.

If order to keep the evader in the visibility polygon of thergwer and prevent
it from entering Region 6, the following inequality must dalt all times before

the pursuer can enter tiséar region

Pe(t) = Pp(t) < 7

If the evader lies in Region 3, from the geometry of Region 3car see that
®(t) > ¢,(t). The tangential component of the control law implies théofeing:

The right-hand side of the above equation is the angularcitglof the pursuer
and the left-hand side is the absolute value of the angulaciyg of the evader.

[0t) | = (D)

Integrating both sides of the equation gives us the follgv@quations, and further

using the fact that td}e(t)dt‘ < Jo | de(t) | dt, we obtain the following:
/ be(t) dt' < / dy(t)dt
= [ @e(t) = ¢e(0) | < — ¢p(0)

Sinceg.(t) — ¢e(0) < | ¢e(t) — ¢(0) |
= ¢e(t) = 0c(0) < ¢p(t) — ¢,(0)
= ¢e(t) = dp(t) < ¢e(0) — ¢,(0)

From the assumption that the pursuer and the evader ardevisieach other at
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Figure 2.5: Geometry of Region 4.

the beginning of the game, we obtain the following:

9e(0) —p(0) <
This leads to
Pe(t) —dp(t) < m

Hence the evader cannot escape the visibility region of tiisyer if the pursuer
follows Policy C. The radial component of the control law irep

20T
Te(t> Tp(t)
1) i)

TR0 S )

N re(t) > r¢(0) >a

rp(t) 7p(0)

Thus, the evader cannot enter Region 4. Hence for any pblecgyader can either
stay in Region 3 or it can enter Region 2 or Region %¢p(t)). O

Lemma 2 If the evader lies in Region 4 df (p(¢)) and the pursuer follows Pol-
icy B, for every evader policy the evader can either stay igi®&e4 or move to
regions 2 or 3 ol (p(t)).
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Figure 2.6: Evader in Region 5.

Proof. Refer to Figure 2.5. If the pursuer follows Policy B, all psion segment
HF move with velocityav,, = v, towards the edg&;. Similarly, all points on the
arc FG move with radial velocity, toward O. In order to enter Region 1 from
Region 4, the evader must move toward the boundary of Regwithla velocity
greater than the velocity at which the boundary is recedivaydrom the evader.
That is not possible since the boundary of Region 1 moves wvealbcity v., the
maximum possible evader velocity, away from the evader.cdé¢he evader can-
not enter Region 1 from Region 4. Hence for all evader pdidiee evader can
only reach Region 3 or Region 2 from Region 4. O

Lemma 3: For all initial positions of the evader in Region 5 ofpé(, the pursuer
can track the evader by following policy D.

Proof. Refer to Figure 2.6. After time, the evader lies in the closure of a circle
of radiusv.t centered at,. Let OL denote the tangent from the origin to the
circle. A sufficient condition for the pursuer to keep thed=in sight for all
future times is to keep the magnitude of the angular velagitthe line of the
sight, OP, to be greater than the magnitude of the angulaciglof the line
tangent to the growing circle, OL, for all future time untikt pursuer reaches the
star region The pursuer moves in a circle of radityg0) with tangential velocity
of v, while it follows policy D. Hence the magnitude of the angwatocity of
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IROR The magnitude of the angular velocity of
OL is given bywg;, = oF wor is maximum when the radial distance of L
is minimum. This happens when the circle touches the edgeThA. length is

the line OP is given by, =

given byr.(0) cos(¢.(0)). Hence the maximum value af,,, is given bywy,;, =

m Solving forw, > wy,; leads to the following condition.
ar,(0)
ro(0) > ———2 L
02 = eosto o)

Sincecos(¢.(0)) < 0, we obtain the following condition:
2c(0) < —ary(0)

which is satisfied for all points in Region 5. 0J

Returning now to Proposition 3, if the evader starts in Re@@nd remains in
Region 3, then we have proved in Lemma 1 that Policy C for thieymr can keep
the evader in sight for all future time. While the pursueradwing policy C,
if the evader enters Region 2, by Proposition 2, the pursaeti@ack the evader
indefinitely by following Policy B, whereas if the evader erg region 5, from
Lemma 3, the pursuer can keep track of the evader by follopolgy D. Hence
the pursuer can keep sight of the evader for all future time.

If the evader starts in Region 4 and remains in Region 4, tlenrha 2 proves
that Policy B for the pursuer can keep the evader in sightlféutare time. While
the pursuer is following policy B, the evader can move to Bed@ or Region 2.
If the evader moves to Region 3, the strategy provided in theipus paragraph
can keep the evader in sight for all future times. On the olttizerd, while the
pursuer is following policy B, if the evader moves to Regigrbg Proposition
2, the pursuer can indefinitely track the evader by followiRwiicy B. Thus, the
pursuer will keep the evader in sight for all future time. O

Figure 2.7 summarizes Propositions 2 and 3. Each state iethen in the
partition of V(p(¢)) in which the evader lies. The arrows show the allowable
transitions of the evader under the respective policy ofpilmsuer. Hence given
the initial position of the pursuer and the evader, we carsttant the partition of
V(po) and use Figure 2.7 to obtain the instantaneous strategyeqfutsuer if it
can track the evader.
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Figure 2.7: Regions and their control laws.
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Figure 2.8: The partition of \f{(t)) when¢,(t) < —7.

The above analysis was for the case whgft)) € [—Z,0). For the case when
¢,(0) < —%, the analysis still holds. The only changes are that Regexpands,
the area of Region 4 is reduced to zero and Region 5 ceasessto lEgure 2.8
shows the partition of the visibility region of the pursuethis case.

The analysis we have presented so far assumedzthaio, g} Refer to Figure
2.1. Ifa € [%,7], theng,(0) must lie in the fourth quadrant and hengg0)
must be greater than?. Hence it reduces to the problem we analyzed in this
section.

We now provide a decomposition &f(ey) into regions in which the pursuer

may lie based on the outcome of the game.
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Figure 2.9: The evader is nearer to the side of the obstaatettie corner.

2.2.2 Evader-based partition

In the previous subsection, a partitioniofp,) has been given based on the poli-
cies used by the players to win the game. In this subsectien)se the same
policies as used by the players in Table 2.1. We fix the pasididhe evader and
compute the boundaries across which the policies of theavinphange. These
curves partitior/ (eq) into regions in which the pursuer may lie depending on the
policy of the winner. The geometry of the partitions is a fiumae of the velocity
ratio between the pursuer and the evader.

To determine the partition df (ey), we must consider three cases depending
on whether (a) the closest point to the evader on the obdtaslen the corner,
(b) the closest point belongs uniquely to one of the sideg¢c)the evader lies
inside the star region. Figure 2.9 shows the partitio 66,) for the case when
the closest point to the evader on the obstacle belongs widbeAO. In the rest
of this section, we analyze this case.

Since we are considering the inverse of the problem addiesgbe previous
subsection, the geometry of the regions in this case isrdiftefrom that given
in Table 2.1. Moreover, in the previous subsection, we sawttie result of the
game depends on the initial position of the pursuer and thdesv Hence the
configuration variables in this subsection denote theineslat the beginning of
the game.

First, let us consider the case in which the pursuer liesarstar region. In this
case, the entire free workspace is visible to the pursueit@ad track the evader
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by remaining stationary. Hence if the pursuer lies in the sggion, it wins the
game and its policy is to remain stationary. Now we presantithrivation of each
region of the partition in the remaining part6ie,).

Region 1

From the previous subsection, Region 1 consists of all thos#s inV (p,) from
which the evader wins the game irrespective of the purspetisy.

First, let us consider the case in which the pursuer liesvbéhe z-axis. The
strategy of the evader is to move directly towards the obstrthat it can reach
AO before the pursuer can reach the boundary of the starnmegioich is thez-
axis in this case. Since we are considering the case wheptabest point to the
evader on the obstacle belongs to side AO, the evader liesgioR 1 ofV (py) if
de < ad, = d, > .

Now let us consider the case in which the pursuer lies above-fxis and
outside the star region. In this case, the evader wins the gfaime time taken by
the evader to reach the corner is less than the time takenebguitsuer to reach
the star region. Letl, denote the perpendicular distance of the evader from the
edge AO. Hence Region 1 consists of points suchithat ad, = d, > "=.

Region 2

Let us first consider the case in which the pursuer lies bel@wtaxis. Refer
to Figure 2.4. We can see that the evader lies in Region12(gf) if the least
distance of the evader from line OB is greater thdn From Figure 2.10, we can
see that the least distance of the evader from line OBsB1(¢. — ¢,).

—arysin ¢, < resin(¢. — ¢p)
Sinceg, < 0, the above equation can be written as

_ Tesin(¢e — ¢p)

asin ¢,

Te Sin ¢, (cot ¢ — cot ¢,)
a

Tp

= Tp

Now let us consider the case when the pursuer lies above #éixés and outside
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Figure 2.10: Distance of evader from line of sight of the pers

the star region. From Figures 2.4 and 2.8, we can concludeéitha@vader lies in
Region 2 ofV(py) if r. > amin{r,,d,} = " > min{r,, d,}.

Region 3

Refer to Figure 2.4. The evader lies in Region 3/¢p,) if . > ar,, . > —ar,

and least distance of the evader from line OB is less than This implies that
Te sind)e(co(tltbefcot ¢p). Hencanax{—x—e Te sin ¢e (cot Ppe—cot ¢>p)} <

a’ a —

rp < e, 1y > —%eandr, >
<

<3
o

Tp

Region 4

From Figure 2.4, we see that the evader lies in Region ¥ (@) if . < ar,,

min{d,,r.} > ad, = min{d.,r.} > —ar,sin¢, and the least distance of the

evader from line OB is less thau,. This leads to the following condition:
min{d,, r.}

Te .
> > — t — cot
asing, 2 r, > max{ ” , Te SN ¢ (cot ¢ — cot ¢p,) }
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i 1 i
(a) @ outside the star region. (b) g inside the star region.

Figure 2.11: Evader-based partitions.

Region 5

From Figure 2.4, we see that the evader lies in Regions(ef) if z. < —ar, =
Ty < =Ie

All the above partitions are shown in Figure 2.9. Figure 2(&) shows the
partition of V' (ey) when the nearest point of the obstacle to the evader is c@ner
but the evader is outside the star region, and Figure 2.2.2htows the partition

of V(ep) when the evader is in the star region.

Based on the partition df (e;), we present a sufficient condition of escape for
the evader in the next section that is used to bound the sett@f ipositions of
the pursuer from which it might win the game.

2.3 Approximation Schemes for Polygonal
Environment

In the previous section, we provided a partitiorit{ie,) to decide the outcome of
the target tracking game. From the previous section, we oanlade that if the
pursuer lies in Region 1 df (ey), then the evader has a strategy to win irrespec-
tive of the pursuer’s strategy. The presence of other olesta@mes not affect this
result. This leads to the following sufficient condition fescape of the evader in
any general environment.

Sufficient Condition: If the time required by the pursuer to reach the star region
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Star region

Figure 2.12: Sufficient condition for escape.

associated with a vertex is greater than the time requiretthé&yevader to reach
the vertex, the evader has a strategy to escape the purgisdsitity region.

The relation between the time taken by the pursuer and ecaddye expressed
in terms of the distances traveled by the pursuer and theceam their speeds.
In a general environment, df, is the length of the shortest path of the evader from
a corner,d, is the length of the shortest path of the pursuer from thersgion
associated with the corner ands the ratio of the maximum speed of the evader
to that of the pursuer, then the sufficient condition can als@xpressed in the
following way:

SC: If s, < as,, the evader wins the game.

The sufficient condition arises from the fact that if the exrag@aches the corner
before the pursuer can reach the star region associatedhsittorner, the evader
may escape to the side of the obstacle hidden from the purBhisris illustrated
in Figure 2.12. In the figure, the evaderjs at the corner while the pursuer,is
yet to reach the star region associated with the corner.elptirsuer approaches
the star region from the left side as shown by the solid artioggvader can escape
the visibility region of the pursuer by moving in the dirextiof the solid arrow.
On the other hand, if the pursuer approaches the star regpanthe right side
as shown by the dotted arrow, the evader can escape thditysiegion of the
pursuer by moving in the direction of the dotted arrow.

For convenience, we refer to the sufficient condition as S@énrest of the
paper. Using the SC, we show that in any environment comgipolygonal ob-
stacles, the set of initial positions from which a pursuer tack the evader is
bounded. First, we prove the statement for an environmemiiagdng a single
convex polygonal obstacle. Then we extend the results tanargkepolygonal
environment containing multiple obstacles. This leadsuofimst approximation
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Star region

Figure 2.13: Proof of Lemma 1.

scheme.

Consider an evader in an environment with a single conveygoolal obstacle
havingn edgeskE, E, - - - E,,. Every edgeF; is a line segment that lies on a line
lg, in the plane. Let{h;}} denote a family of lines, each given by the equation
hi(z,y,eo,a) = 0. The presence of the terraganda in the equation implies that
the equation of the line depends on the initial position efeéliader and the speed
ratio respectively. Each ling; divides the plane into two half-spaces, namely,
hi = {(z,y) | hi(x,y,ep,a) > 0} andh; = {(z,y) | hi(x,y,ep,a) < 0}. Now
we use the SC to prove a property related to the edges of thaobds

Lemma 4: For every edger;, there exists a liné, parallel toF; and a corre-
sponding half-spack; such that the pursuer loses the gamgyife 7.

Proof. Consider an edgé&’; of a convex obstacle as shown in Figure 2.13. Since
the obstacle is convex, it lies in one of the half-spaces igeee by the lindg, .
Without loss of generality, let the obstacle lie in the rgphice below the ling;,.
Let d. andd, be the length of the shortest path of the evader from verticesl
b of the edge:; respectively. Since the obstacle lies in the lower halespat/ s, ,
the star regions associated with verticendb are in the upper half-space &f,
as shown by the green shaded region. /L.@ind/, be the lines at distances éj
and%, respectively, from the lingz,. If the pursuer lies at a distance greater than
min(%, %) below the lindz,, then the time taken by the pursuer to reach the line

a’ a

, in(de b . . :
lg, ist, > mm(; =) The minimum time required by the evader to reach corner
D
c or b, whichever is nearer, is given ly = 22=%) " From the expressions of
P
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Figure 2.14: A polygon and its sectors.

t. andt, we can see that, > t.. Hence the pursuer will reach the nearer of the
two corners before the evader reaches lineHence from SC, we conclude that
if the pursuer lies below the lin; parallel toe; at a distance ofnin (4, %), then
the evader wins the game by following the shortest path todaer of the two
corners. In Figure 2.13, sinek > d. the lineh; coincides with lind... O

Given an edgév; and the initial position of the evader, the proof of Lemma 1
provides an algorithm to find the life and the corresponding half-plang as
long as the length of the shortest path of the evader to theecoof an edge is
computable. For example, in the presence of other obstatiedength of the
shortest path of the evader to the corners can be obtainedjkstrB’s algorithm.

Now we present some geometrical constructions requireddeepthe next
proposition. Refer to Figure 2.14. Consider a convex olesta@onsider a point
c strictly inside the obstacle. For each vertgexextend the line segmenjc to
infinity in the directionu;c to form the raycv,. Define the region bounded by rays
cv; andcev; | assectorv;cv;, ;. Thesectors possess the following properties:

1. Any two sectors are mutually disjoint.
2. The union of all the sectors is the entire plane.

We use this construction to prove the following proposition

Proposition 4: In an environment containing a single convex polygonatadis,
given the initial position of the evader, the set of initi@gttions of the pursuer
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(@) (b)

Figure 2.15: Proof of Proposition 4.

from which it can win the game is a bounded subset of the fre&space.

Proof. Refer to Figure 2.15. Consider an edgeof the convex obstacle with end
pointsv; andv; 1. WLOG, the obstacle lies beloly,. Letc be a point strictly
inside the convex polygon. Extend the line segmentsaindv; ;¢ to form sector
vicv, ;. Using Lemma 1, given the initial position of the evader, \aa construct
a line h; parallel toF; such that if the initial pursuer position lies beldw, the
evader wins the game. In case the lipentersects sector;cv;,,, as shown in
Figure 2.15(a), the evader wins the game if the initial pergqosition lies in the
shaded region. In case the ling does not intersect sectofcv;,,, as shown
in Figure 2.15(b), the evader wins the game if the initialguer position lies
anywhere in the sector. Hence for every sector, there isiarregfinite area such
that if the initial pursuer position lies in that region thikmight win the game.
Every edge of the polygon has a corresponding sector assdaiath it. Since
each sector has a region of finite area such that if the ipitiesuer position lies in
it, the pursuer might win the game, the union of all thesearsgjis finite. Hence
the proposition follows. O

In the proof of Proposition 4, we generate a bounded set fdr eanvex polyg-
onal obstacle such that the evader wins the game if thelipitsition of the pur-
suer lies outside this set. Figure 2.16 shows the evader enainonment con-
taining a single hexagonal obstacle. The polygon in theerebdunded by thick
lines shows the region of possible pursuer win. In a similay,wwe can gener-
ate a bounded set for a non-convex obstacle. Given a norexmbstacle, we
construct its convex-hull. We can prove that Lemma 1 holdstfe convex-hull.
Finally, we can use Proposition 4 to prove the existence afmbed set.
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From the previous discussions, we conclude that any poblgusstacle, con-
vex or non-convex, restricts the set of initial positionsnfr which the pursuer
might win the game to a bounded set. Moreover, given thealrpsition of the
evader and the ratio of the maximum speed of the evader toftkfa pursuer, the
bounded set can be obtained from the geometry of the ob&tathe construction
used in the proof of Proposition 4. For any polygon in the envinent, let us call
the bounded set generated by it Biset If the initial position of the pursuer lies
outside theB set the evader wins the game. For an environment containing mul
tiple polygonal obstacles, we can compute the intersecti@tl B setsgenerated
by individual obstacles. Since eaBlsetis bounded, the intersection is a bounded
set. Moreover, the intersection has the property that ifiniteal position of the
pursuer lies outside the intersection, the evader wins déineeg This leads to the
following proposition.

Proposition 5. Given the initial position of the evader, the set of inifpalsitions
from which the pursuer might win the game is bounded for anreninent con-
sisting of polygonal obstacles.

Proof. The bounded set referred to in this theorem is the inteedf theB
setsgenerated by the obstacles. If the initial pursuer positioes not lie in the
intersection, it implies that it is not contained in all tBesets Hence there exists
at least one polygon in the environment for which the inpralsuer position does
not lie in itsB set By Proposition 4, the evader has a winning strategy. Hemee t
proposition follows. O

From the above discussion, we conclude the following sefficcondition for
escape: For any initial position of the pursuer outside/et, the evader wins
the game.

But we still do not know the result of the game for all initi@mgtions of the pur-
suer inside the intersection. However, we can find bettercqopation schemes
and reduce the size of the region in which the result of theeg@minknown. In
the next subsection, we present one such approximatiomeche
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Figure 2.16:B setfor an environment consisting of a regular hexagonal okestac
anda = 0.5.

2.3.1 U set

Now we present an approximation scheme that gives a tigbterdon the initial
positions of the pursuer from which it might win the game. reRrbemma 1, the
evader wins the game i§, € h; for any edge. We can conclude thatpf €
Ur_,h, the evader wins the game. Singe” hf)c = N, (k)¢ = N A,
whereS¢ denotes the complement of sgtif p, lies outsiden], s, the evader
wins the game. Hence the set of initial positions from whiregaursuer might win
the game is contained inf"_, 2, . We calln’_, h;” theU set An important point to
note is that the intersection can be taken among any numiedfe$paces. If the
intersection is among the half-spaces generated by thesedga obstacle, we
call it the U setgenerated by the obstacle. If the intersection is among akfe h
spaces generated by all the edges in an environment, we ttedld setgenerated
by the environment.

The next proposition proves that thesetgenerated by a single obstacle is a
subset of thd setand hence a better approximation.

Proposition 6. For a given convex obstacle, thkesetis a subset of th& setand
hence bounded.

Proof. Consider a poing that does not lie in th8 set From the construction of
the B sef ¢ must belong to some half-planlg. If ¢ € hj, theng ¢ h;, =
q ¢ N_,h;. This implies that the complement of tisetis a subset of the
complement of th&) set This implies that théJ setis a subset of th8 set [
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Figure 2.17:B setandU setfor an environment containing of a regular
hexagonal obstacle arnd= 0.5. The polygon bounded by thick lines is tBeset
and the polygon bounded by thin lines is theset

Figure 2.17 shows thB setandU setfor an environment containing a regular
hexagonal obstacle. In the appendix, we present a polyrdimia algorithm to
compute théJ setfor an environment with polygonal obstacles. The overalkti
complexity of this algorithm i) (n?logn) wheren is the number of edges in
the environment. Figure 2.18 shows the evader in a polygematonment. The
region enclosed by the dashed lines isltheetgenerated by the environment for
the initial position of the evader. Thé setfor any environment having polygonal
obstacles is a convex polygon with at mastides [41]. Figure 2.19 shows the
setfor an environment for various ratios of the maximum speethefevader to
that of the pursuer. In Figure 2.19, it can be seen that aspiedsratio between
the evader and the pursuer increases, the size df thetdecreases. The size of
the U setdiminishes to zero at a critical speed ratio. At speed rdtigher than
the critical ratio, the evader has a winning strategy for iaityal position of the
pursuer.

