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Abstract: In this paper, we present a game theoretic analysis of ailfisibased pursuit-
evasion game in a planar environment containing obstatles.pursuer and the evader are
holonomic having bounded speeds. Both the players have pletermap of the environment.
Both the players have omnidirectional vision and have kedgk about each other’s current
position as long as they are visible to each other. The puvsamets to maintain visibility of the
evader for maximum possible time and the evader wants tgpedba pursuer’s sight as soon
as possible. Under this information structure, we presenessary and sufficient conditions
for surveillance and escape. We present strategies folldlyens that are ilNash Equilibrium
The strategies are a function of thielue of the game. Using these strategies, we construct
a value function by integrating thedjoint equationsackward in time from the termination
situations provided by the corners in the environment. Filoese value functions we recom-
pute the control strategies for the players to obtain ogttragectories for the players near the
termination situation. As far as we know, this is the first ktirat presents the necessary and
sufficient conditions for tracking for a visibility basedrguit-evasion game and presents the
equilibrium strategies for the players.

1 Introduction

Consider a situation in which a group of mobile pursuersimgbiounded speeds are
trying to keep sight of an unpredictable evader in a cluttemevironment. In order to
deploy minimum number of pursuers needed to track the eveeuld be useful to
know the best strategy that can be used by a single pursuéisiwork, we analyze
the problem of a mobile pursuer trying to track a mobile evaden environment
containing obstacles. Both the pursuer and the evader dadmic with bounded
speeds and can see each other at the beginning of the gam@ayhes do not have
knowledge of each other’s future actions. We formulate tfublem of tracking as
a game in which the goal of the pursuer is to keep the evadés ifield-of-view
for maximum possible time and the goal of the evader is topsd¢he pursuer’s
field-of-view in minimum time by breaking the line of sightoamd a corner.

An interesting application of this problem is in securitydasurveillance sys-
tems. It may be useful for a security robot to track a malisievader that is trying
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to escape. Also, an “evader” may not be intentionally tryioglip out of view. A
pursuer robot may simply be asked to continuously follow arahitor at a distance
an evader performing a task not necessarily related to tigetté&racking game[6].
The pursuer may also be monitoring the evader for qualitytrobnverifying the
evader does not perform some undesired behavior, or ewgstindt the evader is not
in distress. The results are useful as an analysis of wheapeds possible. If it is
impossible to slip away, it may be desirable for the evadémioediately surrender
or undertake a strategy not involving escape. In home cdtiegg a tracking robot
can follow elderly people and alert caregivers of emergesclarget-tracking tech-
niques in the presence of obstacles have been proposeafgraphic animation of
digital actors, in order to select the successive viewpaimider which an actor is to
be displayed as it moves in its environment [19].