Before we proceed to the next proposition, we prove theviotig Lemma.

Lemma5: Fora < 1, the evader lies inside thé set

Proof. Fora < 1, v, > w.. If the pursuer lies at the same position as the evader,
its strategy to win is to maintain the same velocity as thahefevader. Hence
if the pursuer and the evader have the same initial positi@pursuer can track
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Figure 2.18:U setfor a general environment.

Figure 2.19:U setfor a various speed ratios of the evader to that of the pursuer
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the evader successfully. Since all the initial positiomsrfrwhich the pursuer can
win the game must be contained inside theet the evader position must also be
inside theU set 0

The following proposition provides a sufficient conditioor fescape of the
evader in an environment containing obstacles usingteet

Proposition 7. If the U setdoes not contain the initial position of either the pur-
suer or the evader, the evader wins the game.

Proof. From the definition of theJ set if the pursuer lies outside thg set it
loses. If the evader lies outside thleset Lemma 2 implies: > 1. If a > 1,
v. > v,. If v, > ©v,, the evader wins the game in any environment containing
obstacles. Its winning strategy is to move on the convexdfidhy obstacle. [J

2.3.2 Discussion

In the previous sections, we have provided a simple appratkim scheme for
computing the set of initial pursuer positions from whicle #vader can escape
based on the intersection of a family of half-spaces. A sligbdification to the
proposed scheme leads to a better approximation. In thd pfaeemma 1, we
presented an algorithm to find a half-space for every edgéeopolygon such
that if the initial position of the pursuer lies in the haffexe, the evader wins the
game. All the points in the half-space are at a distance@rdmn% fromlg,. By
imposing the condition that the minimum distance of themeksset of points from
lg, in the free workspace should be greater tl—dglarwe can include more points
in the decidable regions as shown in Figure 2.20. The figuoevslan obstacle
in free space. From the proof of Lemma 1, we get the half-sphaded in red.
By adding the new condition, the region shaded in green getsded. When we
repeat this for every edge, the set of initial positions fieimch the pursuer might
win the game gets reduced and leads to a better approximdtenboundary of
the shaded region consists of straight lines and arc olesirdhe boundary of the
desired set is obtained by computing the intersections graaollection of rays
and arcs of circles generated by each edge. In this caseex bptiroximation
comes at the cost of expensive computation.
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Figure 2.20: A polygon in free space. The region shaded imsretitained by
using Lemma 1. The region shaded in green gets added by ubkites
approximation scheme.

None of the approximation schemes we have suggested safiact®the initial
position of the pursuer to be in the evader’s visibility @gi This condition can
be imposed by taking an intersection of the output of the@ppration algorithm
with the visibility polygon at the evader’s initial positio Efficient algorithms
exist for computing the visibility polygon of a static pointan environment [42].

In the next section we present an approximate bound on ttial ipositions of
the pursuer from which it can track the evader.

2.4 U Setfor Specific Environments

In the real world we encounter a lot of non-polygonal ob&siéh the environ-
ment. Common obstacles in an environment are circular aoduaind pillars that
project to a disc in a plane. In this section we computelflet for a disc in
a plane and then extend the procedure to computé/tae for obstacles whose
boundaries have a well defined tangent at each point.

2.4.1 Discinaplane

Consider an environment consisting of an obstacle in thpesba disc of radius

r in free space. Refer to Figure 2.21. l@étdenote the boundary of the obstacle.
Let ey denote the initial position of the evader. Let O be the ceoténe circular
obstacle. The distance between O agds d,. O is also the origin of the world
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Figure 2.21: A disc-like obstacle in free space.

reference frame. The-axis of the world reference frame passes throaghnd
O. Lett be a point on the boundary of the obstacle such thain@kes an angle
0 with the z-axis. Letd’ denote the distance betweenande,. Let T" denote the
tangent to the circle at the pointLet/; be a line at a distance (%f from T"in the
same half-space df as the obstacle. By SC, the evader will win the game if the
pursuer lies in the half-space shown by the shaded regiometbation of liné,
iSy—+xcot @ —(r— %’) csc§ = 0. For each point on the circle, we can find such a
line I, and the corresponding half-spdge TheU setis defined as\,c¢!; . If the
initial position of the pursuer lies outside thieset the evader wins the game. Let
l(x,y, 6) denote the family of lineg generated by all pointslying on C'. Due to
symmetry of the environment about theaxis, theU setis symmetric about the
x-axis. We will construct the part of tHe setgenerated a& increases fron to
.

Let B denote the boundary of thé set

Proposition 9: B is the envelope of the family of lindéz, y, 0).

Proof. Consider any poing on B. The pointg belongs to some line in the family
of linesi(x,y, ) since it belongs to the boundary. Let that linelpewhich has
to be tangent to the boundaByor else there is a neighborhood aroynid which
B lies in both the half-spaces generatedify Sincegq is any point onbB, it is
true for all pointsg on B that the tangent t@& at ¢ belongs to the family of lines
I(x,y,0). A curve satisfying this property is the envelope to the farof lines
l(x,y,0). O

We can find the envelope of a family of lings:, y, 6) by solving the following
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equations simultaneously:

l(a:,y,@):y+xcot9—(r—%)cscﬁzo (2.1)
ol
— = 2.2
50 =~ ° (2.2)

Here,d' as a function o#f is given by

d'(0) = \/7’2+d%—2rdocosﬁ if 6<6,
a B—r2+7r(0—0,) if 0>0,

wheref, = cos™' L.

2.4.2 Case 14 < 6p)

Substituting Equation (2.1) in Equation (2.2) gives

r=(r— \/r2+d3—27’d0c059)6089+ rdg sin® 0
a ay/r? + d% — 2rdycos 0
V12 +d2 —2rdgcos rdgy sin 6 cos 0
y=(r— )sinf —
a a\/r? + d% — 2rdycos 0

2.4.3 Case 24> 6,)

Substituting Equation (2.1) in Equation (2.2) gives

7 _ 2 _ ;
v = (r— dg—r2+r(0 90))cos9—|—sm9
a a
2 _ 2 _
y=(r— i —r2+r(0 90))Sin6_cosﬁ
a a

Since B is symmetrical about the—axis, the other half of3 is obtained by re-
flecting the above curves about theaxis. Figure 2.22 shows the boundary of the
U setfor a disc of radius 3 units. Figures 2.22 (b), (c) and (d) skosvboundary
of the U setfor varying distance between the evader and the obstackeadh of
these figures, the boundary of thlesetis shown for three different values of
We can see that far < 1, the evader lies inside thé¢ set
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Figure 2.22: (a) Disc-like obstacle with the initial positiof the evader. The
smaller circle is the evader. Panels (b), (c) and (d) shovbthmdaries of th&)
setsfor the obstacle with increasing distance between the exatkthe center

of the disc. In (b), (c) and (d), the black boundary is for taeewhem = 0.5,

the cyan boundary is for the case whes 1 and the red boundary is for the case

whena = 10.

The above procedure can be used to construdt/tbetfor any convex obstacle
whose boundary has a well defined tangent at every point. elbttundary is
given by the equatiorf(z,y) = 0 wheref(x,y) is such thal‘% andg—;[ exist for
all points, the procedure to generate the boundary obltketis as follows:

1. Given any point on the boundary, find the equation of the linas defined

above.

2. Find the familyl(x, y, 6) of lines generated bl ast moves on the boundary
of the obstaclef is a parameter that defines

3. The envelope of the family(z, y, #) is the boundary of th& set This is
true since the proof of Proposition 3 does not depend on thpesbf the
obstacle and hence Proposition 3 is true for any obstacle.

In the next section we present an approximate bound on ttial ipositions of
the pursuer from which it can track the evader.
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Figure 2.23: Sufficient condition for surveillance.

2.5 Sufficient Condition for Surveillance

In this section, we present a sufficient condition for a parga track the evader.
If 7. > v, the evader wins the game for any initial position of the parsSo a
necessary condition for successful trackingds< v,. A plausible strategy for
the pursuer to track the evader would be to catch the evadefimte time and
then move with the same velocity as the evader. The latteossiple since we
assumed that the pursuer can estimate the instantaneog#tyelf the evader at
all times. Using the above ideas, we present the followirfycsent condition for
tracking.

Sufficient Condition for Tracking : Let d., denote the distance to the nearest
reflex vertex frome, andd,, =|| e, — po || (Figure 2.23 shows an example). A
sufficient condition for the pursuer to catch the evaderésfdfiowing:

1—a >dep

min{

Proof. The minimum time required by the evader to reach the neafiskivertex
ist. = d,v— Let R,, denote the set of points in the free workspace reachable by

the evader, starting af, in time ¢,; i.e., R,. consists of points € R? in free
workspace such thatx — eg ||< de,.

Lemma 6: R, is convex.

Proof. R;, cannot contain any reflex vertex of the environment in itsrior ast.
is the time required by the evader to reach the nearest refigexy Hence,, is
convex. O
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Considerp, € R, — le;’j < 1. Consider a strategy for the pursuer in

which it moves directly towards the evader with spegd

Property 1: The pursuer remains ii;,, V ¢ <t..

Proof. From triangular inequality, we obtain the following condit:

Ip(t) —eo || < |[p(t)—e(®) || + [ e(t) —eo |

At any timet, the distance between the pursuer and the evader decrgasés b
most (v, — v.)t. Hence|| p(t) —e(t) ||< dep, — (U, — Te)t. At any timet,
the evader travels a maximum distancevef from its initial position. Hence

|| e(t) — eo ||< Det.

= |lp(t) —eo || < dep— (U, = Te)t + et

< dep + (20, — V)t

Substituting, = %= in the above inequality leads to

Ve

__ — dev
Ip(t) —eo || < dep+ (20c - Up)@—
20 — 1
= do,+ wdw
a

Using the conditiorf2 < 1=, we obtain

(1— a)d (2a — 1)dev

ev

t) — <
o) el < 0 -
= dev

Hence at all times < ¢, the pursuer remains insidg, . O

Property 2: The pursuer can see the evadeY ¢ <t..

Proof. From Property 1p(t) € R,, V t <t.. Bydefinitione(t) ¢ R;,, V t<
t.. Hencep(t) ande(t) areinRk,, V ¢ <t.. UsingLemma 6, we can conclude
that pursuer can see the evadeY ¢ <t.. O

Property 3: The pursuer can catch the evader in time ¢..
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Proof. If the pursuer follows the strategy to move directly towatls evader
with speedv,, the time required by the pursuer to catch the evadgyr S Ud—”,

ol
The time required by the evader to reach the bounday,ofs ¢, > d_v— Since
jﬁi <% — ¢, <t. Hence the property follows. O

From Property 2 and 3, the pursuer can track the evader ant taf the

following conditions are satisfiedp, € R, — Zf” < land jﬁ” < =

This leads to the sufficient condition for tracking. O
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CHAPTER 3

TARGET TRACKING: A GAME OF
DEGREE

In this chapter, we analyze the problem of target trackinggeme of degreelNe
use techniques from differential game theory to computes#ugzlle point strate-
gies for the players. Furthermore, we compute the optinagé¢dtories of the
players near the termination situations. We conclude theten by presenting the
construction of a specific kind afingular surface called thedispersal surface
that appears in this game.

The organizations of this chapter is as follows. In Sectidh @/e provide a
brief history of pursuit-evasion and differential gameasSkction 3.2, we present
the formulation of the target-tracking problem as a gamesgfée. In Section 3.3,
we present the saddle-point strategies for the playersedtich 3.4, we present
the construction of the optimal trajectories near the teation situations around
a corner. In Section 3.5, we present the construction oflibgersal surfacethat
appear in this game.

3.1 Pursuit-Evasion and Differential Games: A Brief
History

One of the earliest works that illustrates the connectidween differential games
and pursuit-evasion is the seminal work of Isaacs that cdted in his book
[9]. A general framework based on the concepts in classiaalggtheory and
the notion oftenet of transitionwas used to analyze pursuit-evasion problems.
Classical problems like tHaon and the ManHomicidal ChauffeuandMaritime
Dogfightwere introduced in this book. Among the many problems inioadi in
this book is the famous problem ®he Lady in the LakeA formulation of this
game that appeared in the Russian translation of Isaacsisvaskfollows [10]:

The problem is about a lady E who swims (with spgeé: 1) in
a circular pond (with a radius of magnitude 1). A lusty man Rsu
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along the circumference of the pond wishing to take the slqseture
of the lady as she gets out...

The problem is to find a strategy for the lady to get out of thadpat a point
farthest away from the man. Another famous game introducdsi book is the
Homicidal ChauffeurIn this game a car strives to hit a slower but a more nimble
pedestrian. The motivation for Isaacs was to model in a sfrapimanner a game
of air combat where a slow, but more maneuverable airplapersued by a faster
and less maneuverable craft. A complete solution taHbmicidal Chauffeuis
spread out over [43] and [44]. In tH@bstacle Tagoroblem [45], [46], a faster
pursuer wants to capture a slower evader in minimum time eénpitesence of
an obstacle. In addition to the formulation of these prols¢hat relate to real-
life scenarios, Isaacs’ book also provides the necessanrglitions for optimal
trajectories for the players, although these were alsoqa®g independently by
Blaquiére et al. in [47]. Moreover, it is the first work thabpides an extensive
introduction to various kinds o$ingular surfaceghat arise in pursuit-evasion
games. It concludes with a brief introduction to the the tiieaf games with
incomplete information. An elaborate history of the vas@eneralizations and
modifications of the classical problems dealt with in Isabosk and formulation
of new problems in pursuit-evasion are presented in [48]. [1

In this chapter, we deal with continuous time formulationtd target-tracking
game. It was through this type of problem (i.e., through tinel\s of pursuit and
evasion between two objects moving according to simplerkate laws) that
the theory of differential games was started in the early0$988]. The theory
of differential games is a blending of the notions of contr@ory with the de-
cision structures and solution concepts of classical gdm@ery. In general, we
can reduce a differential game model to a control probleneifasume that only
one player is active and the other is not. This also implias tihe theory of dif-
ferential games includes the results of the theory of ogtepatrols as special
cases. Differential games is used for modeling conflict j[enois of real life in
analytical fashion although it has been used in the pastdBarehers in control
theory to form the linkage between the notiorrabust optimal controhnd linear-
guadratic differential games in controller design [49].n@ouous-time formula-
tion of pursuit-evasion games belongs to the class of zenodifferential games.
An exhaustive list of solved or partly solved zero-sum défgial games is given
in [50].
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A modification to the classical problems in differential gasnnvolves the con-
sideration of their discrete-time versions and the appboaof a proper informa-
tion structure to compute the value of the game. In [51], [22Hiscrete-time
version of a continuous-time zero-sum differential gamarialyzed. Based on
appropriate assumptions about the smoothness of the vatgédn, the authors
prove the convergence of the value as the time step goesdo Ralaxing the
assumption on the smoothness of the value function andatesgrthe cost func-
tion in addition to the dynamics of the players leads to caysece for special
problems [53]. Furthermore, in [54] the authors prove theveogence of the
game for all cases without the restrictions proposed in.[38][55], the author
considers the existence of a “min-sup” strategy to a pwestasion game. The
author proves the existence of the solutions in case the gammenates in a fi-
nite time. In [56], the authors propose a definition of a sggtand justify it by
demonstrating the existence of a saddle point. In [57], theas analyze gener-
alized pursuit-evasion games (games with integral-pay®ffey presentodified
Isaacs conditionsinder which arextended value functioexists for the players
when they useelaxed controls In [58], the authors extend the previous work to
linear differential games and prove the existence of sapdiet strategies over
the set of relaxed controls.

In his work, Isaacs showed that if the values of various ifiéial games are
regular enough, then they solve the Isaacs equations ehétstrorder PDE with
“max-min” or “min-max” type nonlinearity. In many problentise value functions
are not smooth enough to satisfy the Isaacs equations. Maysre have worked
around this difficulty, especially Fleming [59], [54], Fdman [60], Elliott and
Kalton [61], [62], Krassovski and Subbotin [63], and Subb@64]. In [65], the
authors present a new notion of “viscosity” solution for Hiom-Jacobi equa-
tions and prove the uniqueness of such solutions in a widetyaof situations.
In [66], the author shows that the dynamic programming oagliiiyncondition for
the value function in differential control theory problemsplies that this value
function is the viscocity solution of the associated HIB PDie foregoing con-
clusions turn out to extend to differential game theory. @#][ the authors show
that in the context of differential games, the dynamic paogming optimality
conditions imply that the values are viscosity solutiongpropriate partial dif-
ferential equations. In [68], the authors present a singpliibn of the previous
work.
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In general, the solution of optimal strategies for the parsand evader is re-
duced to the problem of solving the Hamilton-Jacobi-IsgBid$) equation, which
is a partial differential equation relating the value of ¢faene to the state variables
and optimal control inputs. Barring a few exceptions, foraa4tinear system
model with constraints in state and control inputs, the ddifficult to solve in
closed form. This calls for the need of numerical technigwesolve the equa-
tions. In [69], the authors present various numerical tegples for two-person,
zero-sum deterministic differential games for systems #na non-linear in the
state variables as well as the control variables. Numeaipptoximations based
on the idea ofeachable setfr0] are presented in [71]. Further discussion of the
advantages and limitations of various numerical techréguaa be found in [71],
Sec. II.C.

In the next section we formulate the problem of target tnaglas a game of
degree.

3.2 Formulation of the Game

We consider a mobile pursuer and an evader moving in the plahevelocities
u(t) = (up(t),0,(t)) andv(t) = (ue(t),0.(t)) respectively. The speeds of the
pursuer and the evader are givenyyt) andu.(t), respectively, and are bounded
by v, andv, respectively. The directions of the velocity vectors of pluesuer and
the evader are given ;(¢) andé.(t) respectively. We use to denote the ratio
of the maximum speed of the evader to that of the pursu:erg—;. The players are
assumed to be point robots with no constraints on their maiwept for bounded
speeds.

The workspace contains obstacles that restrict pursueeadker motions and
may occlude the pursuer’s line of sight to the evader. Thelrpositions of the
pursuer and the evader are such that they are visible to ¢heh dhe visibility
region of the pursuer is the set of points for which a line sexginfrom that point
to the pursuer does not intersect the obstacle region. iMgibxtends uniformly
in all directions and is only terminated by workspace odeg@mnidirectional,
unbounded visibility). The players know each other’s corygosition as long as
they are visible to each other. Both players have a complefe ohthe environ-
ment.

In this setting, we consider the following game. The pursuents to keep the
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evader in its visibility region for the maximum possible &rand the evader wants
to break the line of sight to the pursuer as soon as possilblat dny instant,
the evader breaks the line of sight to the pursuer, the gammertates. Given the
initial position of the pursuer and the evader, we want tovkiloe equilibrium
strategies used by the players to achieve their respeciais g

The positions of the pursuer and evader on the plane are gver),(t), y,(t))
and(z.(t), y.(t)) respectively. The state of the system is giverxis) = [z, (),
yp(t), (1), y(t)]*. The kinematic equations of the players are given as follows

0 up(t) cos B, (1)
) || w@sno,w
Te(t) ue(t) cos ()
e (1) ue(t) sin O,(t)

The above set of equations can also be expressed in thexf@im- f(x(t),
u(t),v(t)). The presence of obstacles poses configuration and Jigiloibin-
straints for certain states &". In the next section, we present the characterization
of the boundaries of the state space.

3.2.1 State Space

In R*, thegame seis the set of all states such that the players are in the free
workspace and can see each other. The boundary of the gamensgsts of
two kinds of configurations of the pursuer and the evadee(ref Figure 3.1).
The first kind of boundary points consists of states in whithee the pursuer
or the evader or both lie on the boundary of the workspace.oAtaint in time
can the state of the game cross the boundary at such a paietthiis results in
either of the players penetrating an obstacle in the wodespahe second kind
of boundary, called théarget sef consists of states in which a boundary of an
obstacle is incident on the line of sight between the puranerthe evader. At
any point in time, if the current state of the game lies on #rgdt set, then it
can cross the boundary according to the rules of the game Birthe workspace
this results in breaking the mutual visibility between thayers which leads to
termination of the game. Since we are interested in sitoatwhere the mutual
visibility between the players can be broken, we are onlgradted in the part of
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the boundary that forms the target set.