In the past, we have addressed tracking problems similéietome in this paper.
In [7], we address the problem of a pursuer trying to track aragonistic evader
around a single corner. We patrtition the visibility regiditloe pursuer into regions
based on the strategies used by the players to achieve thads. Based on these
partitions we propose a sufficient condition of escape ferebader in general envi-
ronments. In [8], given the initial position of the evaderigeneral environment, we
use the sufficient condition to compute an approximate baumtie initial positions
of the pursuer from which it might track the evader. The bodagdends on the ratio
of the maximum speed of the evader to that of the pursuerrliftitial position of the
pursuer lies outside this bound, the evader can escape thequis sight. Moreover,
we provide strategies for the evader to escape irrespegfipairsuer’s actions. In
this work, we formulate the target-tracking problem as a gamwhich the pursuer
wants to maximize the time for which it can track the evadet e evader wants to
minimize it. We compute the strategies for the players thaimNash equilibrium
If a player follows its equilibrium strategy, it is guaraatbof a minimum outcome
without any knowledge of the other player’s future actioMiereover when a pair
of strategy for the players is iNash equilibriunthen any unilateral deviation of a
player from its equilibrium strategy might lead to a lowet@ame for it. Consider
a situation in which the pursuer can keep the evader in sightie ¢ when the
players follow their equilibrium strategies. If the evadimviates from its equilib-
rium strategy then the pursuer has a strategy to track it fone greater than;. On
the other hand, if the pursuer deviates from its equilibrgtrategy then the evader
can escape in time less than Hence there is no motivation for either of the play-
ers to deviate from their equilibrium strategies due to teklof knowledge of the
other player’s future actions. For a pair of equilibriuneségies for the players either
the evader can escape the pursuer’s sight in finite time optinguer can track the
evader forever. Hence computing them gives us the strategiicient for tracking
or escape, whichever holds at a given point in the state spadar as we know, this
is the first work that addresses the necessary and sufficemtitions for tracking
and provides equilibrium strategies for the players. Wethsse strategies to inte-
grate the kinematic equations of the system backward in fiora the termination
situations to obtain the optimal trajectories for the playe
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Prior work regarding the problem of tracking is based onmitzing the motion
models of the players or the state-space in which the gameing played[17, 5].
These techniques lead to approximate numerical soluti@idecome computation-
ally inefficient with increasing time horizon of the game. Mover they assume a
prior model of uncertainty for the evader’s future actio@entrary to these works,
we use continuous time motion models for the players andigeatosed form solu-
tions to the coupled non-linear differential equations gavern our system kinemat-
ics. Hence no error is introduced in the solutions due tordtsations of any form.
Further, our results are valid for scenarios in which theypta have no knowledge
about each others future actions.

Some variants of the tracking problem have also been adstiess [11], the
authors take into account the positioning uncertainty efrtibot pursuer. Game the-
ory is proposed as a framework to formulate the tracking lenob and an approach
is proposed that periodically commands the pursuer to mateed region that has
no localization uncertainty in order to re-localize andtbetrack the evader after-
ward. [10] presents an off-line algorithm that maximizes ¢ivader's minimum time
to escape for an evader moving along a known path. Since tiire émjectory of
the evader is known beforehand, the problem reduces to kegitayer optimization
problem. In [14] and [4], gradient descent algorithms hagerbproposed by for-
mulating a local risk function for a pursuer having the looap of the evader. [4]
deals with the problem ditealth target trackingvhere a robot equipped with visual
sensors tries to track a moving target among obstacles atite aame time, remain
hidden from the target. Obstacles impede both the trackestion and visibility, and
also provide hiding places for the tracker. A tracking altfon is proposed that ap-
plies a local greedy strategy and uses only local infornmeftiom the tracker’s visual
sensors and assumes no prior knowledge of target trackitigmar a global map of
the environment. In [23], the problem of target tracking haen analyzed at a fixed
distance between the pursuer and evader. Optimal motiategtes are proposed for
a pursuer and evader based on critical events.

In this work, we use differential games to analyze a pursuésion problem. The
theory of deterministic pursuit-evasion was single-haltglereated by R.Isaacs that
culminated in his book [15]. A general framework based ondbecepts in classi-
cal game theory and the notion of tenet of transition was ugexhalyze pursuit-
evasion problems. Problems like thady in the LakeLion and the ManHomicidal
chaufferand Maritime Dogfight Problenwere introduced in this book. A modifi-
cation to the classical problems involves the considematfodiscrete-time versions
of these problems and the application of a proper infornmagiucture to compute
the value of the game [13, 12]. An exhaustive analysis ofesbland partly solved
zero-sum differential games is provided in [3] and [18]. Mofthe classical prob-
lems in pursuit-evasion deal with players in obstacle-fpace having either con-
straints on their motion or constraints on their control duender-actuation. In the
recent past, researchers have analyzed pursuit-evagibleprs with constraints in
the state space. In [20, 21, 22], a pursuit-evasion gameaiyzed with the pursuer
and the evader constrained to move on a two-dimensionatabsurface in a three-
dimensional space. Our work belongs to this category of lerab. In our problem,
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the state constraints arise due to the presence of obsthalkesbstruct visibility as
well as motion of the players in the workspace and the cortroktraints arise as a
result of the bounded speed of the players. Apart from thesklgms, researchers
have also analyzed pursuit-evasiorRfi [16], in non-convex domains of arbitrary
dimension [1], in unbounded domains[2] and in graphs [24].