Figure 3.2 shows an instance in which the state of the sysésnoh the target
set. Let/, denote the distance of the vertex from the pursuer! denote the dis-
tance between the pursuer and the evader. The evader candoranation if and
only if the magnitude of the maximum angular velocity of tiva@er around the
corner is greater than the magnitude of the maximum angelacity achievable
by the pursuer around the corner. This can happen if and o ifollowing
condition holds:

l 1

L 3.1
l>1+a (3.1)

Hence we can further subdivide the target set, dependinghmthsr the evader
can guarantee termination at that point. The part of theetagt where the evader
can guarantee termination regardless of the choice of theais of the pursuer
is called theusable par{UP). The remaining part of the target set outside the UP
is called thenon-usable par{NUP). Given any initial position of the pursuer and
the evader, the game will always terminate on the UP.

Now we present the equations characterizing the targetrsend a vertex of
an obstacle; see Figure 3.2. The figure shows a state of tiseigruand evader
in which a vertexyp, lies on the line of sight between the pursuer and the evader.
Hence the current state of the system lies on the target setwait the equa-
tion of the hypersurface that characterizes the target se¢rgted by. Let
(2, Ups Te, ye) T be the state of the system on the target set @ridy°) be the
coordinates of the vertex of the obstacle. We can write tHevitng equation of

constraint: , )
Y —Ye _ Yy — yp
T° — T, r° — Ty

[ ]
.

ST T TTT TTTTTT
. [T TTTT -
I I
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s e

o) @

Figure 3.1: Boundary of the game set.
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Hence the target set is characterized by

= F(Zp, Yp, Tes Ye) = (Y — yp)(2° — ) — (¥° — 4e)(2° —2,) =0 (3.2)

Since the above equation applies to any point on the targefEqaation (3.2)
also characterizes the UP of the target set. In the nextosectie present the
optimal strategies for the players near the terminatiaragions.

3.3 Optimal Strategies

In order to present optimal strategies, we need to defineahefpfor the players
in the game. Consider a play that terminates at timéince the objective of the
pursuer is to increase the time of termination, its payaitfion can be considered
asty. On the other hand, since the objective of the evader is tonmee the
time of termination, its payoff can be considered to-bg. Since the payoff
functions of the players add to zero, this igaao-sundifferential game. The time
of termination is a function of the initial statgy = x(0) and the control history
during the playu(-) andv(-).

Since the players have conflicting goals, the concept ohwtiy involves the
idea ofNash equilibrium If a player follows its equilibrium strategy, it is guaran-
teed of a minimum outcome without any knowledge of the othayex’s future
actions. Moreover when a pair of strategies for the playensNash equilibrium
then a player cannot improve his outcome by unilateral dievidgrom its equi-
librium strategy. Consider a situation in which the purscen keep the evader
in sight for timet,; when the players follow their equilibrium strategies. leth
evader deviates from its equilibrium strategy then the ygersnight have a strat-
egy to track it for a time greater thap. On the other hand, if the pursuer deviates

Figure 3.2: State of the system on the target set.
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from its equilibrium strategy then the evader might be abledcape in time less
thant ;. Hence there is no motivation for either of the players taatevrom their
equilibrium strategies due to the lack of knowledge of theeotplayer’s future
actions. For a pair of equilibrium strategies for the playeither the evader can
escape the pursuer’s sight in finite time or the pursuer ek the evader forever.
Hence computing the equilibrium strategies gives theeggras that are sufficient
for tracking or escape, whichever holds at a given pointéstate space. In case
of a zero-sungame, the equilibrium strategies are also referred to asatdle-
point strategies In scenarios where the players have no knowledge about each
other’s strategies, equilibrium strategies are imporsarde they lead to a guaran-
teed minimum outcome for the players in spite of the otheyqafa strategies. In
this work,optimal strategiesefers to strategies that areNash equilibrium

For a pointx in the state space/(x) represents the outcome if the players
implement their optimal strategies starting at the paintin this game,J(x) is
the time of termination of the game when the players impldntiegir optimal
strategies. It is also called thvalue of the game ak. Any unilateral deviation
from the optimal strategy by a player can lead to a better fbdgo the other
player. For example, for a game that starts at a pejnf the evader deviates
from the optimal strategy then there may be a strategy foptinguer in which its
payoff is greater thad (x), and if the pursuer deviates from the optimal strategy
then there may be a strategy for the evader in which its pagajfeater than
—J(x). Since this is &ero-sunmgame, any strategy that leads to a higher payoff
for one player will reduce the payoff for the second player.

LetVJ = [J.. Jy. o, Jyp]T denote the gradient of the value function.
The HamiltonianH, of any system is given by

H(x,VJu(t),v(t) =VJ- f(x,u(t),v(t)) +1

Letu*(t) = (uy(t),0,(t)) andv*(t) = (u;(t),0:(t)) be the optimal controls used
by the pursuer and the evader respectively. Since the pusstie maximizer and
the evader is the minimizer, the Hamiltonian of the systenisfsas the following
conditions, called thésaacsconditions, along the optimal trajectories [9].

1. H(x,VJu(t),v*(t)) < H(x,VJu*(t),v*(t)) < H(x,VJ,u*(t),v(t))
2. H(x,VJ,u*(t),v*(t)) =0
Condition 1 implies that when the players implement thetiropl strategies any
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unilateral deviation by the pursuer might lead to a smaliue for the Hamilto-

nian and any unilateral deviation by the evader might leaalltoger value of the

Hamiltonian. Moreover condition 2 implies that when theyglies implement their

optimal controls, the Hamiltonian of the system is zero. THa&cs conditions are

an extension oPontryagin’s principlan optimization to a differential game [10].
The Hamiltonian of our system is given by

H(x,VJu(t),v(t) = VJ-f(x,ut),v(t)+1
= U(t)[Jy, cOSO(t) + Jy, sin ()]
Fuy(t)[ s, cos Oy (t) + Jy, sinO,(t)] + 1

We can see that the Hamiltonian separablein the controlsu,(t) and u.(t);

e., it can be written in the form,,(t) fi(x, VJ) + u.(t) f2(x, VJ). Hence the
minimaxassumption [9] holds. Moreover since the set of controleémh player
is compact, the optimal strategies exist. Using Isaacg’dwadition, we see that
the optimalu*(¢) andv*(¢) are given by the following expressions:

w'(t) = (ue(t), 0:(t) = arg win H(x, V.Ju(t), v'(¢))

V(1) = (uy(t), 05 (1)) = axg e H(x, V(1) V(1)
Since the Hamiltonian is separable, the optimal controistlie players are

given by the following expressions in terms of the gradidrihe value function:

(cos@,(t),sin 0 (t)) || (Jap Iy, )

= (cost(t),sin0;(t (3.3)

\/J2 +J2 \/J2 +J2

(cos G (t )7511192( D= o =)

* . * J Te Je
= (cos@:(t),sind;(t)) = \/J2 T — 7 y+ = ) (3.4)
Te Ye
us(t) =7,
un(t) = U, (3.5)

In the first and second equatiofjds used to denote parallel vectors. In case
J., = 0andJ,, = 0, thend; can take any value and the pursuer can follow any
control strategy. Similarly if/,, = 0 and.J,, = 0, thend; can take any value and
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the evader can follow any control strategy. These conditrepresensingularity
in the Hamiltonian.

The entire state space can be partitioned into two regiopsrang on the
value of the game. For all the initial positions of the pursaied the evader for
which the value of the gamé(x) is finite, the evader can break the line of sight
in finite time by following the strategies in Equation (3.2for all the initial
positions of the pursuer and the evader for which the valubeofiame is infinite,
the pursuer can track the evader forever if it follows thetimia given in Equation
(3.2).

The analysis done in this section implies that if we are gihervalue function
J(x), then we can compute the optimal strategies for the players Equation
(3.2).

3.4 Construction of Optimal Trajectories

In this section, we present the trajectories generateddgphimal strategies near
termination situations. From Equation (3.2), we can coelilhat the target set is
three-dimensional and hence can be represented by threpeindent variables.
Let the independent variables used to parametrize thettseg®e chosen as the
following:

[

$1=Te — X

o

S2 =Ye —Y

83 =x, — °

$253
:}yp:y()«l»—s
1

The value function at every point on the UP is 0. Hence thectoeal derivative
of the value function along;, s, andss is zero. LetJ° denote the value function
on the UP of the target set.

Jo=0=J0 — g0 2% (3.6)
51
JO—0=J0 408 (3.7)
52 Ye Yp 51 '
IO = 0= 4+ Jp = (3.8)
1
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Substituting the optimal control laws from Equation (3.3pithe second Isaacs
condition, we get the following condition:

Ve[ 2+ 5 + Uy /2 +J5 +1=0 (3.9)

Substituting Equations (3.4), (3.5) and (3.6) into Equaii®.7), we get the fol-
lowing expression for; :

1
52 _ s2 _
2 )@/3 )

From Equation (3.1), we can conclude that on the p% |> 2—” and hence
the R.H.S. of the above equation is always positive. Hefﬁlgecan have two
possible values differing just by a sign. In the terminatcmmdition shown in
Figure 3.2,J3p is positive since the value of the game increases when warpert
the pursuer position vertically upwards. Depending on th&ton of the corner
and the orientation of the pursuer and the evader at thenatimon situation, we
can eliminate one of the possible values]@)f.

Now we use the following theorem to obtain the value funcatong the opti-
mal trajectories backwards in time.

0
1S |= (3.10)

Theorem [9]: Along the optimal trajectory, the following equationlds:

d a * *
$VJ[X(t)] = —%H(X, VJ,u*, v*)
The above equation is called tregrogressive path equatidRRPE). The retro-time

(time-to-gqQ form of the RPE is

d 6 * *
V()] = S H(x, V0 v) (3.11)

wherer = t;—t is called the retro-time.; is the time of termination of the game.

The RPE is a differential equation for tRéJ(x) along the optimal trajectories
in terms of the optimal controls. Substituting the optimahtol of the players as
a function ofV.J(x) from Equation (3.3) into the RPE leads to a set of ordinary
differential equations fo¥.J(x). For our system, the RPE gives the following set
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of differential equations:

Iy, =0
Jy, =0
J,, =0
Jy, =0 (3.12)

HenceVJ remains constant along an optimal trajectory. We can oliv@walues
of VJ by computing the initial conditions of RPE which are the saamsethe
termination situations for the game in forward time. Intggrg the RPE backward
in time from the UP gives the following expressions\of (x):

Toy = T,
Sy, = Jgp
Toe = Iy,
Sy = Jy, (3.13)

SubstitutingV J(x) into the optimal controls in Equation (3.3) gives the cohtro
strategies for the players.

J? J?
(cos@y,sind)) = ( - ; = )
VOB + 82 J(8)2 + (5,2
J? Ty
(cos @, sinf}) = (— = . = )
VU2 U8R+ ()2
U, = U,
u, =T, (3.14)

Substituting the control laws for the players into the kimgimequation leads to
the optimal trajectories in retro time. Let!, y/, «/,y/) be the state of the system
at the termination situation on the UP. From Equation (318}, value onyop =

J_rclcosﬁf, wherec; = L

f_.0 . .
—————— andtand; = =L The optimal trajectory of
S f= o e
Ve p 7«|*Up ¢
x —&Cp
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Figure 3.3: Optimal trajectories to a termination situatio

the pursuer as a function of retro-time is given by the follgyequations:

Tt

xp(7) = 7 TU,sin by
yp(T) = y;: ; T, cos O ¢ (3.15)

The optimal trajectory of the evader as a function of retmoetis given by the
following equations:

=2/ 77.sinf
Te(T) = | TPesinby
Ye(T) = ygtTﬁe cos 0y (3.16)

SinceVJ is constant along an optimal trajectory, from the expressiothe op-
timal strategies of the players, we see that they are strimggs. Moreover from
Equations (3.13) and (3.14), we conclude that the playenrgerparallel to each
other in opposite directions, perpendicular to the lineighsat the termination
situation. Given a termination situation, this leads to &wuals of trajectories for
the players as shown in Figure 3.4. Now we show that only otieesfe two kinds
can lead to termination.

Referring to Figure 3.4, lgd ande be positions of the pursuer and the evader at
a termination situation. Consider a small amount of pegtiom in the pursuer’s
position in the positiveg-direction. Let the new position of the pursuerfise The
value of the game &tz,/, v, z, y.) IS greater than zero since the evader cannot
terminate the game instantly. Hengg is greater than zero &t,, y,,, ., y.). The
velocity of the pursuer is perpendicular to the line-ofkgigetween the pursuer
and the evader at the termination situatiofy, > 0 = sinf;, > 0 = 0 <
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Figure 3.4: A configuration of the bar on the target set.

0, < m at the termination situation. Hence the pursuer approatiedermination
situation in the direction shown in the figure. Since the gjoof the evader is
in the opposite direction, the evader approaches the tatromsituation in the
direction shown in the figure. Repeating the above analgsialf orientations of
the termination configuration and the obstacle leads to ¢inelasion that at the
termination situation the evader moves toward the obstaudhe pursuer moves
away from the obstacle. This leads to a unique set of optiragdtories from
every point on the UP.

For a general environment in the plane, the optimal trajeedie inRR*. In
order to depict them ifR*, we need to consider a subspace of the optimal paths
terminating at a corner. In the following examples, for eaomer in the envi-
ronment we show the subspace of the optimal paths that havedadistance of
the pursuer from the corner at the termination situatione ¥élue of the speed
ratio, a, is 0.66 in all the examples. Figure 3.4 shows the optim@dtaries for
the players in a simple environment containing a point albstat the origin. The
line of sight between the pursuer and the evader is brokeépésses through the
origin. The evader wants to minimize the time required takrine line of sight
and the pursuer wants to maximize it. lef, y/, =/, y/) represent the state of the
system at the termination situation. Figure 3.4(a) showsohtimal trajectories
of the players for a constant value ((sz;;, y]J;). Figure 3.4(b) shows the optimal
trajectories for every orientation of the line-of-sightween the pursuer and the
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evader at the termination situation. Thaxis represents the angle that the line-of-
sight makes with the horizontal axis at the terminationatitan. A cross-section
parallel to thery-plane gives the optimal trajectories of the players in a@lor

a givend;. The red line in the middle denotes the point obstacle. Therispiral

is formed by the optimal trajectories of the evader and therapiral is formed
by the optimal trajectory of the pursuer. The color of a poagresents the value
of the game,J(x), at that point. The value of the game increases as the color
changes from blue to red. For any point on the spiral, theevafithe game is
directly proportional to its radial distance from the pabttstacle. Figure 3.6(a)
shows a single corner in the plane. The internal angle atahsec is%“. Figure
3.6(b) shows the optimal trajectories of the players forciimer in a manner sim-
ilar to Figure 3.4(b). Figure 3.4(a) shows a regular hexagdhe plane. Figure
3.4(b) shows the optimal trajectories of the players foritbeagonal obstacle in
a manner similar to Figure 3.4(b).

7 Pursuer's Trajectories Evader's Trajectories

. 0-l
. <——Pursuer Trajectory 50

20 40

0 X

=50  -40 -20

(a) Optimal trajectories in the plane. (b) Optimal trajeies across a section Ik

Figure 3.5: Optimal trajectories for an environment havargjngle point
obstacle.

3.5 Singular Surfaces

Issacs’ work on two-person zero-sum differential game isipa study of sin-
gular surfaces (together with the fundamentals of Hamiltacobi theory). An
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Evader's Trajectory Pursuer's Trajectory

. -

(a) A single corner in space. (b) Optimal trajectories far piayers.

Figure 3.6: Optimal trajectories of the players for a colinespace.

Pursuer’s trajectories

@

theta

So Lk M W A O O N ®

Evader's

<« trajectories

40

20

-20

(a) A hexagonal obstacle in space. (b) Optimal trajectdaethe players.

Figure 3.7: Optimal trajectories of the players for a hexed@bstacle in space.

assumption almost always made at the outset of every ptegagion game is
that the state space can be split up into a number of mutuadjgiut regions,

the value function being continuosly differentiable inleat them. The behavior
and the method of construction of the value function are wedlerstood in such
regions. The boundaries of these regions are callegular surfacesor singular

linesif they involve one-dimensional manifolds, and the valusction is not con-
tinuously differentiable across them. A singular surfexa imanifold on which
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(i) the equilibrium strategies are not uniquely determifgdisaacs’ necessary
conditions, or (ii) the value function is not continuouslkfferentiable, or (iii) the
value function is discontinuous. This topic was extengiweVestigated by J. V.
Breakwell and his students. Various kinds of singular su@$aoccurring in the
different kinds of pursuit-evasion games are illustratefdlD] and [48] .

From [72], we get the following definition for singular surés based on the
regularity of the Hamiltonian (Ik, V.J(x)) ) and the value function/(x)):

A regular point of a differential game is an internal poxitof the domain of the
definition of the game valug&(x) such that the functiod(x) is twice differentiable
in a neighborhood of x*, J(x) € C%(D), and the Hamiltonian k&, V.J(x)) is
also twice differentiable in its arguments; i.e.(HVJ(x)) € C*(N) where N
is a neighborhood of the poirik*, V.J(x*)). A singular point is any point in the
phase space which is not regular. Singular curve, surfaceanifold consist of
singular points.

The above definition meets the geometrical definitions of [B3] and [48].
Figure 3.8 presents the qualitative behavior of the regutak singular paths for
different types of singular hypersurfaces. Some of theased contain singular
paths, while others, like dispersal or switching surfadesnot. Several surfaces
are associated with a jump &f.J, while others, like the switching or universal
ones, are not. The classification presented in Figure 3.8tisamplete; it is a list
of singularities met so far and more or less fully invesigHt72].

Based on the method of singular characteristics [72], rebees have encoun-
tered singular surfaces in pursuit-evasion games relatgulitsuit and capture.
In [74], the problem of pursuit and capture is addressed faygrs that lie on
arbitrary manifolds. An algorithm is presented to partitihe phase-space into
primary and secondary domains and characterize the regsilesell as the sin-
gular trajectories in each domain. In [75], [76], the tecju@s presented in the
previous work are applied to a pursuit-evasion game on a.daraaldition to the
primary and secondary domains, the authors present ekptioeé construction of
the equivocal and dispersal surfaces occurring in the gdmgr7], the authors
address a pursuit-evasion problem on second-order rotstiidaces. The authors
present the solution to the pursuit problem on a two-she®t.co

In the next section, we present an introduction to a spedm kf singular
surfacecalled thedispersal surface
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PoF P

Dispersal Switching Equivocal
pPo=nr Po # p1 Po # p1
Universal Equivocal Focal (regular)
(switching envelope)
Po # p1
@ @
Semiuniversal, Geometrically Focal (irregular)

Semifocal indifferent

Figure 3.8: Singular surfaces.

3.5.1 Dispersal surfaces

Dispersal surfaces are commonly encountered in games cé@lefhese are sin-
gular surfaces on which the players have more than one spddiestrategy that
leads to the same payoff at termination. For a single-pléyergame reduces
to an optimization problem and the player can choose eitherad the strate-
gies to achieve its optimal value. In the case of zero-sumegatme choice of
strategies is less obvious. In the previous section, thenaptrajectories are con-
structed backward in time from the termination situatioreymination situations
are characterized by points in the configuration space wherevader can break
the mutual line-of-sight with the pursuer irrespective loé tpursuer’s strategy.
Since the construction of the trajectories is retrogradene this might lead to a
situation in which more than one optimal trajectory reachpsint in the configu-

58



ration space from different termination situations. Irstiwork, we only consider
points at which two optimal trajectories reach a point ingghase space from two
different termination situations. From such a point, theypts have two different
pairs of strategies to terminate the game. Figure 3.9 shoaisan example. The
pursuer and the evader are at the end of a semi-infinite corf8bth the players
are on the liné that is equidistant from both the walls of the corridor. Thader
can move toward’; or C; to hide from the pursuer. If the evader moves toward
(1, the optimal strategy of the pursuer is to move towarih order to keep the
evader visible for the maximum amount of time. If the evaderves toward”’,,
the optimal strategy of the pursuer is to move toweydHence the players can
choose between either pair of the strategies to terminatgame. Moreover, the
time of termination is the same for either choice.

Figure 3.9: Dispersal surfaces.

If the game starts on the dispersal surface, the evader hgsesmloop strategy
to guarantee the payoff, but the pursuer lacks such an aymgndtrategy. The
pursuer has to be informationally superior in order to goi@ its payoff. In this
case the pursuer must know the instantaneous velocity avéger to guarantee
its payoff. If the pursuer lacks knowledge about the evadarirent strategy, then
the optimal policy for the pursuer is a mixed strategy. Omeedvader leaves the
line [, such a situation does not exist anymore. Hence the didmendaces can
also be the seat afistantaneous mixed strateiMS).

59



(0,a), 0

(0,-a)

Figure 3.10: Position of obstacles and the evader.