In Section Il, we present the formulation of the game. In Badil, we analyze
the termination situations presented by the obstaclesndrany corner in the en-
vironment. In Section 1V, we present the strategies for tlaggrs that are ilNash
equilibrium In Section V we present the construction of the optimakttgries. In
Section VI, we present the conclusions and the future work.

2 Formulation of the game

We consider a mobile pursuer and an evader moving in a platie weiocities
u = (up,0,) andv = (u., 0.) respectivelyw,, andu. are the speeds of the players
that are bounded b, andv, respectivelyd, andd. are the direction of the velocity
vectors. We use to denote the ratio of the maximum speed of the evader to fhia¢o
pursuen = % They are point robots with no constraints in their motiooept for
bounded speeds. The workspace contains obstacles thattnestsuer and evader
motions and may occlude the pursuer’s line of sight to thelexd he initial position
of the pursuer and the evader is such that they are visibladb ether. The visibility
region of the pursuer is the set of points from which a linensegt from the pursuer
to that point does not intersect the obstacle region. \ligibéxtends uniformly in
all directions and is only terminated by workspace obsta@ennidirectional, un-
bounded visibility). The pursuer and the evader know eabhbrstcurrent position as
long as they can see each other. Both the players have a demmig of the envi-
ronment. In this setting, we consider the following gamee plarsuer wants to keep
the evader in its visibility region for maximum possible érand the evader wants to
break the line of sight to the pursuer as soon as possibleatiyainstant, the evader
breaks the line of sight to the pursuer, the game termin&teen the initial position
of the pursuer and the evader, we want to know the optimategfies used by the
players to achieve their respective goals. Optimalitynefe the strategies used by
the players that are iNash equilibrium

We model the system as a non-rigid bar of variable lengthersgting the line of
sight between the pursuer and the evader. The bounded twedoai the pursuer and
the evader are modeled as control inputs at opposite endie difar. Any occlusion
between the pursuer and the evader leads to a situation ohwHe bar intersects the
obstacles. Hence the pursuer’s goal is to keep the bar irsfraee for the maximum
possible time and the evader’s goal is to force the bar todatd some obstacle as
soon as possible. In this work we assume that the line of &gt blocked due to
grazing contact with the boundary. Hence visibility is ne&al even if a vertex in the
environment is incident on the bar.

Figure 1 shows the configuration of the system along with théesvariables
and the control inputgz, y) is the position of the end of the bar controlled by the
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Fig. 1. State variables and Control inputs

pursuer! is the length of the bar arttis the angle made by the bar with the horizontal
line. The configuration of the system can be expressdd . as, ) and hence it is
R3x S*. Inthe rest of the papex(e R3 x S*) will be used to represent the state of the
bar. The pursuer controls the velocity,of one end of the bar and the evader controls
the velocity,v, of the other end of the bar. The differential equation désty the
kinematics of the system is given by the following equation.

up cos 6,
up sin b,
Ue c08(0e — 0) — uy cos(6, — 0)

Le sin(f, — 0) — <= sin(0), — 0)

>~ 5

The above equation can also be expressed in the foemf (x, u, v).