3.5.2 Two point obstacles

In this section, we present the construction of a dispergdhee in the presence
of two point obstacles in space. Refer to Figure 3.10.Qet= (0,a) andO, =
(0, —a) denote the position of the two point obstacles. Eetlenote the initial
position of the evader. Let the Cartesian coordinateg d&fe given by(z., y.).
Let ¢ denote the time of termination of the game; i.e., if the parssi initially at
E, it loses sight of the evader for the first timetat

Since the maximum speed of the evader.ishe reachable set of the evader at
timet is By .[F] where B, [E] = {P € R* | d(P,E) < v.t}. LetD denote
Bs.:[E]. An infinite number of trajectories for the evader are pdssibat lie
insideD and do not violate the constraints on the maximum speed cé\tader.
Since we are only interested in calculating the paths of #aeer obtained from
saddle-point strategies, this restricts the set of passibjectories.

Lemma 7: If the game terminates at timg then the possible positions of the
evader at termination are the points of tangencpdfom the cornerg); andO,
as shown in Figure 3.11.

Proof. The evader can break the line of sight only around a corneseptan the
environment. Therefore, the game terminates either ar@yrat O,. Let us first
consider the former case. In the previous section, it has bhewn that if the
evader follows its saddle-point strategy it must travel atraight line with speed
v, before termination. Therefore, the evader liesodh (boundary ofD) at ter-
mination. Moreover, from the previous section we also knloat the straight line
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on which the evader travels must be perpendicular to theskgenent joining),
and the position of the evader at termination. This leada/togossible positions
of the evader o@D at termination as shown in Figure 3.11: A and A. The line
from O; to A and A’ is tangent taD. Moreover, from the regular analysis we
can conclude that the only possible position for the evaté&ranination is the
point A since the pursuer can avoid termination if the evaslet A. Similarly,
we can perform the analysis if the evader breaks the lineghit siroundO, and
conclude that the only possible position of the evader atiteation in this case is
the point B. Therefore, we have shown that if the evadersstarin E and follows
its saddle-point strategy it can terminate the game eith&rax B, both of which
are points of tangency dd from O, andOs. O

Figure 3.11: Possible positions of the evader at terminatio

Ast varies from 0 ta,,.., the point A traces an arc of a circle. The center of the
circle lies at the mid-point af; E and the radius of the circle ig'z2 + (y. — a)2.
From Lemma 1 we can compute the initial positions of the pensuet us con-
sider the case when the termination occurs araupndFrom the regular analysis,
we can conclude that at termination the pursuer can be amgvdrethe ray DF.
The saddle-point strategy of the pursuer is to follow a gtrgline that is perpen-
dicular to the line joining the pursuer and the evader at itgation. Since the
game lasts for time, the initial position of the pursuer can be anywhere on the
ray [, that lies onL; and is parallel to the ray DF at a distangg. L, is parallel
to the ray AF and therefore both have the same slope. The slopE can be
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calculated as follows. Refer to Figure 3.12.

y

tanf = 22— ¢
Te
_et
tan ¢ = Y
V22 + (ye — a)? — 022
tan @ + tan ¢
m an(d +¢) 1 —tanftan¢

(ye—a) /224 (ye—a)? T2 +acTet

e/ 22+ (ye —a)2— V22— (ye —a)et
of L, is given as follows:

Hencemn, = . Refer to Figure 3.13. Thgintercept

c1 = a+vptsecd = a+ Tt/ 1+ tan? 0

whered is the angle that.; makes with the positive-axis. Sincen; is the slope

ofline L{, tan = m;.
— 1 =a+Tt\/1+m?

Hence the equation of link, is given by

_ 2 _ 2t2 T.t
(e a\/x ye a)’ — T +xevex+a+ﬁpt\/1+m%
xe\/x2 th — T

e—a e — @)Ut
(v (ye — a)

If the termination occurs around the coridgy, the initial position of the pursuer
can be anywhere on rdy. We can carry out an analysis as before and find the

62



Figure 3.13: Geometry of L

equation of linel., on which thel, lies. The equation of., is

2 2—_2t2— .t
y = (ye+a)\/xe+(ye+a) Ve TeUe x—a—ﬂpt /1+m%

- Te \/xg + (Yo + )2 — V22 + (Yo + a)Vet

Let P denote the point of intersection of raysand /. If the initial position
of the pursuer is P, then the evader has two equally good ehiticterminate the
game. The pursuer has to make his choice based on the imstantavelocity of
the evader. The initial position of the players correspongdo this situation lies
on a dispersal surface. The coordinates of P are given asvill

Tp= T = (3.17)
For a fixed initial position of the evader, the point P tracesae in the plane as
varies. This curve is the one-dimensional projection ofttiiee-dimensional dis-
persal surface along the initial position of the evader.rtieoto find the trajectory
of P ast increases, the origin and the slope of rayandl, must be computed as a
function of time. The origin of; is denoted by H in Figure 3.10. Due to similarity
of trianglesAO, H, D andAO;E A, the point H remains stationary in time. The
coordinates of Hare (—rz., (1 + r)a — ry.). Ast increases, the raly rotates
about H with its slope equal to that of segme#f’. Similarly the pointD, leads
to the point B = (—rz., —a(1 +r) — y.). If the raysi; orl, become parallel to
they axis, the point P ceases to exist after that instant. Hereendximum time
of termination for which the game allows a dispersal surfa¢g,, = Ze.

The presence of the obstacles in the environment preveintsn taking all
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values in[0, oo]. If any of the corners lie insid® then there is no tangent from
that corner ta)D. Hence the dispersal surface ceases to exist. If the linge
to 0D from the corners are parallel or divergent, thenand L, do not intersect.
This shows that there is a lower bound on the siz&dbr which P exists, and
therefore for P to exist > t,,;,,. Lemma 8 provides a condition for computing
t.in- Refer to Figure 3.14.

Figure 3.14: Geometry db.

Lemma 8. The point P exist#f o + § < 7

Proof. If v+ A > m, O1A andO,B intersects L; and L, intersec&P exists.
From the sum of angles &l O, AOE, we obtain thaty = 27 — (¢ + § + ) =
37 — (¢ + B). From the sum of angles &f O,OEB, we can conclude that =
2r —(m— ¢+ 5 +a) =5 — (a—¢). Hencey + A = 27 — (o + 3). Hence the
result follows. O

At the moment + 5 = m, the linesO; A andO, B are parallel to each other

and the radius ofD is given byr,,;, = asin ¢ = a—=——. Hence the minimum

time of termination ig,,;,, = —F=—.
- . Ue -:L.§<i>:yg - -

Figure 3.15 illustrates the singular surfaces for two d#fe scenarios. The
positions of the point obstacles are (0,3) and (0,-3). Theimmam speed of the
pursuer is assumed to be 1. In Figure 3.15(a), the dispardates are shown for
four different initial positions of the evader. In Figurel3(b), dispersal surfaces

are shown for different maximum speeds of the evader.
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(a) Different evader positions. (b) Different evader sgeed

Figure 3.15: Singular surfaces for a point obstacle.

Figure 3.16: Dispersal surface in the vicinity of two coser

3.5.3 Two corners in a general polygonal environment

In this section, we extend the previous analysis to comphéalispersal surface
formed due to the intersection of the optimal paths emagatimetrograde time
from two corners in the presence of other obstacles. RefErguare 3.16. Con-
sider an environment having polygonal obstacles. Let E benitial position of
the evader. Letz.,y.) represent the coordinates of E in the plane. Leta@d
O, be corners of obstacles @nd G in the environment that satisfy the following
conditions:
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1. O € V(E)
2. O, e V(E)

It is not necessary for Cand G to be distinct obstacles.

Let A be the position of the evader at termination if it bre#kes line-of-sight
with the pursuer around O Similarly, let B be the position of the evader at
termination if it breaks the line-of-sight with the pursweound Q. Since A
is the termination position of the evader, it satisfies thiewang conditions:

1. AG VI/free.
2. Alies on the arc of the semi-circle with,© as the diameter.

3. O, is visible to the evader as it moves on a straight line joirithgnd A
—> AEc V(0Oy).

Similar conditions must hold for B to qualify as a termingtiposition for the
evader around corner,O Let S; denote the set of all points A that satisfy the
above conditions and, denote the set of all points B that satisfy a similar set of
conditions around the cornerO

Figure 3.17: Obstacle in the vicinity of the corner and thgahevader position.

Now we present the construction 8f and S,. Refer to Figure 3.17. LeE
be the initial position of the evader. Lét, denote the corner of an obstacle. Let
O, FE be the diameter of the semi-circular @avgAE. Let C' denote the center of
the semi-circular arc. We attach a coordinate frame witth eddahe pointsC),
O, and E' as shown in the figure. Angles are measured counter-cloekwith
respect to ther-axis of the frame in context. LeX be an obstacle inside the
closure of the semi-circular disk. L&X denote the boundary of the obstacle. Let
K denote the set of points on the semi-circular @cAFE excluding the points
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O, and E. We exclude the point& andO; sinceF is the initial position of the
evader and), is a point on the obstacle. Hence we consider all games that ha
termination timeg > 0 and do not terminate on the obstacle. There exists a natural
bijective mapy : K — (0, 7) that maps any point i/ to its radial anglé. in the
coordinate frame attached €&

For any pointp € K, let P denote the position gf on the plane. Let C K
such that the following properties hold for pointsin

1. PECV(O)) ¥V pe€S.
2. PCV(E) ¥V peS.

Let the tangents from th&' to X intersectK at f andh with 6.(f) > 6.(h).
Let the tangents from th@, to X intersectk atg andi with 6.(g) > 6.(7).

Lemma 9: v(S) C (0,7) and is a closed interval.

Proof. S is composed of all the points on the semi-circle in betw¢esnd i.
SincedX is closedf,: € S. Therefore, the boundary of is contained inS and
henceS is closed. Since is bijective(.S) is a closed interval. O

In case the obstacles have a non-empty intersection Wittwe can prove
Lemma 2 in a similar fashion.

Now let us consider the case when theresare 1 obstacles in the closure of
the semi-circular disk. For each obstache can construct the the sgt in the
following manner. Construct the tangents fram to the obstacle. Compute the
intersection of the tangents withi. Let the points be denoted gsand: with
0.(g) > 6.(i). Similarly compute the intersection of the tangents fréhto &
and denote the points gsand i with 6.(f) > 6.(h). S’ contains the the set of
pointsp € K such that.(i) < 6.(p) < 6.(f).

Let us defineS; = K \ UL, S".

Lemma 10 The setS; is a union of open intervals and hence open.
Proof. The proof follows from the definition af;. O

From the above Lemma, we conclude thés$,) = [, (6;, 6;.1). If the evader
starts atF, then every point inS; is associated with a unique termination time
that is proportional to the distance of that point frdin Hence we can define a
bijective mapZ; : S; — R, whereZ,(p) = t,,, wheret, is the time of termination
of the game if the evader starts at E. Hence from Lemma 3 weludadhat
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Ti(Sy) = UM, (ti, tiyr). SinceZ; is bijectiveZ; (S;) ~ S;. Similarly, we can
define a seb, and /,.

Every pointg € S; has a time of terminatiot) associated with itself. Consider
a pointg; € S; such that there is no corresponding pajate S, satisfying
tq, = tg,. Let P be the initial position of the pursuer such that the gameiteatas
in time ¢, when the initial position of the evader is Bt £ and P cannot be on
the dispersal surface since there is no point corresporidipgon the arc£ BO,
such that the evader can break the line of sight araundh the same time,, .
Therefore such points should be removed fr8m This leads us to define the
following sets:

Si={qeS |3 eS8 st t,=ty}

Sy={qe 8|3 €S st t,=t,}

HenceS; and S, are the maximal subsets 6f and.S, respectively such that
the termination position of the players at any point in thersght lie on the
dispersal surface.

Lemma 11 The set of points irb; and.S, is a union of open intervals of the form
(q1,92) whereqy, g2 € S1.

Proof. From the above Lemma, we can conclude thdts;) = Uf;l(ti,tm)
andZ,(Sy) = Ufil(ti,tm). Hence & Z;(S;) N Zy(S2) is open since it is an
intersection of a finite number of open sets. Moreover its®al union of open
intervals. Sincg,; andZ, are bijective S, = Z; (7)) andS, = Z, *(T') is a union
of open intervals. O

Let P contain the initial positions of the pursuer that lie on tiepdrsal surface
when the evader is initially af. Now we present the construction Bffrom the
setsS; andS,. Letq € S; andg, € S, such that,, = t,,. The intersection of
the lines parallel t@; O, from H; andg,O, from H, gives the poinp. In order
for p to lie in P it should satisfy the following conditions:

1. p, Dy, Dy € Whee
2.p€ V(Dl) N V(DQ)

3. (1-t)p+t'Dy € VWE+(1—t)A)and(1 —t')p+t'Dy € VIE+ (1 —
\B) Vt' €0,
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Condition 3 ensures that the pursuer and the evader ardevisieach other at
all timest’ < ¢. For all pointsp € P, we can obtain the coordinates,, y,) using
Equation (3.1).

3.5.4 General polygonal environment

In this section we extend the results of the previous set¢ti@nvironments con-
taining polygonal obstacles. Consider a environment aoimig polygonal obsta-
cles. LetE = (z.,y.) denote the initial position of the evader. Constru¢t~).
Choose two corner®; and O, of obstacles and compute the dispersal surface
using the technique presented in the previous section. dardo complete the
construction, the above procedure has to be repeated foy pa# of corners

of obstacles present i (F). This completes the construction of the dispersal
surface for a given initial position of the evaderE(z., y. ).
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Communication-Based Pursuit
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CHAPTER 4

JAMMING IN MOBILE NETWORKS

In this chapter, we consider a differential game theorgbigreach to compute
optimal strategies by a team of UAVs to evade the attack ofesimlgammer on
the communication channel. We formulate the problem as a-a@m pursuit-
evasion game. The cost function is the termination time efgame. We use
Isaacs’ approach to derive the necessary conditions teeatithe equations gov-
erning the saddle-point strategies of the players. Wetitiis the results through
simulations.

Section 4.1 presents a brief motivation and introducticouioproblem. Section
4.2 presents the problem formulation. The jamming, comecation and mobility
models for the nodes are presented. Based on the aforemeahticodels, a multi-
player pursuit-evasion game is analyzed in Section 4.3tid®ed.4 extends the
solutions to a variant of the problem discussed in SectiBn3ection 4.5 presents
the results and the conclusion.

4.1 Introduction

In the past few years, a lot of research has been done to denplliple UAVS in
a decentralized manner to carry out tasks in military as ae8ivilian scenarios.
UAVs have shown promise in a wide range of applications. Bleemt availability
of low-cost UAVs suggests the use of teams of vehicles tooperfvarious tasks
such as mapping, surveillance, search and tracking opesdi@8], [79]. For these
applications, there has been a lot of focus to deploy teamsudtiple UAVS in a
cooperative or competitive manner [80], [81]. An extensimemary of important
milestones and future challenges in network control of ipldtJAVs is presented
in [82].

In general, the mode of communication among UAVs deployealteam mis-
sion is wireless. This renders the communication channekevable to malicious
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attacks from aerial intruders flying in the vicinity. An expla of such an intruder
is an aerial jammer. Jamming is a malicious attack whosectipgeis to disrupt
the communication of the victim network by causing intezfeze or collision at
the receiver side. Jamming attack is a well-studied and tweaarea of research
in wireless networks. Many defense strategies have begropea by researchers
against jamming in wireless networks. In [83], Wu et al. meg@two strategies
to evade jamming. The first strategy, channel surfing, is i fof spectral eva-
sion that involves legitimate wireless devices changirggdhannel that they are
operating on. The second strategy, spatial retreats, isna & special evasion
whereby legitimate devices move away from the jammer. Ir,[8¥bod et al.
present a distributed protocol to map the jammed region abthie network can
avoid routing traffic through it. The solution proposed byg@laet al. [85] uses
different worm holes (wired worm holes, frequency-hoppdadrs, and uncoordi-
nated channel hopping) that lead out of the jammed regioagort the alarm to
the network operator. In [86], Wood et al. investigate howdétiberately avoid
jamming in IEEE 802.15.4 based wireless networks. In [81},Chen proposes
a strategy to introduce into the network a special node ¢dlie anti-jammer to
drain the jammer’s energy. To achieve its goal, the antisp@mconfigures the
probability of transmitting bait packets to attract the jaer to transmit.

For a static jammer and mobile nodes, the optimal strategyhi® nodes is
to retreat away from the jammer after detecting jamming. dsecof an aerial
jamming attack, optimal strategies for retreat are hardezoimpute due to the
mobility of the jammer and constraints in the kinematicsha UAVs. This at-
tack can be modeled as a zero-sum game [48] between the jaamichére UAVS.
Such dynamic games governed by differential equations eaanlalyzed using
tools from differential game theory [10],[9]. In the pasifferential game the-
ory has been used as a framework to analyze problems in plajter pursuit-
evasion games. Solutions for particular multi-player gamwere presented by
Pashkov and Terekhov [88], Levchenkov and Pashkov [89]eHamn and Break-
well [90], Breakwell and Hagedorn [91] and Shankaran et@2].[ More general
treatment of multi-player differential games was preseie Starr and Ho [93],
Vaisbord and Zhukovskiy [94], Zhukovskiy and SalukvadZzg] [@nd Stipanovi€,
Hovakimyan and Melikyan [96, 97]. The inherent difficulty abtaining an ana-
lytical solution to the Hamilton-Jacobi-lsaacs equatias led to the development
of numerical techniques for the computation of the valuefiom. Recent efforts
in this direction to compute an approximation of the reathaets have been
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provided by Mitchell and Tomlin [98], Stipanovic, Hwangdiomlin [99] and
Stipanovi¢, Shankaran and Tomlin [100].

In contradistinction, our work in this chapter analyzes Iledavior of multi-
ple UAVs in cooperative as well as non-cooperative scesarnidhe presence of
a malicious intruder in the communication network. In thisrky we envision a
scenario in which an aerial jammer intrudes upon the comeation channel in
a multiple UAV formation. We model the intrusion as a contins time pursuit-
evasion game between the UAV’s and the aerial jammer. Irrashto the previ-
ous works in pursuit-evasion games that formulate a payasgfétd on a geometric
guantity in the configuration space of the system, we fortewgpayoff based on
the capability of the players in a team to communicate ambemselves in the
presence of a jammer in the vicinity. In particular, we aterested in computing
strategies for spatial reconfiguration of a formation of $A¥ the presence of an
aerial jammer to reduce the jamming on the communicationméla

In the next section, we present the problem formulation.

4.2 Problem Formulation

In this section, we first introduce a communication modeWeein two mobile
nodes in the presence of a jammer. Then we present the mahiitels for the
nodes. We conclude the section by formally formulating thebjgms we study
in the chapter.

4.2.1 Jammer and communication model

Consider a mobile nodedceive) receiving messages from another mobile node
(transmitte) at some frequency. Both communicating nodes are assuntedye

ing on a plane. Consider a third node that is attempting tatf@tommunication
channel shared by the transmitter and the receiver by sgrdigh power noise
at the same frequency. This kind of jamming is referred tdri@gal jamming
Two other types of jamming are:

1. Periodic jamming A periodic noise pulse is generated by the jammer irre-
spective of the packets that are put on the network.
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2. Intelligent jamming A jammer is put in a promiscuous mode to destroy
primarily the control packets.

A variety of metrics can be used to compare the effectiveaggarious jamming
attacks. Some of these metrics are energy efficiency, lobgtntity of detection,
and stronglenial of servicd101], [102]. In this chapter, we use the ratio of the
jamming power to the signal power (JSR) as the metric. FrdB]jiwe have the
following models for the JSR] at the receiver’s antenna.

1. R® model

_ P;,.GirGRry
PrGrrGrr

Drr
10”10g10( DR )

3

2. Ground Reflection Propagation

Py, GrGRy by o, Drr

g = IR !
PrGrrGrr "hr” " Dyr
3. Nicholson
¢ PJTGJRGRJ104log10(g§g)

a PrGrrGrr

where P;,. is the power of the jammer transmitting anten#a, is the power of
the transmitter(zrr is the antenna gain from transmitter to receiveég is the
antenna gain from receiver to transmittér;z is the antenna gain from jammer
to receiver G, is the antenna gain from receiver to jammnrer,is the height of

the jammer antenna above the grouhg s the height of the transmitter antenna
above the ground) is the Euclidean distance between transmitter and regeiver
and Dy is the Euclidean distance between jammer and transmitlighéabove
models are based on the propagation loss depending on thraif the jammer
and the transmitter from the receiver. In all the above nmotied jammer to signal
ratio is dependent on the rat%;f.

For digital signals, the jammer’s goal is to raise the ratia tevel such that the
bit error rate[104] is above a certain threshold. For analog voice compatiun,
the goal is to reduce the articulation performance so thesifnals are difficult
to understand. Hence we assume that the communication ehlaetwveen a re-
ceiver and a transmitter is considered to be jammed in theepoe of a jammer if
¢ > &, whereg,, is a threshold determined by many factors including apptca
scenario and communication hardware. If all the parametecspt the mutual
distances between the jammer, transmitter and receivéeegteconstant, we can

74



conclude the following from all the above models: If thema@% > n then the
communication channel between a transmitter and a recsiwemsidered to be
jammed. Herey is a function of¢, Py, Pr, Grr, Ggr, Gjr, Grs and Drg.
Hence if the transmitter is not within a disc of radiw® ;r centered around the
receiver, then the communication channel is considerec tatmmed. We call
this disc theperception rangeTheperception rangdor any node depends on the
distance between the jammer and the node. For effective coreation between
two nodes, each node should be able to transmit as well aseenessages from
the other node. Hence two nodes can communicate if they lemaah other’s
perception range

In the rest of the chapter, we will use the above jamming amdneconication
model.