3 State constraints and Termination situations

In this section, we present a description of the obstacléisdrconfiguration space.
The workspace contains polygonal obstacles in the planteotisruct the visibility
and motion of the players. Since the system is modeled as eepersenting the
line of sight between the players, the obstruction of mutigibility as well as the
motion of the players caused due to obstacles in the workspat be expressed as
a state constraint ii®® x S!. These state constraints can be expressed as configu-
ration space obstacles. R? x S!, the configuration space obstacles are the set of
all (z,y,1,0) such that the bar has a non-empty intersection with somedisin
the workspace. Figure 2 shows two such configurations of #gHat lies in con-
figuration space obstacles. In one configuration the olestdokks the line-of-sight
between the pursuer and the evader. In the other configaratiayer is inside the
obstacle which is forbidden according to the rules of the gam

Thegame seis the set of all points iR x S! that belong to the free space. Hence
the boundary of the game set is same as the boundary of theyemation space
obstacles. The boundary of the game set consists of two kihdentact between
the bar and the obstacles. Refer to Figure 2(b). The first&fredbntact occurs when
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Fig. 2. Configuration Space Obstacles
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(a) Configuration space obstacles (b) Types of contactsehdhbndary

at least one end of the bar touches an obstacle in the plango Abint in time,
the state of the game can cross the boundary at such a poihisas equivalent
to either of the players penetrating into an obstacle in tbekspace. The second
kind of contact occurs when a vertex of an obstacle is indiderthe bar and these
set of points on the boundary of the game set is calledrthget set At any point
in time, if the current state of the game lies on the targettben it can cross the
boundary according to the rules of the game since in the wpaitesthis is equivalent
to breaking the mutual visibility between the players whiebults in the termination
of the game. Since we are interested in situations where theatvisibility between
the players can be broken, we are only interested in the pditeoboundary that
forms the target set.

In this game, termination occurs only when the evader caaldtee line of sight
to the pursuer around a corner. Every corner in the envirarirpeesents an op-
portunity for the evader to break the line of sight. Hencergwrner presents a
termination situation for the game.

If the state of the system lies on the target set then a veftegroe obstacle is
incident on the bar. The evader cannot guarantee terminati@very point on the
target set. Figure 3 shows a configuration of the bar in whighgystem is on the
target set. Letl,, denote the distance of the vertex frgm y) which is same as the
distance of the pursuer from the vertex. lLetenote the length of the bar which is
same as the distance between the pursuer and the evadevatiee ean force termi-
nation if and only if the maximum angular velocity of the egadround the corner
is greater than the maximum angular velocity achievableneypursuer around the
corner. This can happen if and onIy%# > Flr Hence we can further subdivide the
target set depending on whether the evader can guaranteadion at that point.
The part of the target set where evader can guarantee tdiarimagardless of the
choice of the controls of the pursuer is called tisable part(UP). The remaining
part of the target set outside the UP is calledriba-usable pa{tNUP) and the game
will never terminate on the NUP. Given any initial positiohtbe pursuer and the
evader, the game will always terminate on the UP.
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Fig. 3. A configuration of the bar on the target set.

Now we present the equations characterizing the targetsend a vertex of an
obstacle. Refer to Figure 3. The figure shows a configuratidgheobar in which a
vertex,v, lies on the bar. Hence the current state of the bar lies otatiget set. We
want the equation of the hyperplane that characterizestigettset generated hy
Let (z,y,!,0) be the configuration of the bar arid°, y°) be the coordinates of the
vertex of the obstacle. Let € (0, 1) be a variable that determines the fraction of the
length of the bar betweex, y) and the cornefz®, y°). We can write the following
equations of constraints for the bar.

z° —x = AN cost

y° —y = Asinf

In the above equation, aschanges, the point of contact between the bar and the
vertex changes. Hence the target set is characterized bgltbeing equation.

= F(z,y,1,0) = (y° — y) cos — (x° — x)sinf = 0 1)

Since the above equation applies to any (
the usable part of the target set.

Given a vertex, the target set generated by it in the configurapace has the
following boundaries.

T+ 1), Equation (1) also characterizes

The pursuer lies on the corner (x, y) = (z°,y°).
The evader lies on the correr(z + lcos b,y + Isinf) = (z°,y°).
The bar is parallel to either of the edges incident on theexet = 6, or 6 = 6.

Every vertex will generate a target set. The final boundartheftarget set gen-
erated by a vertex will depend on the position of the othetieces and edges in the
environment. But the equation of the target set will be gibgril).

The unit normal to a pointz, y, [, #) on the target set is given by

1
n(z,y,l,0) = VF = sinf —cosf 0 —(z°—z)sech]”
(2,9, 1,6) e (2" —z) sec ]
(2)
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4 Optimal Strategies

In this section we present the optimal controls for the playBefore we define the
concept of optimality we need to define the payoff for the ptayin the game. Con-
sider a play that terminates at timge Since the pursuer wants to increase the time of
termination its payoff function can be considered asOn the other hand since the
evader wants to minimize the time of termination its payeif de considered to be
—ty. Since the payoff functions of the players add to zero, thiszero sunmgame.
Another way to show that it is a zero sum game is to observeliegbursuer’s gain
is equal to the evader’s loss and vice-versa. The time ofitation is a function of
the initial statexg and the control history during the play,andv. Let = denote the
functionalr : (xo, u,v) — ty € R. 7 is called theoutcome functionadnd is given
by the following expression.

7[Xo, u,v] = /0 ' Lix(7),u(r),v(r)]dr + G[x(ty)]

In the above expressioh[x(7), u(r),v(7)] is called therunning cost function
andG[x(tr)] is called theterminal cost functionThe running cost function is the
cost incurred while the game is being played. The terminat ¢onction is the
cost incurred for reaching a particular terminal state antdrget set. In this game,
L{x(71),u(r),v(r)] = 1 andG[x(t;)] = 0. The pursuer wants to maximize the
outcome functional and the evader wants to minimize it.

For a pointx in the state spacd,(x) represents the outcome if the players imple-
ment their optimal strategy starting at the pointt is the time of termination of the
game when the players implement their optimal strategiés dlso called thealue
of the game ax. Any unilateral deviation from the optimal strategy by ay@acan
lead to a better payoff for the other player. For example afgame that starts at a
pointx, if the evader deviates from the optimal strategy then tieeestrategy for
the pursuer in which its payoff is greater thd(x) and if the pursuer deviates from
the optimal strategy then there is a strategy for evader iichwits payoff is greater
than—J(x). Since this is @ero sumgame, any strategy that leads to a higher payoff
for one player will reduce the payoff for the second player.

VJ = [Js Jy Ji Jp]T denotes the gradient of the value function. The
Hamiltonian of any system is given by the following expressi

H(x,VJ,u,v)=VJ- f(x,u,v)+ L(x,u,v)

Letu* = (u,0;) andv* = (uf,0;) be the optimal controls used by the pursuer

and the evader respectively. The Hamiltonian of the systatisfies the following
conditions along the optimal trajectories[15]. These alted thelsaacsconditions.

1. H(x,VJ,u,v*) < H(x,VJ,u*,v*) < H(x,VJ,u*,v)
2. Hx,VJ,u*,v*) =0

Condition 1 implies that when the players implement theitimpl strategies any
unilateral deviation by the pursuer leads to a smaller védu¢he Hamiltonian and
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any unilateral deviation by the evader leads to a largerevaluthe Hamiltonian.
Moreover condition 2 implies that when the players implettleeir optimal controls
the Hamiltonian of the system is zero. Tisaacsconditions are an extension of the
Pontryagin’s principlen optimization to a game.

The Hamiltonian of our system is given by the following exqsien.