4.2.2 System model

We now describe the kinematic model of the nodes. In our armglgach node is

a UAV. We consider two UAV’s (UAVY and UAV,) in the presence of a third UAV
(UAV ;) that is trying to jam the communication link in between théffe assume
that the UAVs are having a constant altitude flight. This agstion helps to
simplify our analysis to a planar case. Referring to Figute the configuration

of each UAV in the global coordinate frame can be expresseerims of the
variables(z?, y?, ¢?). The subscript is either 1, 2 or j depending on the UAV
being referred to. The pajr;, y/) represents the position of a reference point on
U AV; with respect to the origin of the global reference frame ahdenotes the
instantaneous heading of the UAW the global reference frame. Hence the state
space fol/ AV is X; = R? x S'. In our analysis, we assume that the UAVs are a
kinematic system and hence the dynamics of the UAVs are kehtato account

in the differential equation governing the evolution of #ystem. The kinematics
of the UAVs are assumed to be the following:

dx? dy? de?
dx; = W, cos ¢7; c?lJtZ = W, sin ¢7; CZZ = 0; (4.1)

wherelV; ando; are the speed and angular velocity of UAxespectively. In this
chapter, we assume thaf € [—1,+1] Vi. Moreover, we assume théi; =
1 Vi
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Figure 4.1: Configuration of a UAV.

The state space of the entire systerXisx X, x X; = R x (S")%. In order
to reduce the dimension of the state space we analyze thensysia coordinate
frame fixed toU AV, as shown in Figure 4.2. In the new coordinate frame, the
system can be modeled using six independent variables areythations of mo-
tion of the UAV; and UAV; with respect to the new coordinate frame are given by
the following [92]:

&1 = —1+ o9y1 + cos @1, Y1 = —02x1 +8in ¢y

¢1 = —03 + 01 (4.2)
Tj = —1 4 02y + cos ¢;,y; = —02x; + sin @,
gbj — —02 + O'j (43)

In the above expressions;, y;, ¢;) and(z1, y1, ¢1) represent the relative position
and orientation of the UAyand UAV; in the reference frame attached to UAV
Hence the state space of the reduced system is isomorpRicxto(S")?.

4.2.3 Problem statement

From the communication and the mobility models proposetiénprevious sub-
sections, we formulate the following problems.

e Problem 1 Consider a situation in which UAVand UAV; are not commu-
nicating initially in the presence of a jammer (UAV The objective of the
jammer is to maximize the time for which it can jam the comneation
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Figure 4.2: Relative configuration of UAVS.

between UAV and UAV,. The objective of UAY and UAV; is to minimize
the time for which communication remains jammed. The gamaitetes
at the first instant at which UAVand UAV, are in a position to communi-
cate. We need to compute the optimal strategy for each UAV.

Problem 2 Now consider a situation in which UAvand UAV, are com-
municating initially in the presence of a jammer (UAY The objective
of the jammer is to minimize the time it takes to jam the comication
channel between UAVand UAV,. The objective of UAY and UAV; is to
maximize the time for which communication link between thesmains
operable. The game terminates immediately when Uakd UAV, lose
their link. We need to compute the optimal strategy for eagi.U

In both problems, it is assumed that each UAV has complete/katiye about the
state of the system.
In the next section, we analyze the first problem.
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4.3 Analysis of Problem 1

We consider a situation in which UA\Gnd UAV, are not communicating initially
in the presence of a jammer (UAY The termination condition is defined as the
first instant at which UAY and UAV; are in a position to communicate. The cost
function of the game is the time of termination of the gamee ®hjective of the
jammer is to maximize the time for which it can jam the comneation between
UAV; and UAV,. The objective of UAVY and UAV; collectively is to minimize
the time for which communication remains jammed.

In order to obtain the optimal strategies of the players wedn® compute
the saddle-point strategiesince this is a zero-sum game. A set of strategies for
the players is said to be saddle-point equilibriumf no unilateral deviation in
strategy by a player can lead to a better outcome for thaepl&ience there is no
motivation for the players to deviate from their equilibristrategies. In scenarios
where the players have no knowledge about each other'sgieat equilibrium
strategies are important since they lead to a guaranteechommoutcome for the
players in spite of the other player’s strategies.

For a pointx in the state space, I€{x) represent the outcome if the players im-
plement their optimal strategies starting at the pginih this game, it is the time
of termination of the game when the players implement theimeal strategies.

It is also called thevalueof the game ax.

LetVJ =[J,, J,, Jso, Ju, Jy, Js,|* denote the gradient of the value

function. The Hamiltonian of the system is givenBy= 1+V J- f(x, 07, 0%, 05, 1).

7 Y
From the equations of motion of the system, the Hamiltorsagiven by

H =1+ Joyin + Jy i+ Jo, 01 + Jujity + Iy, 0 + Jo, 05
Rearranging the terms in the Hamiltonian we obtain

H=1+ 02[Jr1y1 - Jylxl - J¢1 - J¢' - Jijj + ijyj]+

O’jJ¢]. + O'1J¢1 -+ (Jml CcOoS le + Jyl sin (Z)l)—i—
(Jo, cos @j + Jy, sin¢;) — (Joy + Ja,)

Since the jammer wants to minimize the time of terminatiod #re UAV's want
to maximize the time of termination, we get the following eegsions for the
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controls from Isaacs’ first condition:

(01,0%,0;) = argmaxmin H
oj 0201
Since the Hamiltonian is separable in its controls, the oofiéaking the extrema
becomes inconsequential. Hence the optimal controls gbldneers are given as
follows:

oy = =SignJo, y1 — Sy, 01 — Jg, — Sy, — Jy, x5 + T,y (4.4)
o; = sign(Jy,) (4.5)
o7 = —signJ,,) (4.6)

Theretrogressive path equatiofRPE) for the system lead to the following equa-
tions:

Jow = —05Jy, Jy =05, (4.7)
Ju, = —osdy, Jy, =03y, (4.8)
JO¢1 = —Jg, sing, + Jy, cos ¢y (4.9)
j¢j = —Jg; sing; + Jy, cos ¢; (4.10)

where denotes derivative with respect to retrograde time.

Figure 4.3 summarizes the entire control algorithm. Therodler of each UAV
takes as input the state variables and runs the RPE to corifgut®ntrol. This
control is then fed into the plant of the respective UAV. Thenp updates the state
variables based on the kinematic equations governing thé ElAally the sensors
feed back the state variables into the controllers. In tagedhe sensors measure
the position and the orientation of each UAV.

4.3.1 Termination situations

In order to compute the optimal strategies, we need to coenth& boundary
conditions for the dependent variables of the differerg@liation. In order to
do so, we characterize the terminal conditions of the gantledrstate space and
compute the value o¥/J at the terminal conditions. This section presents the
computation of the terminal value of the dependent vargablethe differential
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Figure 4.3: The control loop for the system.

equations governing the game.
From the communication model, we can conclude that Uéah receive mes-
sages from UAY when the following condition holds:

nd(UAV ;,UAV 1) > d(UAV 1,UAV,)

whered(UAV ;,UAV ) is the Euclidean distance between UAhd UAV;. Simi-
larly, UAV , can receive messages from UAWhen the following condition holds:

nd(UAV ;,UAV,) > d(UAV 1, UAV,)

Hence we can conclude that the two nodes can communicate twédollowing
condition holds:

nmin[d(UAV ;,UAV ), d(UAV ;,UAV,)]
> d(UAV 1,UAV,)

Hence the boundary of the game set is the set of positiong &fAlV's that satisfies
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the following condition:

nmin[d(UAV ;,UAV ), d(UAV ;,UAV,)]
= d(UAV 1, UAV,)

This leads to two termination manifolds in the state space.

1. The first terminal manifold is characterized by the posii of the UAVs
such that UAV is at the boundary of thperception rangef UAV, and
UAV, is inside theperception rang®f UAV,. This is shown in Figure 4.4.
In the coordinate system of UAMhe terminal manifold is represented by
the hypersurfacé’ (z1, y1, ¢1, z;j, y;, ¢;) which is given by the following

expression:
(\2f +yi —my/Jai+y;=0)N

(w1 = 2)* + (y1 — )" = (25 + y5) < 0)

y

o

Figure 4.4: Termination situation 1.

2. The second terminal manifold is characterized by thetjpos of the UAVs
such that UAV, is at the boundary of thperception rangeof UAV,; and
UAV, is inside theperception rangeof UAV,. This is shown in Figure
4.5. In the coordinate system attached to YAkXis terminal manifold is
represented by the hypersurfa€gz,, y1, ¢1, z;, y;, ¢;) which is given by
the following expression:

(Wi +yi—ny/2i+y; =0)N
(w1 =) + (y1 — y;)* — 2F +y; > 0)
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Figure 4.5: Termination situation 2.

Both the terminal surfaces are five-dimensional manifoldis boundary. Hence
they can be parameterized using five independent variables, z;, ¢, and¢,.
SinceJ = 0 on the terminal manifoldy J satisfies the following equations at an
interior point in the manifold:

B RO N

Yidw, Vidy,
o L% g g0 g po_yg 4.11
x; + yj@—xj — Y, o1 — ¢; ( ' )

In addition to the above equations, Isaacs’ second comdgiads to the following
equation:

H(x,VJ, f(x,01,03,05)) =0 (4.12)

The value ofV J at the terminal manifold can be obtained from Equationsl(4.1
and (4.12). Since there are two different terminal mangpigde have to analyze
both of them separately. At first, we compute the valu&gfon terminal mani-
fold 1.

Substituting the expression 6t (z1, y1, ¢1, z;, y;, ¢;) in Equations (4.11) and
(4.12), we obtain the following value of, :

5 = L+ P~ 1)+ - Ly @19
! n n
The superscrigtis used to denote the value of the variables as the terminai-co
tions. The terminal values of the remaining component§ éfcan be computed
from Equation (4.11). From the valuesf/ at the terminal manifold, the optimal
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controls of the UAVs at termination can be computed. An elateocomputation
of the optimal control of the UAVs is shown in the appendix.

4.4 Analysis of Problem 2

For Problem 2 as described in Section 4.2, Isaacs’ first tiomdieads to the
following optimal strategies for the players:

(07,05,07%) = arg max min H
J 01,02 0j

Hence the optimal controls of the players are given as falow

0; = Sigr{‘]xlyl - Jyl'rl - J¢>1 - J¢>j - Jijj + J:Ejyj]
o; = —sign(Jy,)
oy = sign(Jy,)

The retrogressive path equations remain the same as in ¢veps problem.
The terminal conditions also remain the same. Analysis dortbe previous
section can be extended to this problem. The results oldtdipesimulating the
differential equations governing the optimal control laavel the trajectories are
presented in the next section.

4.5 Results

Figures 4.6, 4.7, 4.8 and 4.9 show trajectories of the ptaj@rboth problems
along with their optimal controls for various terminal canwhs and different
values ofy. The position of the players corresponding to the termamegituation
is shown by a small circle in the plots showing the trajee®of the players. Each
figure shows the trajectory of the players just before teatmam for a small time
interval. From the expression of the optimal controls in &pns (4.4), (4.5) and
(4.6), we can infer that the controls of the players are Haaryg. This is also ver-
ified from the simulation results. From the nature of the mastand kinematics
of the system, we can infer that the optimal paths comprisg af circles and
straight line trajectories as motion primitives. Arcs afctes are generated when
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Figure 4.6: The players leading to termination conditiowdAroblem 1. The
valuen = 1. The player in red is the jammer. The players in green anddniee
UAV, and UAV, respectively. Panel (b) shows the control of the YAL)
shows the control of the UAY, (d) shows the control of the UAV

the UAV keeps its angular velocity saturated at one extresna hon-zero inter-
val of time. Straight line segments are obtained due to rapitching between
the extremum value of the controls (chattering). An inséamicsuch a behavior is
exhibited by UAV in Figure 4.6.

Future work will prevent such undesired behavior by addiegderivative of
the controls in the cost function of the game by consideridgreamic extension
of the original system.
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Figure 4.7: The players leading to termination conditiomrlHroblem 2. The
valuen = 2. The player in red is the jammer. The players in green andédniee
UAV; and UAV, respectively. Panel (b) shows the control of the YA)
shows the control of the UAY, (d) shows the control of the UAV
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Figure 4.8: The players leading to termination conditiom2”Hroblem 1. The
valuen = 1. The player in red is the jammer. The players in green anddniee
UAV; and UAV, respectively. Panel (b) shows the control of the YAL)
shows the control of the UAY, (d) shows the control of the UAV
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Figure 4.9: The players leading to termination conditiow2Hroblem 2. The
valuen = 1. The player in red is the jammer. The players in green anddniee
UAV; and UAV, respectively. Panel (b) shows the control of the YAL)
shows the control of the UAY, (d) shows the control of the UAV
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CHAPTER 5

JAMMING IN HETEROGENEOUS
NETWORKS

In this chapter, we extend our work in Chapter 4 to addresgatinening prob-
lem in a mobile network containing heterogeneous vehid¢tesombat scenarios,
teams of vehicles are deployed having different commuiaisand motion con-
straints. Our interest lies in understanding the interplatyveen constraints in the
communication posed by an intruder in a network and the caings in the mo-
bility inherent in the dynamics of the vehicles. In orderrnib@duce heterogeneity
in the problem, we assume that the nodes of the mobile netammtkhe jammer
can be aerial as well as ground vehicles.

Section 5.2 presents the problem formulation. The mobitiydels for the
nodes are presented. Based on the aforementioned modeilfj-alayer pursuit-
evasion game is analyzed in Section 5.3. Section 5.4 petsmbptimal strate-
gies for a special class of vehicles. Section 5.5 preseatsahclusions.

5.1 Problem Formulation

In this section, we present the mobility models for the nodé& communication
and jamming model used in this chapter is the same as thatlinted in Section
4.3. We conclude the section by formulating the problems.

5.1.1 System model

We now describe the kinematic model of the nodes. In thistemawe analyze
a network of heterogeneous vehicles that differ from eabkeran their dynamic
models. Since we are interested in real scenarios, we chibesgdes as well
as the jammer to resemble the dynamics of terrestrial oalaezhicles. We use
the motion models of UAVs (Unmanned Air Vehicles) and AGVau{dnomous
Ground Vehicles) to model the dynamics of the nodes. By tiglg the detailed
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description of the real system that might render the coraetution to be nu-
merical in nature, the dynamical models are simplified tovallthat captures the
essential kinematic constraints of the system.

We assume the following motion models for the nodes:

1. UAV: We use the five state model [105] for the UAV that tak&® iaccount
the course angles, the flight path angles and the height &fAefrom the
ground during its flight. The dynamic equations are giveowel

z = Wecosycost, 1y =Wsinycosb

2 = Wsinb, @Z}:%ntanqﬁ, 929(;{)59(77—1)

where W, represents velocityy; the heading anglg); the pitch angleg

the gravitational acceleration;; the roll angle andy; the load factor of
the UAV,. The geometry of the coordinate system is shown in Figure 5.1
W, ¢ andn, satisfying the constraints W |< Wiz, | ¢ |< ¢mae @nd

| 7 |< nmaz, are the controls of the UAV. The configuration space of the
UAVis X ~ R3 x S' x S

z

Figure 5.1: UAV model.

2. AGV: From [106], we model the AGV as a car-like robot withefidimensional
configuration space using the following dynamic equations:

£ = wcosfcos(, Yy =wsinfcos(

= wvsin(, U= uy, é:ug
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wherewu; andu,, satisfying| u; |< Uimee aNd| us |< Ugpmas, denote
respectively the linear and angular accelerations of tlnécles. We also
consider the fact that the car has a bound on the steering,argl| ¢ |<
Cmaz- The geometry of the coordinate system is shown in Figure Bh2
state space of the systefhC R? x S! x St,

y

Yo

Figure 5.2: AGV model.

5.1.2 Problem statement

From the mobility models proposed in the previous sectiahthe communica-
tion model proposed in the previous chapter, we formulagefetiowing prob-
lems.

e Problem 1 Consider a situation in which two nodes are not commumgati
initially because of the presence of a jammer. The objedivbe jammer
is to maximize the time for which it can jam the communicatimiween
the two nodes. The objective of two nodes is to minimize tmetior which
communication remains jammed. The game terminates at ghéfatant at
which two nodes are in a position to communicate. We needngae the
optimal strategy for each node.

e Problem 2 Now consider a situation in which the two nodes are communi-
cating initially in the presence of a jammer. The objectiféhe jammer is
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to minimize the time it takes to jam the communication chabeéveen the
two nodes. The objective of the two nodes is to maximize the tor which
communication link between them remains operable. The gam@nates
immediately when the two nodes lose their link. We need tomam the
optimal strategy for each node.

In both problems, it is assumed that each node has completdéadge about the
state of the system, i.e., the position of the other node lamgainmer. Moreover
the equations governing the dynamics of the nodes and thengarare of the
following form:

T = f(x,u,t)

wherez € X is an n-dimensional manifold, the contralse U/ are a class of
functions oft taking their values in some compact subdonfdir R"™. Later in
the chapter, we analyze the situation whfém, u, t) represents the dynamics of a
UAV or a car-like robot.

In the next section, we analyze the first problem.

5.2 Analysis of Problem 1

We consider a situation in which the two nodes are not comaatinig initially
because of the presence of a jammer. The termination condgidefined as
the first instant at which two nodes are in a position to comoaia. The cost
function of the game is the time of termination of the gamee ®hjective of the
jammer is to maximize the time for which it can jam the comneation between
the nodes. The objective of the two nodes collectively is toimize the time for
which communication remains jammed.

In order to obtain the optimal strategies of the players wedn® compute
the saddle-point strategiesince this is a zero-sum game. A set of strategies for
the players is said to be saddle-point equilibriunif no unilateral deviation in
strategy by a player can lead to a better outcome for thaepl&ience there is no
motivation for the players to deviate from their equilibristrategies. In scenarios
where the players have no knowledge about each other'sgieat equilibrium
strategies are important since they lead to a guaranteachommoutcome for the
players in spite of the other player’s strategies.

WLOG we assume that vehicles 1 and 2 are the nodes in the fiommatd
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vehicle 3 is the jammer. The state-space of the systexniX; x X, x X3, where
X is the state-space of thith vehicle. For a pointeX in the state space, 16t x)
represent the outcome if the players implement their optatnategies starting at
the pointx. In this game, itis the time of termination of the game whenglayers
implement their optimal strategies. It is also called\hkieof the game ax.

Let us assume that the playehas state space of dimension Let VJ =
[Jeys -+ Ju, )T, Wheren = ny +no+ns, denote the gradient of the value function.
Letu = [u; wuy wus]” denote the controls for all the players. Since this is a
minimum time problem, the Hamiltonian of the system is gibgn{ = 1+ V.J -
f(x,u,t). From the equations of motion of the system, the Hamiltorsagiven
by the following expression:

3 N
H=1+> Y J,il
j=1 i=1 '
In the above expression, the outer summation is over the auoftvehicles and

the inner summation is over the number of states of each leeliRearranging the
terms in the Hamiltonian we obtain

3 nj
H=1+) W J.fl(x)
j=1 =1

Since the jammer wants to maximize the time of terminatiot #re nodes
want to minimize the time of termination, the Hamiltoniartlo¢ system satisfies
the following Isaacs conditions along the optimal trajee® [9]:

1. (u", u™, u™) = arg max« ,2«) min,s- H
2. H(x,VJu"™ u* u**) =0

Condition 1 implies that when the players implement theiiropl strategies,
any unilateral deviation by the pursuer might lead to a senallue for the Hamil-
tonian and any unilateral deviation by the evader might teadarger value of the
Hamiltonian. Moreover condition 2 implies that when theyglies implement their
optimal controls, the Hamiltonian of the system is zero. THa&acs conditions are
an extension of Pontryagin’s principle to optimization iditierential game [10].

Since the Hamiltonian is separable in its controls, the oodeéaking the ex-
trema becomes inconsequential. Hence the optimal contmbdes 1 and 2 is
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given as follows:

- uinaa:SIQr{Z‘] fj ] = ]-72

The optimal control for node 3 is given as follows:

u¥ = g, SigY T, f ()]
=1

Theretrogressive path equatidiRPE) is given by
(VJ) = —VH

where denotes derivative with respect to inverse time. This léadise following
system of equations for the nodes:

where[f] (z)]_; represents the derivative 6f(z) w.r.t. 27. Figure 5.3 summarizes
the entire control algorithm. The controller of each nodeetaas input the state
variables and runs the RPE to compute the control. This cbistthen fed into
the plant of the respective node. The plant updates thewatatbles based on the
kinematic equations governing the node. Finally the senfe®d back the state
variables into the controllers. In this case the sensorsureahe state variable
associated with each node.

|
u |

| J
e T Fenamon 23, 160 IRE ) f‘x)hi
| |

Figure 5.3: The control loop for each vehicle.
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5.2.1 Termination situations

In order to compute the optimal strategies, we need to coenfhg boundary
conditions for the dependent variables of the differerg@liation. In order to
do so, we characterize the terminal conditions of the gantledrstate space and
compute the value oV .J at the terminal conditions. This section presents the
computation of the terminal value of the dependent vargablethe differential
equations governing the game.

From the communication model, we can conclude that node termive mes-
sages from node 2 when the following condition holds:

nd(Jammer,node)1> d(node 1, node P

whered(-, -) is the Euclidean distance between the two vehicles. Silyilande
2 can receive messages from node 1 when the following conditlds:

nd(Jammer,node)2> d(node 1,node R

Hence we can conclude that the two nodes can communicate tivbdollowing
condition holds:

nmin[d(Jammer,node)ld(Jammer,node)2
> d(node 1,node P

Hence the boundary of the game set is the set of positione®JAV’s that satisfy
the following condition:

nmin[d(Jammer,node)ld(Jammer,node)2
= d(node 1,node P

This leads to two termination manifolds in the state space.

1. The first terminal manifold is characterized by the possi of the nodes
such that node 1 is at the boundary of gegception rangef node 2, and
node 2 is inside th@erception rangef node 1. This is shown in Figure
5.4.

2. The second terminal manifold is characterized by thetjpos of the nodes
such that node 2 is at the boundary of geception rang®f node 1, and
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- ®

Figure 5.4: Termination situation 1.

node 1 is inside th@erception rangef node 2. This is shown in Figure
5.5.

SinceJ = 0 on the terminal manifold A1), VJ satisfies the following equa-
tions at an interior point in the terminal manifold:

VJ-t; =0 (5.1)

wheret; is the basis vector df, M

Since both terminal surfaces are 14-dimensional manifeltsboundary, this
leads to a system of 14 simultaneous non-linear equatioriedosalue ofV.J. In
addition,VJ also satisfies the second Isaacs condition that leads toltbe/ing
equation:

H(X7 VJa f(Xa uTa u; u;)) =0 (52)

VJ at the terminal manifold has 15 unknown variables corredpanto the
directional derivative oV J in each direction constituting the basis of the config-
uration space. From Equations (5.1) and (5.2), we get a s&b sfimultaneous
equations. Since there are two different terminal man#pWde have to analyze
them separately. From the values6f/ at the terminal manifold, the optimal
controls of the nodes at termination can be computed usingtitms (5.1) and
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Figure 5.5: Termination situation 2.

(5.2).

5.3 Analysis of Problem 2

For Problem 2 as described in Section 5.2, Isaacs’ first tiondieads to the
following optimal strategies for the players:

(u™, o™, u® v* w0 = arg min max H
(ul*,vl*,u2*,v2*) (u3*,v3*)

The retrogressive path equations remain the same as indh@ps problem. The
terminal conditions also remain the same. Analysis donéerprevious section
can be extended to this problem.

5.4 Analysis for UAV and AGV

The equations of motion of a given vehicle depend only omiisadual controls.
For a UAV the controls aré’,n and¢. For an AGV the controls are andw.
Substituting the equations of motion in the expressionteriamiltonian gives
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us the following:
3
i=1

From the above expressions we can see that the Hamiltoniarseparablein
their controls. Hence each player maximizes or minimizegtrt of the Hamil-
tonian associated with his controls without any interfeeefrom the other play-
ers. Finding the optimal control for each player therefexuces to the following
optimization problem:

max Jy, f;(x;,u;) or H}Lm o, fixi, ug)

Us

Now we consider both vehicles and compute their extremutkirsgeontrol. The
control laws depend on the objective function of the vehidlle present the anal-
ysis for the scenario in which the optimal controls of theigkds maximize the
Hamiltonian.

1. AGV: Using the kinematic equations for car-like robot we\e at the fol-
lowing optimization problem:

max|J,u; + Jeug)

ui,u2

In case| ¢ |< Gunaz, the optimal controls of the vehicle are given by the
following expression:

- Ulmaz JU >0
1=
—Ulmaz Jv < 0

" — WUomaz ‘]C >0
9 =
—U2maz ‘]C <0

In case| ¢ |= (mazy u2 = 0. The retrogressive path equations associated
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with a car-like robot are as follows:

J. = 0, J,=0

Jy = —vJysin cos ¢ + vJy cos 8 cos ¢

J, = J, cos 0 cos ¢ + Jy sin @ cos ¢ + Jpsin ¢

JDC = —vJycoslsin( —vJ,sinfsin ¢ + vJycos(

2. UAV: The Hamiltonian associated with the UAV is given by tfollowing
expression:

Hyav = J;W coscos 0 + J,W sin ) cos

0
+J, W sin 6 + J¢%ntan¢ + Jeg(,;/(;/s (n—1)

In case the UAV is the maximizer of the Hamiltonian we obt&ia follow-
ing optimization problem:

* * * — H
(W NP ) V’%f UAV

Since the Hamiltonian is non-linear in the controls, theiropt controls
are obtained by solving a non-linear program with boundedrobinputs.
Due to the special form of the Hamiltonian in terms of the coinp we
can compute an analytical expression for the optimal vafugé. oln case
| ¢ |< dmae the expression above leads to the following value:of

3

3

gbmaa} Jw—g>0
f o

- J
_(bmam TZ)TQ < 0

The retrogressive path equations associated with a cardikot are then as
follows:

J.=0, J,=0, J.=0

Jyp = =W Jysin cos 0 + W .J, cosp cos 6

Jo = —WJ, cosysin@ + W J, sinysin@ 4 W cos 6
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gsinf(n —1)
W
If the vehicles are minimizing their respective Hamiltamithe sign of the optimal
controls get reversed. The retrogressive path equatiomsinghe same.
In Chapter 7, we present some future research directiomsdiegy jamming in
hetergoneous networks.
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CHAPTER 6

GRAPH-THEORETIC TECHNIQUES FOR
NETWORK CONNECTIVITY

In this chapter, we analyze the problem of maintaining cohwigy in a network
of mobile agents in the presence of a jammer. This is a vanatf the standard
connectivity maintenance problem which arises due to &tiahs in communica-
tions and sensing model for each agent. In our work, theaditoibs in communi-
cations are due to the presence of a jammer in the vicinity.

The rest of the chapter is organized as follows. Section Ge2qnts the dy-
namic model associated with the nodes in the network. Seéid presents a
differential game formulation of the problem and presemsessary conditions
for optimal strategies for the nodes as well as the jammectti@e6.4 presents
a state-dependent graph formulation for our system. Seélb presents some
important results in case of static networks. Section 6e8gmts control laws for
the agents in case of a dynamic network using tools from adgelraph theory.
Section 6.7 presents some simulations based on the coatrsldroposed for the
agents.

6.1 Introduction

In the past two decades, extensive research on cooperatitktof multi-agent
systems has been driven by military as well as civilian agapions. Civilian appli-
cations range from search and rescue missions for disaateagement to deploy-
ment of swarms of robots in the ocean to contain oil spillslitity applications
range from deployment of sensor networks for surveillanue rconnaissance
in urban warfare to utilization of a network of autonomoubatic tanks on bat-
tlefronts. In such scenarios, autonomous agents are daployteams to carry
out a specific mission. The agents communicate among theessil order to
make decisions. Since the mode of communication is wirgleisssusceptible to
malicious attacks. In this work, we investigate such a sgemawhich a mobile
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intruder jams the communication channel in a vehicular ngtw

In this chapter, we formulate the problem of jamming in a nelietwork
as a problem of maintaining connectivity in a dynamic graplhie presence of
an intruder. Substantial research has been done in thetneasinto address the
problem of maintaining connectivity in mobile networks.g8d on tools from po-
tential field methods and algebraic graph theory, cenedlagorithms have been
proposed in [107] and [108] to maintain connectivity in melietworks. The au-
thors use the dynamics of the Laplacian matrix in order taioldeasible controls
that maintain connectivity in addition to satisfying théfeliential constraints on
the motion of each agent. In [109], the notiorgeiometric connectivity robustness
is introduced as a measure of the local connectedness oivanket-urthermore,
the authors show that under special conditions the newmptiovides a sufficient
condition for global connectedness of the network. In [110§ authors use the
weighted graph Laplacian technique proposed in [111] toantae connected-
ness while achieving formation stabilization. In [112],ecdntralized algorithm
is presented for maintaining connectivity using the Lagplawf the proximity
graph. In [113], the problem of maintaining connectivityartdressed for agents
having second-order dynamics. The authors establish ateexe theorem for
connectivity maintenance and present optimal controlsamtain connectivity in
a distributed fashion. In [114], [115], the authors propas#stributed feedback
andprovably correctcontrol framework for connectivity maintenance in additio
to accounting for communication delays as well as collieaidance. Most of
the prior work deals with the problem of maintaining connett due to the dis-
tributed architecture of sensing and communication in ragéent systems which
provides increased efficiency, performance, scalability eobustness. In con-
tradistinction, our work focuses on maintaining connegtief a mobile network
in the presence of an adversarial agent.

In this work, we generalize the work in Chapters 4 and 5 to nsteshaving an
arbitrary number of agents possessing different dynariiesmodel the problem
as a problem of maintaining connectivity in a dynamic graplvhich the exis-
tence of an edge between two nodes depends on the state afdée as well as
the jammer. Due to the dependence of the combinatorialtsteiof the graph on
the continuous-time dynamics of the nodes we use the nofistate-dependent
graphs introduced in [116], to model the problem. Applying tootsrh alge-
braic graph theory on the state-dependent graphs proveleghulocally optimal
control strategies for the agents as well as the jammer.
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The communication model between the nodes and the jamminiginace the
same as those proposed in Chapter 4. In the next sectiongsemrthe dynamics
associated with the nodes.

6.2 Dynamic Model of the Nodes

We assume that there areagents in the network in the presence of ajammer. Let
the dynamics associated with tith agent be given by the following equation:

T = fi(,u,) (6.1)

wherez; € R™, u; € U; ~ {¢ : [0,t] — A; | ¢(-) is measurablg where
A; C RPi, f; - R™ x A; — R is uniformly continuous, bounded and Lipschitz
continuous inz; for fixed u;. Consequently, given a fixed(-) and initial point,
there exists a unique trajectory solving Equation (1) [LLéf the state of nodée
be denoted as; € X; C R™,

Let X, denote the state-space of the jammer. We assume that thesjanas
the following dynamics associated with itself:

Te = fo(x., U.) (62)

wherez, € R, uy € Uy ~ {¢ : [0,t] — As | #(-) Iis measurablg where
A. C RPe, f, - R™ x A, — R is uniformly continuous, bounded and Lipschitz
continuous ine, for fixed u,.

Let X = X; x --- x X, x Xo C €, R™ x R" represent the entire state of
the system, wherép represents the Cartesian product of the Euclidean spaces
R™. Letu = [uT ---ul]T be a column vector that represents the control of all the
nodes in the network.

We define thevorkspacg118] as the ambient space in which the agents exist.
Since we are interested in vehicular networks, the ambgentes of the nodes is
eitherR? or R3. As a simple example to highlight the difference betweersthte
space and the workspace, consider the following second aggst that moves in
a straight line withu as its control input:

It'lzl‘g

Zt'gzu



where the state-spa¢e, ,]” is two-dimensional but the agent can only move
on a straight line and hence the workspace is one-dimerisiimae all the agents
reside in the same ambient space, wefuse denote the workspace for all agents.

In the next section, we present a differential game fornmutaor the problem
of maintaining connectivity among the agents in the preserfiche jammer.

6.3 A Differential Game Formulation

The network connectivity maintenance problem can be foaedl as the follow-
ing zero-sum differential game between the jammer and tdesim the network.
Consider a situation in which the network is initially cootel in the presence
of a jammer. The objective of the jammer is to minimize theetiintakes to
disconnect the communication network by jamming the comopation channel
between agents. The objective of the agents is to maximésrtie for which the
communication link between them remains operable. The gaménates imme-
diately when the agents lose their link. We need to compwegtimal strategy
for each agent. In this problerdisconnectionefers to a situation in which there
are agents andj such that there is no path in the communication network to
transmit messages between them. In [6], we address a spas&bf the above
problem in which the network contains two nodes and theiadyias are modeled
to resemble those of UAVs and the jammer is another aeriatheimodeled as a
UAV.

In order to compute optimal strategies of the players we needmpute the
saddle-point strategiesince this is a zero-sum game. A set of strategies for the
players is said to be isaddle-point equilibriunif no unilateral deviation in strat-
egy by a player can lead to a better outcome for that playarcélthere is no mo-
tivation for the players to deviate from their equilibriutnagegies. In scenarios
where the players have no knowledge about each other'sgieat equilibrium
strategies are important since they lead to a guaranteedroetfor the players in
spite of the other player’s strategies.

For a pointx in the state space, let(x) represent the outcome if the players
implement their optimal strategies starting at the paintn this game, it is the
time of termination of the game when the players implemesit thptimal strate-
gies. Itis also called thealueof the game ax. Assuming that/(x) exists and is
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at least G(x), we formulate the Hamiltonian of the system:
H(X7 VJa u, u') =1+ Z Jll?zf2<x27 ul) + J:D-f'<x'7 u') (63)
=1

Let u* andu} be the optimal controls used by the agents in the network laed t
jammer respectively. Since the agents are the maximizett@gammer is the
minimizer, the Hamiltonian of the system satisfies the feitay conditions along
the optimal trajectories [9]. These are the Isaacs comditio

1. (u*,u}) = arg max, min,: H(x, V.J, u, u,)
2. Hx,VJu*ul) =0

Since the Hamiltonian is separable in the controls of theviddal agents,
Isaacs’ second condition leads to the following expres$iorthe optimal con-
trols:

1. ’U,;k = maXxy, Jxlfz(ﬂfz, UZ)
2. ul = miny,, Jy, fo(Te, Us)
Theretrogressive path equatiofg] for the agents are given as follows:

Jy = aH(‘”’;};“" J) (6.4)

The termination conditions are the states of the nodes anjduthmer such that
the network is disconnected.

The above partial differential equation along with the baany conditions form
the Hamilton-Jacobi-Isaacs (HJI) equations [48]. It idiclillt to obtain analytical
solutions even for low dimensional systems except for gpe@nicumstances. It
is a well known fact that these equations suffer from ¢hese of dimensional-
ity. Many computational techniques have been proposed to dentipel optimal
trajectories for such problems, but they are computatipnatensive even for
systems evolving in low dimensions [98], [99], [100]. Duetbe inherent diffi-
culty in solving the above differential game we formulate tietwork problem as
a game of maintaining connectivity in a dynamic graph. Innbgt section, we
present a transformation from the state space to a staendept graph.
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6.4 State-Dependent Graphs

In this section, we present a graph-theoretic formulatosrife jamming problem
under consideration.

The connectivity of the network can be modeled using grajghsur problem,
the connectivity of the network of agents depends on thetiposof the agents
relative to the jammer. Since the agents and the jammer ateres to be mo-
bile, the connectivity of the network evolves in time, rendg the graph to be a
dynamic graph. Since the topology of the graph depends ostaite of the nodes,
we can use the framework of state-dependent graphs inteddad116] to map
the state of the system to a graph. A state-dependent graphappingy., from
the stateX, to the set of all labeled graphs envertices,G(m), i.e.,

ge : X — G(m)

It is assumed that the order of these graphs at all times gnce the number
of agents is independent of time. LE{g.(x)) denote the edge-set of the graph
under consideration. Now we specify how the existence ofnangonication link
dictates the existence of an edge between a pair of vertidég istate-dependent
graphG. For nodes andj with statesr; € X; andz; € X, respectively, we con-
sider the subsef;; C X;x X, to define the edge betweeéland; if the following
condition is satisfied:

ij € E(g.(x)) ifandonlyif (x;,z;) €S, (6.5)

The jamming model proposed in Section 6.2 leads to the fatigwlefinition of

Sij. Letd = p(z;,7;), wherez; andz; are the coordinates of the nodeand

j in the workspace? equipped with a distance metric: 2 x Q@ — R. Let
B.[p] = {y € Q| p(y,p) < r}. From the above discussion we can conclude the
following:

Sy = {(@i2;) | &0 & Bal#] U Bala, )} (6.6)

The above statement along with (5) means that if the jammewmlithin a distance
nd from either of the nodes, then the communication channe$ssimed to be
jammed. The collection of edge states is denoted as
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§= {Sij}i,jE[N},i;éj with Sij C XZ X Xj

From [116], the state dependent graph is defined as follows:

Definitiort Given the set systei#, the mapy. :X— G,,, with an image consist-
ing of graphs of ordem, having an edge between verteand; iff (z;,z;) € S;
is defined as a state-dependent graph with respegt to

Now that we have a mapping. from the state of the system to a graph on

Y

m vertices, we can study the properties of the graphs from tbpgpties of the
system. In the next section, we provide some propertiesso$titic network that
help the agents to localize the jammer using

6.5 Jammer Localization in Static Networks

Before moving on to dynamic nodes it is useful to investigatme properties of
the mappingy. for the static case, i.e., when = 0 for all agents. Our motivation
arises from the fact that the jammer does not broadcast sis@o. Although the
location of the jammer can be estimated using on-board sgng®location can
also be estimated using the connectivity(af According to the communication
model, in the absence of the jammer any two nodes in the nktvesr communi-
cate. This implies that the graghis K,,, i.e., the complete graph on vertices.
In the presence of the jammer in the vicinity, some edgesefthph disappear
due to the loss of communication link between specific nodes.

In reference to the state-dependent graph, our interasinlignding a solution
to the following graphical equation:

ge(z) =G (6.7)

where the setS and the functiory. are defined in the previous sections. We
assume that each agent knows the position of the other nedeslias the con-
nectivity of the network. This is a reasonable assumptianéonnected commu-
nication network in which one node can transmit messagesdthar node using
a single hop or multiple hops. Hence from the known variablesmd G we want
to estimater,.

The following Lemma provides an estimate of the possiblatipos of the

105



jammer.

Lemma 12 Given a state-dependent graphthe set of possible positions of the
jammer is given by the following semi-algebraic set:

\J [Breien (2:) UB
ij¢G !

’ 7‘>(jj)]/

p(Z;,2
n

U [Bp(a?,i,a'cj-) (:fz) U Bp(i'i,i'j) (i‘])]

ijEG K
Proof. If ij ¢ G, the jammer lies iNJ;;4q[Boeiap (T:) U Bpaiay (T5)]. If ij €
n n
G, the jammer lies outsidg);;[Bpeizp (Ti) U Boezp (Z5)]. Hence the result
n n

follows from the two expressions. O

In the next section, we address the case in which the nodé&s ofgtwork are
dynamic.

6.6 Dynamic Networks

In Section 6.4, we presented a graph-theoretic frameworkddel the connec-
tivity of the dynamic network. In this section, we presenntrol strategies for
connectivity maintenance based on the algebraic propesfigraphs. In order
to do so, we need to define the following mathematical objest®ciated with a
graph G havingn nodes:

1. Adjacency matrix : Itis am: x m matrix with entries given as follows:

1 if an edge exists betweé&randj
Q5 = . .
’ 0 if no edge exists betweerand;

2. Laplacian of a graphq(G)) : It is anm x m matrix with entries given as
follows:

if no edge exists betweerand
(b) a; = — ZZL:L;#Z- (€233

In a dynamic network, since G is a functionxits adjacency matrix is also

—1 if an edge exists betweégrand;
(@) ai; = 0

a function of the stat&. Let A(x) denote the adjacency matrix of the graph G.
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The element;; = 1 if an edge exists between nodeand j; otherwise, it is
zero. Stated symbolically;;; = 1 iff (z;,z;) € S;;. Letd;, = p(z.,7;),
d; = p(Zs, ;) andd;; = p(z;, T;).

Changes in the adjacency occur at discrete points in timeth®wther hand,
the dynamics of the nodes and the jammer are continuous & tim order to
relate the discrete-time dynamics of the adjacency matrthé continuous-time
dynamics of the nodes, we use the following continuous agipration fora;;:

aij(X) = a(d; — nd;) - a(d; — nd;;)

whered(-) is a continuous approximation to the Heaviside step funagigen by
the following logistic function:

1

W= e

As limy_. ., the logistic function takes the following form:

i) = { oo

0 otherwise

Hencek can be used as a parameter to vary the rate at which the exminen
function decays in the neighborhood of zero. The dynamidhed,;(x) can be
written as follows:

a;j(X) = Vxa;;(X) - X (6.8)

whereVya;;(x) denotes thenn x 1 vector which is the gradient af ; (x) w.r.t. x.
The four important parameters that model the connectifitygraphG are the
following:

1. The minimum degree @F, d,.;,(G)
2. The vertex connectivity a7, k;(G)
3. The edge connectivity @, xo(G)

4. The second smallest eigenvalue of the Laplacia@',0f,(L(G)) (Fiedler
value)
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The four quantities are related in the following manner:

M(L(G)) < ko(G) < F1(G) < diin(G)

In this chapter, we use the paramelte(L((G)) to study the connectivity mainte-
nance problem.