H(x,VJu,v)=VJ- f(x,u,v)+ L

Up[Jy cos 0, — Jjcos(f, — 0) — JT sin(6, — 0) + J,, sin 6]

Ji
+uelJ; cos(e — 0) + 79 sin(f. — 0)] + 1

Since the evader wants to minimize the time of escape anduhsig@r wants to
maximize the time of escape, Isaacs first condition requiregollowing to be true
along the optimal trajectories.
(ug, 07, uy,0,) = min max H(z, VJ,u,v) (3)
Ue,0c Up,0p
We can see that the Hamiltonianssparablén the controls:, andu. i.e., it can be
written in the formu,, f1(x, VJ) 4+ u. f2(x, VJ). Hence the optimal controls for the

players are given by the following expressions in terms efghadient of the value
function.

(cos @y, sin ) || (Jo — Jicost + % sin6, J, — J;sinf — % cos b))
Ji
(cos(0; — 0),sin(0; — ) ] (~,~22)

=
U, = Te
*

U, = Up (4)
Due to lack of space, the derivation is presented elabgraigP]. In the first

and the second equatiffis used to denote parallel vectors. In cadse- J; cos 6 +

]9 sinf = 0 andJ, — J;sinf — cos9 = 0 thend; can take any value and the

pursuer can follow any control strategy. S|m|larIth = 0 and Jﬂ = 0, thenf?

can take any value and the evader can follow any controleg,yafl’ hese conditions

represensingularityin the Hamiltonian.

The entire game set can be partitioned into two regions déipgron the value
of the game. For all the initial positions of the pursuer amel évader for which the
value of the gamd (x) is finite, the evader can break the line of sight in finite time
by following the strategies in Equation(4). For all the imlifpositions of the pursuer
and the evader for which the value of the game is infinite, tlwsyer can track the
evader forever if it follows the controls given in Equatiof).(Hence Equation (3)
are the necessary and sufficient conditions for pursueattktthe evader in terms of
the Hamiltonian of the system.

The analysis done in this section implies that if we are givenvalue function
J(x) then we can compute the optimal strategies for the playerssing equation

(4).

@l
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5 Construction of Optimal Trajectories

In this section we present the trajectories generated bgptieal control laws that
terminate on the UP. We use the following theorem to consthgcoptimal trajecto-
ries.

Theorem 1. [15]Along the optimal trajectory, the following equatioolds.

d 0 .

EVJ[X(L‘)] = _%H(X’ VJ,u*, v")
The above equation is called the adjoint equation and thepaorants oV J(x) are
called adjoint variables. The retro-time(time-to-go)foof the adjoint equations is

d a * *
EVJ[X(T)] = %H(X,VJ,U ,0")

wherer = t; — t is called the retro-timet; is the time of termination of the game.

The adjoint equation is a differential equation for the geatlof the value func-
tion J(x) along the optimal trajectories in terms of the optimal colstrSince Equa-
tion (4) gives the optimal controls of the players as a furctf VJ (x), we integrate
the adjoint equations backward in time from the UP to ob%if(x) in terms of the
state variables. SubstitutifgJ(x) into the optimal controls gives a feedback con-
trol strategy for the players. Substituting the feedbachte® laws for the players
into the kinematic equation leads to the optimal trajeemrDue to lack of space,
the construction of the optimal trajectories is providegbelrately in [9].

From the analysis done in [9], we present the optimal trayges of the players.
Let (zy,yy, 15, 65) denote the configuration of the bar at the termination Sibnat
The optimal trajectory of the pursuer as a function of rdinoe is given by the
following equations.

xp(T) = 2§ + TV, sin by
yp(T) = yy — TUp cos Oy (5)

The optimal trajectory of the evader as a function of retnoetis given by the fol-
lowing equations.

ze(T) =5 +1fcosby —TeTsinby
Ye(T) = yy + lpsinfy + U1 cosb; (6)