The second-smallest eigenvaluefis) is called theFiedler value denoted as
X (L(G)). Itis also called the algebraic connectivity@f It has emerged as an
important parameter in many systems problems defined oweones. In [119],
[120], [121], it has also been shown to be a measure of thdistand robust-
ness of the networked dynamic system. Since this chaptés wéh connectivity
maintenance in the presence of a malicious intruligi’(G)) arises as a natural
parameter of interest for both players.

For a graphG; to be connected),(L(G)) > 0 [122]. Therefore, in order to
maintain connectivity the nodes in the network must movéha gresence of a
jammer so as to satisfy the above condition. On the other,ithedammer must
move in such a way to make (L£(G)) = 0. In the remainder of this section, we
assume that the network is initially connected.

From the above discussion a control law can be designeddardbes so as to
keep\:(L(G)) a non-decreasing function of time= W > 0. Since
w is also a function of the controls of the jammer it might noplossible
for the nodes to satisfy the above condition at all times.telad the following
objective leads to a feasible control for the nodes at akk§m

Maximize:
ot

On the other hand, the jammer must move so as to mak& G)) = 0. There-
fore, a plausible strategy for the jammer is to keef’(()) a decreasing function
at all times. As in the previous case, such an objective mighiead to a fea-
sible control strategy at all times. Therefore, the jamnaar lsave the following
objective in order to yield a feasible control at all times:

O(L(G))

Minimize :
ot

it A #£0 (6.10)

SinceL(G) is a symmetric positive semi-definite matrix, all its eigaluwes are
non-negative. Therefore the jammer cannot decraaS&(G)) once it reaches 0.
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This leads to the additional constraint on its objective.

In order to satisfy the above objective for the players walreeeelation between
the control of the agents a@éﬂaﬁﬂ. Since)y(L(G)) is a function of the relative
positions of the agents in a network we can get a relation éatw, (£(G)) and
thewu;. From [123], we get the following expression:

8)\2 (E(G)) . vgva

= A1
oL vl vy (6-11)
whereu, is the eigenvalue corresponding to thé £(G)).
Consider agent having state space; € R". Letz; = [xgl),--- , E”')]
Let f; = [f,---, f™)]7. We can use the chain rule to obtain the following
expression:
OXo(L(x))  ,0X(L) 0L

where(A, B) = tr(AT B), an inner product for the space of matrices. Hence we
obtain the following relation betweeh2!~“) and the control;; of each agent:

8)\ 8)\ oL
i=1 k=1 Oz,
L 0X(L) oL &), (k
Z< 7—>f (SCE),U.>
k=1 0L "9z

Therefore, a locally optimal control law for the agents iolugon of the fol-
lowing optimization problem:

1. Nodei: u} = max,, Z;1<a’\§£ : >fzk( u;)

2. Jammeru; = min,, Y pr (228 8iﬁ))fj(k) (28 ul)

In the next section, we present some simulations based @bthe control law
for the agents.
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6.7 Results

We consider a network of agents moving in a plane in the \igiof a jammer.
All the agents, including the jammer, are holonomic kinamagents with fixed
speeds. The differential equation governing the motiorgeh#: is as follows:

T; = u; cos 0,

Yi = u; sin6;
The differential equation governing the motion of ageistas follows:

Te = Uq COS U4

Yo = Us SiN O,

Using the control laws from the previous section, we obtaéfollowing controls
for the agents and the jammer:

1. Nodei:
OX2(L) 0L, ,0X(L) OL

oL ’a$i>’< oL ’8yl>)

(cos 6;,sin ;) || ({

2. Jammer:

(L) L. ,ON(L) OL

(cosfusinf) [| === 50 o a5

Figures 6.1 and 6.2 show simulations in which the controksah is imple-
mented. In Figure 6.1, we have 20 agents in a communicatiobmonie in the
presence of a jammer. Half of the agents have speed morehtbgamhmer and
rest have speeds less than the jammer. In Figure 6.2, we Baagehts in a com-
munication network in the presence of a jammer. All the agdatve the same
speed as the jammer. The simulation continues until the @nsocceeds in dis-
connecting the network for the first time.
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Figure 6.1: Simulation results for twenty agents havingshime speed.
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CHAPTER 7

FUTURE RESEARCH

In this chapter, we propose some problems for future reBe@lated to each
chapter.

7.1 Chapter 2

In Chapter 2, we analyzed the problem of visibility-basedspii-evasion as a
game of kind. We provided a lower bound on the size ofdbeape seandcap-
ture set A problem that still remains open is to find an algorithm tongdetely
partition the workspace intescape sesandcapture setn the presence of polyg-
onal obstacles. This in turn provides an algorithm to cacstthe exact barrier
surface that separates the two sets.

Another future problem of algorithmic nature that extertus visibility-based
pursuit-evasion problem in case of multiple pursuers igalewing:

Modified Art Gallery Problem

Considerk pursuers and one evader in a planar environment having @odlg
obstacles. The maximum speeds of the pursuers and the emader and v,
respectively. The pursuer and the evader are holonomic.

1. All the pursuers and the evader know each other’s instanizs position.
All the pursuers know the instantaneous velocity of the evaiven the
initial positions of the pursuers and the evader, does theist a motion
strategy for the pursuers such that at any given time, theegva visible to
at least one pursuer?

2. A pursuer can only know the instantaneous position analcitgl of other
pursuers in its visibility polygon. Only those pursuersttbhan see the
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evader have the knowledge of evader’s instantaneous Weld8iven the
initial positions of the pursuers and the evader, does theist a motion
strategy for the pursuers such that at any given time, theegva visible to
at least one pursuer for all future times?

The answers to the above questions will be functions, @ndv.. Now we want

to answer the following question: What is the minimum nunmdfgoursuers suf-
ficient to maintain the visibility of the evader as the fuoatiof the ratio of their
velocities? The current upper bound[i] for any speed of the pursuers and the
evader. An important problem is to reduce this bound as aitumof v, and,.

7.2 Chapter 3

In Chapter 3, we used differential game theory to analyzevibhility based
pursuit-evasion problem as a game of degree. In additiohdadgular analy-
sis, we presented the singular analysis and provided th&trcmtion of dispersal
surfaces. A future problem is to extend the singular anslged explore all the
possible singular surfaces that occur in the game in ordeonaplete the con-
struction of the optimal trajectories into the entire phggace.

7.3 Chapter 4

In Chapter 4, we considered a differential game theoretpragch to compute
optimal strategies by a team of UAVs to evade the attack oferalajammer
on the communication channel. We considered two varianteefproblem in
this paper. We formulated the problem as a zero-sum puesagion game and
used Isaacs’ approach to derive the necessary conditi@msve at the equations
governing the saddle-point strategies of the players. dséefanction was picked
as the termination time of the game. We illustrated the teslufough simulations.
Future work will extend the problem to analyze multiple jagrsiand multiple
UAVs in the formation. Another direction of future researsho extend the lo-
cally optimal trajectories presented in this dissertatito the entire phase space.
In order to do so, construction of various types of singulafaces [72] is needed.
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7.4 Chapter5

In Chapter 5, we considered a differential game theoretpragch to compute
optimal strategies by a team of vehicles to evade the atthekjiammer on the
communication channel. We considered two variants of tbblpm. We formu-
lated the problem as a zero-sum pursuit-evasion game addsesscs’ approach
to derive the necessary conditions to arrive at the equatiomerning the saddle-
point strategies of the players. The cost function was picGethe termination
time of the game. Finally, we derived the equations govertine optimal con-
trols for the vehicles in the case of a UAV and an AGV.

A possibility for future work is to simulate the differenitequations governing
the evolution of the game for the following cases.

1. UAV jamming a team of AGVs.
2. UAV jamming a team of AGVs and UAVS.

3. AGV jamming a team of AGVs and UAVS.

Further, these problems can be extended to multiple jamamer$ormations hav-
ing more than two vehicles. Moreover, restrictions on tlexpnity of the vehicles
can also be included in order to avoid collision.

7.5 Chapter6

In Chapter 6, we generalized our previous work in [6] to nekgdaving an arbi-
trary number of agents possessing different dynamics. Weetad the problem
from the perspective of maintaining connectivity in a dymagraph in which
the existence of an edge between two nodes depends on theokthe nodes
as well as the jammer. Due to the dependence of the combiamlastructure
of the graph on the continuous-time dynamics of the nodesyseel the notion
of state-dependent graphs model the problem. Applying tools from algebraic
graph theory to the state-dependent graphs provided udauidily optimal con-
trol strategies for the agents as well as the jammer.

A future research direction is to extend the techniques tnegwith non-
Euclidean state space. This includes vehicles that havéalmmomic constraints
on their motion. Another future research direction is toklaato a differential
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game-theoretic formulation of the problem in which the gagbthe players is

related to the Fiedler value of the proximity graph. Finatipe can extend the
techniques to the problems of delay and consensus thatiarts®perative net-
works in the presence of an antagonistic agent like a jammer.
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APPENDIX A

CONSTRUCTION OF THE U SET

Algorithm CONSTRUCTUSET (S, eg)
Input: A set S of disjoint polygonal obstacles, the initial evagesitione, ratio
of maximum evader speed to maximum pursuer speed

Output: The coordinates of the vertices of tbleset

forall £, € S do
[; =DIJKSTRA(MVGCONSTRUCT(Sg),e0,E;)
hi(x) =f;- (x—v;) + 52 =0

INTERSECTHALFPLANESG , ....h,)

end for

The subroutine DIJKSTRA(G,I,F) computes the least distdretween nodes |
and F in graph G. The subroutine INTERSECTHALFPLANES(..., h,) com-
putes the intersection of the half plares, ..., ., [41]. The time complexity of
the above algorithm i©(n®log n), wheren is the number of edges in the envi-
ronment.

The subroutine MVGCONSTRUCT(&,) constructs the Modified Visibility
Graph of the environment including the initial positionleétevader. In addition to
the usual Visibility Graph, the Modified Visibility Graphdtudes for each vertex,
v, a list of all edges visible to and the minimum distaneeto the edge. The short-

est path from to an edgé” is computed using the@in{d(v, F), ming{dy¢ (v, vx)+
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d(vg, E)}}, wheredy (v, vy) represents the least distance in the visibility graph

betweernv andv, [118].

A.1 Boundedness of U Set

For sake of convenience, we restate Lemma 4 from Section 2.2.

Lemma 4: For every edgds;, there exists a liné; parallel to E; and a corre-

sponding half-spack; such that the pursuer loses the gamgyife 7.

Given an edge?; and the initial position of the evader, proof of Lemma 4 pro-
vides an algorithm to find the link; and the corresponding half-plahg. Now
we present some geometrical constructions required taegh@/next proposition.
Refer to Figure A.1. Consider a convex obstacle. Consideird pstrictly inside
the obstacle. For each extend the line segmenjc to infinity in the direction
v;c to form the raycv;. Define the region bounded by rays andcv;, , assector

vijcvi . Thesectors possess the following properties
1. Any two sectors are mutually disjoint.
2. The union of all the sectors is the entire plane.

We can extend the above idea to amgided convex polygon. We use the con-

struction to prove the following proposition.

Proposition 9: In an environment containing a single convex polygonatadis,
given the initial position of the evader, the initial posits of the pursuer from

which it can win the game constitute a bounded subset of dgevitorkspace.

Proof. Refer to Figure A.2. Consider an edge of the convex obstacle with end

pointsv; andv; 1. WLOG, the obstacle lies beloly,. Letc be a point strictly
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Figure A.1: A polygon and its sectors.

(@) (b)

Figure A.2: Proof of Proposition 9.
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inside the convex polygon. Extend the line segmentandu; ;¢ to form sector
vijcvi,,. Using Lemma 1, given the initial position of the evader, \&a construct
a line h; parallel to E; such that if the initial pursuer position lies beldw; the
evader wins the game. In case the Iipentersects theectorvcv;,,, as shown
in Figure A.2(a), the evader wins the game if the initial p@rsposition lies in
the shaded region. In case the lihedoes not intersect thsectorvcv;, ,, as
shown in Figure A.2(b), the evader wins the game if the ihgilasuer position
lies anywhere in the sector. Hence for every sector, theagegion of finite area
such that if the initial pursuer position lies in it then itght win the game. Every
edge of the polygon has a corresponding sector associatadtwiSince each
sector has a region of finite area such that if the initial pergosition lies in it,
the pursuer might win the game, the union of all these regmfisite. Hence the

proposition follows. O

In the proof of Proposition 9, we generate a bounded set fdr eanvex polyg-
onal obstacle such that the evader wins the game if thelipitsition of the pur-
suer lies outside this set. In a similar way, we can generéteuaded set for a
non-convex obstacle. Given a hon-convex obstacle, we arsts convex-hull.
We can prove that Lemma 1 holds true for the convex-hull. Ikinae can use
Proposition 9 to prove the existence of a bounded set. Fompalygon in the
environment, let us call the bounded set generated fromaBitipn 9 theB set

Recall from Section 2.2 that tHe setis defined as\}’_,~, . The next theorem
proves that théJ setgenerated by a single obstacle is a subset oBtlsetand

hence bounded.

Proposition 10 For a given convex obstacle, thesetis a subset of thB setand

hence bounded.

Proof. Consider a poing that does not lie in th8 set From the construction of
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the B sef ¢ must belong to some half-pladq‘. If ¢ € hj, theng ¢ h; =
q ¢ N_,h;. This implies that the complement of ti&setis a subset of the

complement of th& set This implies that thé&J setis a subset of th8 set [
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APPENDIX B

TERMINAL VALUE OF CONTROLS

From the expressions for the optimal controls in Equatidné)( (4.5) and (4.6)
and the terminal values o7 J, it can be inferred that the value of the optimal
controls might not be unique due to the argument of the sigatfan vanishing at
termination. In order to compute the values of optimal colnaf the players just
before termination, we need to compute higher derivativéseoarguments of the
sign function till it becomes non-zero.

The optimal control for the players and their higher demes at termination

are given as follows:

*

® 0.
Jg =0
JJ =0

0¥ 1
Ty = =T D+ G20 2+ W2~ 1)+
0
0 Tiy1—1
(xj - ?)]
— olei(x0) (B.1)
e o



= o’c;(x°) (B.2)

0; = _Sigr{‘]xlyl - Jylxl - J¢>1 - J¢>j - Jijj + Jl‘jyj]
(Jern = Jyv1 — Jgy — Jy; — Jy,25 + Joyy;) =0

(Jxlyl - Jylxl - J¢1 - J¢j - Jijj + ‘]ﬂﬁjyj) =

v - f;—gn P GRG = 1)+ () - j;—znl (6.3)

From Equation (B.1) we can conclude the following:
© J) >0=J) <0=J) >0=07 <0=c;(x°) <0
° J) <0=J) >0=J) <0=0]>0=¢(x°) <0
From Equation (B.2) we can conclude the following:
¢ J) >0=J0 <0=J) >0=0;>0=¢(x°)>0
¢ J) <0=J5 >0=J) <0=0; <0=¢(x°)>0

From the expressions ef anda’, we can conclude that sign (x°)) = sign(c;(x°)).
This implies that if at termination, (x°) < 0 thenJ;, = 0 = o; =0, and if

¢j(x%) < 0thenJy, =0 = of = 0.
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Repeating the same analysis at terminal manifold 2 we geotiosving values

for the Jgj and controls at termination:

Iy = () =)

[ o
o} = —sign(Jy,)
0 __
J9 =0
Jpy = [y cos ¢y — 29 sin ¢ ]p(x°)
° cr;k:
o; = sign(Jy,)
0 _
J9 =0
J04, = [y2 cos ¢y — 20 sin ¢y ]p(x°)
° o)

0; = _Sigr{‘]xlyl - Jylxl - J¢>1 - J¢>j - Jijj + ijyj]
0,0 0 ,.0 0 0 0 .0 0,0\ _

0 0 0o _ 70
(S — S — Jg, — Jg

J

0 0y —
J??jxj + Jgjyj) -



AR 4 /) + () (cos(69 — 69) — 1) — )] .

wherep(x°)

125



REFERENCES

[1] S. Bhattacharya, S. Candido, and S. Hutchinson, “Mo8tnategies for
surveillance,” inrRobotics: Science and Systems -\M Burgard, O. Brock,
and C. Stachniss, Eds. Boston, MA: MIT Press, 2008, pp. 230-2

[2] S. Bhattacharya and S. Hutchinson, “Approximation scas for two-
player pursuit evasion games with visibility constraihits,Robotics: Sci-
ence and Systems,|®. Brock, J. Trinkle, and F. Ramos, Eds. Boston,
MA: MIT Press, 2009, pp. 81-88.

[3] S. Bhattacharya and S. Hutchinson, “On the existence aghNequilib-
rium for a two player pursuit-evasion game with visibilitprestraints,”
in Algorithmic Foundation of Robotics V|IIG. S. Chirikjian, H. Choset,
M. Morales, and T. Murphey, Eds. Berlin, Germany: Springeriag,
2010, pp. 251-265.

[4] S. Bhattacharya, S. Hutchinson, and T. Basar, “Ganeextttic analysis of
a visibility based pursuit-evasion game in the presencebstazles,” in
Proceedings of American Control Conferen&. Louis, MO, June 2009,
pp. 373-378.

[5] S. Bhattacharya and S. Hutchinson, “On the existenceastiNequilibrium
for a two player pursuit-evasion game with visibility coménts,” Inter-
national Journal of Robotics Researdlol. 29, no. 7, pp. 831-839, June
2010.

[6] S. Bhattacharya and T. Basar, “Game-theoretic analysan aerial jam-
ming attack on a UAV communication network,” Rroceedings of Ameri-
can Control ConferengeBaltimore, MD, June 2010, to appear.

[7] S. Bhattacharya and T. Basar, “Optimal strategies smlejamming in het-
erogeneous mobile networks,” Rroceedings of Workshop on Search and
Pursuit-EvasionAnchorage, AK, 2010, to appear.

[8] S. Bhattacharya and T. Basar, “Graph-theoretic apgrda connectivity
maintenance in mobile networks in the presence of a jamnrelEEE
Conference on Decision and Contréitlanta, GA, Dec. 2010, submitted.

[9] R. Isaacspifferential Games New York, NY: Wiley, 1965.

126



[10] J. Lewin,Differential Games: Theory and Methods for Solving GaméPro
lems with Singular Surfaces London, England: Springer-Verlag, 1994.

[11] S. M. LaValle and J. Hinrichsen, “Visibility-based uit-evasion: The
case of curved environment$ZEE Transactions on Robotics and Automa-
tion, vol. 17, no. 2, pp. 196-201, Apr. 2001.

[12] O.Tekdas, W.Yang, and V.Isler, “Robotic routers: Algioms and imple-
mentation,’International Journal of Robotics Researth be published.

[13] A. J. Briggs and B. R. Donald, “Robust geometric aldumt for sensor
planning,” inProceedings of Second Workshop on Algorithmic Foundations
of RoboticsJ.-P. Laumond and M. Overmars, Eds. Wellesley, MA: A. K.
Peters Ltd., 1996, pp. 197-212.

[14] D. Hsu, W. Lee, and N. Rong, “A point-based POMDP plarioertarget
tracking,” in Proceedings of IEEE International Conference on Robotics
and Automation2008, pp. 2644—-2650.

[15] T. Y. Li, J. M. Lien, S. Y. Chiu, and T. H. Yu, “Automaticiyi generating
virtual guided tours,” inComputer Animation Conferenc&997, pp. 99—
106.

[16] T. L. Sung and T. Y. Um, “Practical guidance for homingssiies with
bearings-only measurementd2EE Transactions on Aerospace and Elec-
tronic Systemsvol. 32, no. 1, pp. 434-443, Jan. 1996.

[17] B. Espiau, F. Chaumette, and P. Rives, “A new approadciistzal servoing
in robotics,”IEEE Transactions on Robotics and Automatieol. 8, no. 3,
pp. 313-326, 1992.

[18] E. Malis, F. Chaumette, and S. Boudet, “2D 1/2 visuavsgry,” IEEE
Transactions on Robotics and Automatiamol. 15, no. 2, pp. 238-250,
1999.

[19] E. Marchand, P. Bouthemy, F. Chaumette, and V. More&aobtist real-
time visual tracking using a 2d-3d model-based approacHEEE Inter-
national Conference on Computer Visjaol. 1, 1999, pp. 262—268.

[20] S. A. Hutchinson, G. D. Hager, and P. I. Corke, “A tutboa visual servo
control,” IEEE Transactions on Robotics and Automatieal. 12, no. 5,
pp. 651-670, 1996.

[21] A. Efrat, H. Gonzalez-Banos, S. Kobourov, and L. Paapan, “Optimal
strategies to track and capture a predictable targeBtaceedings of IEEE
International Conference on Robotics and Automatieol. 3, 2003, pp.
411-423.

127



[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

S. M. LaValle, H. H. Gonzalez-Banos, C. Becker, and L.&ombe, “Mo-
tion strategies for maintaining visibility of a moving tatg in Proceedings
of IEEE International Conference on Robotics and Autonmatol. 1, Al-
buguerque, NM, USA, Apr. 1997, pp. 731-736.

W. Cheung, “Constrained pursuit-evasion in the plfakesS. thesis, Uni-
versity of British Columbia, September 2005.

M. Sipser,Introduction to Theory of Computation Boston, MA: PWS,
1997.

R. Murrieta-Cid, B. Tovar, and S. Hutchinson, “A sanmgjibased motion
planning approach to maintain visibility of unpredictabteving targets,”
Journal on Autonomous Robotsl. 19, no. 3, pp. 285-300, Dec. 2005.

H. Gonzalez-Banos, C. Lee, and J. Latombe, “Real-tioentmnatorial
tracking of a target moving unpredictably among obstatiasProceed-
ings of IEEE International Conference on Robotics and Awition, vol. 2,
2002, pp. 1683-1690.

T. Bandyopadhyay, Y. Li, M. Ang Jr., and D. Hsu, “A greeslyategy for
tracking a locally predictable target among obstaclesPiaceedings of
IEEE International Conference on Robotics and Automati®@06, pp.
2342-2347.

T. Bandyopadhyay, Y. Li, M. Ang Jr., and D. Hsu, “Steatthcking of

an unpredictable target among obstacles,Algorithmic Foundations of
Robotics VI M. O. M. Erdmann, D. Hsu and A. F. van der Stappen, Eds.
Berlin, Germany: Springer-Verlag, 2004, pp. 43-58.

T. Bandyopadhyay, N. Rong, M. Ang Jr., D. Hsu, and W. L&dotion
planning for people tracking in uncertain and dynamic emvinents,” pre-
sented at the Workshop on People Detection and Trackings IIBEerna-
tional Conference on Robotics and Automation, 2009.

P. Fabiani and J. Latombe, “Tracking a partially préalite object with
uncertainty and visibility constraints: A game-theoretfgproach,” inin-

ternational Joint Conference on Atrtificial Intelligenceol. 2, 1999, pp.
942-947.

R. Murrieta-Cid, H. H. Gonzalez-Banos, and B. Tovar,ré&active motion
planner to maintain visibility of unpredictable targetsy’Proceedings of
IEEE International Conference on Robotics and Automatiah 4, 2002,
pp. 4242-4248.

R. Murrieta-Cid, T. Muppirala, A. Sarmiento, S. Bhattarya, and
S. Hutchinson, “Surveillance strategies for a pursuer Miitite sensor

128



[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

range,” International Journal of Robotics Researctol. 26, no. 3, pp.
1548-1553, March 2007.

J. Schwartz and M. Sharir, “On the piano mover’'s prohldmThe case
of a two-dimensional rigid polygonal body moving amidstygmnal bar-
riers,” Communications on Pure and Applied Mathematicd. 36, no. 3,
pp. 345-398, 1983.

R. Murrieta-Cid, R. Monroy, S. Hutchinson, and J. P. irennd, “A com-
plexity result for the pursuit-evasion game of maintainwigibility of

a moving evader,” irProceedings of IEEE International Conference on
Robotics and Automatio2008, pp. 2657—2664.

L. Parker, “Algorithms for multi-robot observation ahultiple targets,”
Journal on Autonomous Robotsl. 12, pp. 231-255, 2002.

B. Jung and G. Sukhatme, “Tracking targets using migtipbots: The
effect of environment occlusionAutonomous Robatsol. 13, no. 3, pp.
191-205, 2002.

A. Kolling and S. Carpin, “Multirobot cooperation fousreillance of mul-
tiple moving targets: A new behavioral approach,Proceedings of IEEE
Conference on Robotics and Automatigf06, pp. 1311-1316.

A. Kolling and S. Carpin, “Cooperative observation ofultiple mov-
ing targets: An algorithm and its formalizatioririternational Journal of
Robotics Researghkol. 26, no. 9, pp. 935-953, 2007.

Z. Tang and U. Ozguner, “Motion planning for multitatgerveillance with
mobile sensor agents|EEE Transactions on Robotics and Automation
vol. 21, no. 5, pp. 898-908, Oct. 2005.

S. Luke, K. Sullivan, L. Panait, and G. Balan, “Tunablgcéntralized al-
gorithms for cooperative target observation,Imternational Joint Confer-
ence on Autonomous Agents and Multiagent Systéahg 2005, pp. 911
917.

M. de Berg, M. van Kreveld, M. Overmars, and O. Schwapftk@€Com-
putational Geometry: Algorithms and Applications Berlin, Germany:
Springer-Verlag, 1997.

J. E. Goodman and J. O. Rourkéandbook of Discrete and Computational
Geometry New York, NY: CRC Press, 1997.

J. V. Breakwell and A. W. Merz, “Towards a solution of themicidal
chauffeur game,” presented at the First International @@mice of the The-
ory and Application of Differential Games, Amherst, MA, 106

129



[44] J. V. Breakwell, “Some differential games with intetiag discontinuities,”
University of Stanford, Stanford, CA, Tech. Rep., 1973.

[45] D. Leshem, “Composite barriers and corner conditionsdifferential
games,” Ph.D. dissertation, Stanford University, Stashf@A, 1985.

[46] J. R. Isbell, “Pursuit around a holdY¥aval Research Logistics Quarterly
vol. 14, no. 4, pp. 569-571, Aug. 2006.

[47] A. Blaquiere, F. Gerard, and G. LeitmanQuantitative and Qualitative
Games New York, NY: Academic Press, 1969.

[48] T.Basar and G. J. Olsdddynamic Noncooperative Game Theo?Pnd ed.
Philadelphia, PA: SIAM, 1999.

[49] T.Basar and P. BernharH;infinity Optimal Control and Related Minimax
Design Problems: A Dynamic Game ApproacBoston, MA: Birkhauser,
August 1995.

[50] Y. C. Hoand G. J. Olsder, “Differential games: Concegitd applications,”
in Mathematics of ConflictM. Shubik, Ed. North-Holland, Amsterdam,
The Netherlands: Elsevier, 1983, pp. 127-186.

[51] H. E. Scarf, “On differential games with survival pafj6fAnnals of Math-
ematical Studiesvol. 3, no. 39, pp. 393—406, 1957.

[52] W. Fleming, “A note on differential games of prescritdigration,” Annals
of Mathematical Studiesol. 13, no. 39, pp. 407-416, 1957.

[53] W. H. Fleming, “The convergence problem for differegames,Journal
for Mathematical Analysis and Applicationsol. 3, pp. 102-116, 1961.

[54] W. H. Fleming, “The convergence problem for differahtjames,” inAn-
nals of Mathematics Princeton, NJ: Princeton University Press, 1964,
no. 52, pp. 195-210.

[55] P. P. Varaiya, “On the existence of solutions to a défdgral game,"SIAM
Journal on Contralvol. 5, no. 1, pp. 153-162, 1967.

[56] P. Varaiya and J. Lin, “Existence of saddle points irfafiéntial games,”
SIAM Journal on Contrglvol. 7, no. 1, pp. 141-157, 19609.

[57] R. J. Elliott, N. J. Kalton, and L. Markus, “Saddle parfor linear dif-
ferential games,’SIAM Journal on Contrglvol. 11, no. 1, pp. 100-112,
1973.

[58] R. J. Elliott and N. J. Kalton, “The existence of valuedifferential games
of pursuit and evasionJournal of Differential Equationsrol. 12, pp. 504—
523, 1972.

130



[59] W. Fleming, “The cauchy problem for degenerate parabetuations,”
Journal of Mathematical Mechanigcsgol. 13, pp. 987-1008, 1964.

[60] A. Friedman Differential Games New York, NY: Wiley, 1971.

[61] R. J. Elliott and N. J. Kalton, “Cauchy problems for @ntlsaacs-Bellman
equations and games of survivalfansactions of American Mathematical
Societyvol. 198, pp. 45-72, 1974.

[62] R. J. Elliott and N. J. Kalton, “Boundary value problefos nonlinear par-
tial differential operators,Journal of Mathematical Analysis and Applica-
tions vol. 46, pp. 228-241, 1974.

[63] N. Krassovski and A. Subbottideux Differentiels Moscow, Russia: Mir
Press, 1977.

[64] A. Subbottin, “A generalization of the basic equatidrtite theory of dif-
ferential games,Soviet Mathematics Dokladgo. 22, pp. 358-362, 1980.

[65] M. G. Crandall and P. L. Lions, “Viscosity solutions ofahhilton-Jacobi
equations, Transactions of the American Mathematical Sogigtl. 277,
no. 1, pp. 1-42, 1976.

[66] P.L.Lions,Generalized Solutions of Hamilton-Jacobi EquatioriBoston,
MA: Pitman, 1982.

[67] P. E. Souganidis, “Approximation schemes for visgpssblutions of
Hamilton-Jacobi equations,” Ph.D. dissertation, Uniigrsf Wisconsin-
Madison, 1983.

[68] L. C. Evans and P. E. Souganidis, “Differential gamed epresentation
formulas for solutions of Hamilton-Jacobi-Isaacs equajoindiana Uni-
versity Mathematics Journabol. 33, no. 5, pp. 773—-797, 1984.

[69] M. Bardi, M. Falcone, and P. Soravia, “Numerical methddr pursuit-
evasion games via viscosity solutions,” Btochastic and Differential
Games: Theory and Numerical Method$oston, MA: Birkhauser, 1999,
pp. 105-176.

[70] 1. M. Mitchell, “Application of level set methods to ctnol and reachability
problems in continuous and hybrid systems,” Ph.D. disgertaStanford
University, Stanford, CA, August 2002.

[71] I. M. Mitchell, A. M. Bayen, and C. J. Tomlin, “A time-demdent
Hamilton-Jacobi formulation of reachable sets for cordum dynamic
games,"lEEE Transactions on Automatic Contyebl. 50, no. 7, pp. 947—
957, July 2005.

131



[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

A. A. Melikyan, Generalized Characteristics of First Order PDEs: Ap-
plications in Optimal Control and Differential Games Boston, MA:
Birkhauser, 2000.

P. Bernhard, “Singular surfaces in differential gam&s introduction,” in
Differential Games and Applications Berlin, Germany: Springer-Verlag,
1977, pp. 1-33.

A. A. Melikyan and N. V. Hovakimyan, “Singular trajecies in the game
of simple pursuit in the manifold,Journal of Applied Mathematics and
Mechanicsvol. 55, no. 1, pp. 42-48, 1991.

A. A. Melikyan and N. V. Hovakimyan, “Game problem of gite pursuit
on a two-dimensional coneJournal of Applied Mathematics and Mechan-
ics, vol. 55, no. 5, pp. 607-618, 1991.

A. A. Melikyan, N. V. Hovakimyan, and L. Harutunian, “Geges of simple
pursuit and approach on a two-dimensional codetirnal of Optimization
Theory and Applications/ol. 98, no. 3, pp. 515-543, 1998.

N. V. Hovakimyan and L. Harutunian, “Game problems otation sur-
faces,”International Journal of Game Thearyol. 9, no. 2, pp. 117-129,
1999.

X. C. Ding, A. Rahmani, and M. Egerstedt, “Optimal mtltAV convoy
protection,” inConference on Robot Communication and Configuration
vol. 9, no. 5, April 2009, pp. 1-6.

J. Tisdale, Z. Kim, and J. Hedrick, “Autonomous UAV pailanning and
estimation,”IEEE Robotics and Automation Magazjwel. 16, pp. 35-42,
2009.

C. G. Valicka, S. R. Bieniawski, J. Vian, and D. M. Stipait, “Coopera-
tive avoidance control for UAVs,” ifProceedings of the Tenth International
Conference on Control, Automation, Robotics and Visikfl©8, to appear.

M. Pavone, K. Savla, and E. Frazzoli, “Sharing the loltbbile robotic
networks in dynamic environmentsEEE Robotics and Automation Mag-
azine vol. 16, pp. 52—-61, 2009.

T. Samad, J. S. Bay, and D. Godbole, “Network-centrgtaemns for military
operations in urban terrian: The role of UAV&toceedings of the IEEE
vol. 95, no. 1, pp. 92-107, 2007.

W. Xu, T. Wood, W. Trappe, and Y. Zhang, “Channel surfing apatial re-
treats: Defenses against wireless denial of serviceStdnACM Workshop
on Wireless Security2004, pp. 80-89.

132



[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

A. D. Wood, J. A. Stankovic, and S. H. Son, “Jam: A jamnsda map-
ping service for sensor networks,” Rroceedings of 24th IEEE Real-Time
Systems SymposiyMecember 2003, pp. 286—-297.

M. Cagalj, S. Capcun, and J. P. Hubaux, “Wormhole-bas#djamming
techniques in sensor network#2EE Transactions on Mobile Computing
vol. 6, pp. 100-114, January 2007.

A. D. Wood, J. A. Stankovic, and G. Zhou, “Deejam: Defegtenergy-
efficient jamming in IEEE 802.15.4 based wireless netwdiiks4th An-
nual IEEE Conference on Sensor, Mesh and Ad Hoc Communisadiod
Networks (SECON 072007, pp. 60—69.

L. Chen, “On selfish and malicious behaviours in wirslastworks - a non-
cooperative game theoretic approach,” Ph.D. dissertafioale Nationale
Superieure des Telecommunications, Paris, France, Q@008.

A. G. Pashkov and S. D. Terekhov, “A differential gameapproach with
two pursuers and one evadelgurnal of Optimization Theory and Appli-
cations vol. 55, pp. 303-311, July 1987.

A. Y. Levchenkov and A. G. Pashkov, “Differential gameaptimal ap-
proach of two inertial pursuers to a noninertial evaddgiirnal of Opti-
mization Theory and Applicationgol. 65, pp. 501-518, June 1990.

P. Hagedorn and J. V. Breakwell, “A differential gameagfproach with
two pursuers and one evadelgurnal of Optimization Theory and Appli-
cations vol. 18, pp. 15-29, 1976.

J. V. Breakwell and P. Hagedorn, “Point capture of twads in succes-
sion,” Journal of Optimization Theory and Applicatignsl. 27, pp. 89-97,
1979.

S. Shankaran, D. Stipanovi¢, and C. Tomlin, “Collisiavoidance strate-
gies for a three player gamefnnals of International Society of Dynamic
Games2010, to appear.

J. V. Breakwell and P. Hagedorn, “Further propertieaah-zereo sum dif-
ferential games,Journal of Optimization Theory and Applicatign®l. 3,
pp. 207-219, 1969.

E. M. Vaisbord and V. I. Zhukovskiyintroduction to Multi-Player Differ-
ential Games and their ApplicationsNew York, NY: Gordon and Breach,
1988.

V. I. Zhukovskiy and M. E. Salukvadz&he Vector Valued Maxmin San
Diego, CA: Academic Press, 1994.

133



[96] D. M. Stipanovic, A. A. Melikyan, and N. V. HovakimyariSome suf-
ficient conditions for multi-player pursuit evasion gamaghveontinuous
and discrete observationgyhnals of the International Society of Dynamic
Gamesvol. 10, pp. 133-145, 2009.

[97] D. Stipanovic, A. Melikyan, and N. Hovakimyan, “Guataed strate-
gies for nonlinear multi-player pursuit-evasion gamé#grnational Game
Theory Review2010, to appear.

[98] I. M. Mitchell and C. J. Tomlin, “Overapproximating refaable sets by
Hamilton-Jacobi projectionsJournal of Scientific Computingol. 19, pp.
323-346, 2003.

[99] D. M. Stipanovi¢, I. Hwang, and C. J. Tomlin, “Computat of an over-
approximation of the backward reachable set using subsykeel set
functions,” Dynamics of Continuous, Discrete and Impulsive Systems
vol. 11, pp. 399-411, 2004.

[100] D. M. Stipanovi¢c, S. Shankaran, and C. Tomlin, “Sttaés for agents
in multi-player pursuit-evasion games,” presented at thevdnth Inter-
national Symposium on Dynamic Games and Applications, diicaZ,
2006.

[101] P. Papadimitratos and Z. J. Haas, “Secure routing fobite ad-hoc net-
works,” in Communication Networks and Distributed Systems Modeling
and Simulation Conferenc@anuary 2002, pp. 27-31.

[102] G. Noubir and G. Lin, “Low power denial of service attadn data wire-
less LANs and countermeasuresglbbile Computing and Communications
Reviewvol. 7, pp. 29-30, July 2003.

[103] R. A. PoiselModern Communication Jamming Principles and Techniques
Norwood, MA: Artech, 2004.

[104] J. J. Proakis and M. Saleldigital Communications New York, NY:
McGraw-Hill, 2007.

[105] P. B. Sujit and R. Beard, “Multiple UAV path planninging anytime algo-
rithms,” in Proceedings of American Control Conferen&t. Louis, MO,
June 2009, pp. 2978-2983.

[106] J. P. Laumond, S. Sekhavat, and F. Lamir&midelines in Nonholonomic
Motion Planning for Mobile Robots Berlin, Germany: Springer, 1998.

[107] M. M. Zavlanos and G. J. Pappas, “Potential fields formaning con-
nectivity of mobile networks,JEEE Transactions on Roboticgol. 23, pp.
812-816, August 2007.

134



[108] M. M. Zavlanos and G. J. Pappas, “Controlling connaistiof dynamic
networks,” inIEEE Conference on Decision and Contr8eville, Spain,
December 2005, pp. 6388-6393.

[109] D. P. Spanos and R. M. Murray, “Robust connectivity efworked vehi-
cles,” inIEEE Conference on Decision and ConfrBlahamas, December
2004, pp. 2893-2898.

[110] M. Ji and M. Egerstedt, “Distributed formation contwhile preserving
connectedness,” IlEEE Conference on Decision and ConirS8an Diego,
CA, December 2006, pp. 5962-5967.

[111] M. Ji and M. Egerstedt, “Connectedness preservingiliged coordina-
tion control among dynamic graphs,” Rroceedings of American Control
ConferencePortland, OR, June 2005, pp. 93-98.

[112] M. C. DeGennaro and A. Jadbabaie, “Decentralizedrobof connectivity
for multiagent systems,” ilEEE Conference on Decision and ContrSan
Diego, CA, December 2006, pp. 3628-3633.

[113] G. Notarstefano, K. Savla, F. Bullo, and A. Jadbab&Maintaining
limited-range connectivity among second order agents?roceedings of
American Control ConferengeMinneapolis, MN, June 2006, pp. 2124—
2129.

[114] M. M. Zavlanos and G. J. Pappas, “Distributed connégtcontrol of mo-
bile networks,” inEEE Conference on Decision and Con{idew Orleans,
LA, December 2007, pp. 3591-3596.

[115] M. M. Zavlanos and G. J. Pappas, “Distributed connégtcontrol of mo-
bile networks,”IEEE Transactions on Roboticsol. 24, pp. 1416-1428,
2008.

[116] M. Mesbahi, “On state-dependent dynamic graphs aeid dontrollability
properties,”IEEE Transactions on Automatic Contyalol. 50, pp. 387—-
392, 2005.

[117] V. I. Arnold, Geometric Method in the Theory of Ordinary Differential
Equations New York, NY: Springer-Verlag, 1983.

[118] H. Choset, K. Lynch, S. Hutchinson, G. Kantor, W. Burha.. Kavraki,
and S. ThrunPrinciples of Robot Motion: Theory, Algorithms, and Imple-
mentations Cambridge, MA: The MIT Press, 2005.

[119] J. A. Fax and R. M. Murray, “Information flow and coopigva control of
vehicle formations,1EEE Transactions on Automatic Contyefol. 9, pp.
1465-1474, 2004.

135



[120] R. Olfati-Saber and R. M. Murray, “Consensus problemsaetworks of
agents with switching topology and time delafgEE Transactions on Au-
tomatic Contro] vol. 49, no. 9, pp. 1520-1533, 2004.

[121] H. Tanner, A. Jadbabaie, and G. Pappas, “Flocking edfixnd switching
networks,”IEEE Transactions on Automatic Contreol. 5, pp. 863—-868,
May 2007.

[122] N. Biggs,Algebraic Graph Theory Cambridge, U.K.: Cambridge Uni-
versity Press, 1993.

[123] E. Stump, A. Jadbabaie, and V. Kumar, “Connectivitynagement in mo-
bile robot teams,” inProceedings of IEEE International Conference on
Robotics and Automationol. 9, May 2008, pp. 1525-1530.

136