The optimal trajectories for the pursuer and the evadertaaggbt lines. More-
over the trajectories are perpendicular to the orientaticthe bar at the termination
situation and hence parallel to each other. The players imawgposite directions as
they follow the optimal trajectories. Figure 4 shows theimmpl trajectories for the
pursuer and the evader that terminate at a corner at thenofibie evader is shown
by the red dots and the pursuer is shown by green dots. Thk liexcjoining the
pursuer and the evader represents the orientation of tifirgaof-sight) at different
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time instants. The value of the speed ratio, r, is 0.5. At émmination situation, the
bar is oriented at an angle gf with respect to ther, the position of the pursuer is
(—3,—-3) and the position of the evader($, 1). The payoff for both the players at
any point on the optimal trajectory is given by the variablsince it is the time re-
quired for termination. In the figure, the payoff for an ottigtion of the bar is shown
on the side of the bar. The bar with= 0 represents the termination situation. If the
pursuer deviates from its optimal strategy then the evadsrahstrategy for which
it can escape around the corner in time less thalf the evader deviates from its
optimal trajectory then the pursuer has a strategy for whticlan track the evader
for a time greater than. This is due to the fact that the trajectories are obtainehfr
strategies that are in Nash equilibrium. Hence there is niivat@n for either of the
players to deviate from their optimal strategies.

101

Evader's
Trajectories
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Fig. 4. Optimal trajectories for a terminating situation arouncbener

For a general environment in the plane, the optimal trajeetdie inR3 x S,

In order to depict them ifR3, we need to consider a subspace of the optimal paths
terminating at a corner. In the following examples, for easiner in the environment
we show the subspace of the optimal paths that have a fixexhdesof the pursuer
from the corner at the termination situation. The value ef $peed ratio, r, is 0.66

in all the following examples. Figure 5 shows the optimajectories for the players

in a simple environment containing a point obstacle at thgimrThe line of sight
between the pursuer and the evader is broken if it passeaghrine origin. The
evader wants to minimize the time required to break the lirgght and the pursuer
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Fig. 5. Optimal trajectories for an environment having a singlenpobstacle

7 Pursuer's Trajectories Evader's Trajectories

.. =—Evader Trajectorie
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(X Y9 .
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" <—Pursuer Trajectory 50
20 4
X

=50 -40 -20 0

(a) Optimal Trajectories in the plane (b) Optimal Trajeieracross a section * x S*

wants to maximize it. Letz s, ys, s, 07) represent the orientation of the bar at the
termination situation. Figure 5(a) shows the optimal e#jees of the players for all
possible values of; for a constant value af ¢, y; and6d;. Figure 5(b) shows the
optimal trajectories for every orientation of the bar at themnination situation. The
z axis represents the angle of the bar at the terminationt&ituaA cross-section
parallel to thexy-plane gives the optimal trajectories of the players in aeltor a
givendy. The red line in the middle denotes the point obstacle. Therispiral is
formed by the optimal trajectories of the evader and therapgial is formed by the
optimal trajectory of the pursuer. The color of a point is presentative of the value
of the game,J(x), at that point. The value of the game increases as the cadoges
from blue to red.

Figure 6(a) shows a single corner in the plane. The intemgleaat the corner
is %” Figure 6(b) shows the optimal trajectories of the playerstlie corner. The
symmetry in the trajectories is due to the fact that ternmi@masituations occur sym-
metrically around a corner.

Figure 7(a) shows a regular hexagon in the plane. Figuresidys the optimal
trajectories of the players for the hexagonal obstacle.

6 Conclusion and Future work

In this paper, we address a visibility based pursuit-evageme in an environment
containing obstacles. The pursuer and the evader are huolortwaving bounded
speeds. The pursuer wants to maintain visibility of the evéor maximum possible
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time and the evader wants to escape the pursuer’s sight asaisquossible. Both the
players have knowledge about each others current posltinder this information
structure, we present necessary and sufficient conditmrsifveillance and escape.
We present strategies for the players that are in Nash baiuifn. The strategies are
a function of the value of the game. Using the strategies,omstruct a value func-
tion by backward integration of the adjoint equations frdra termination situations
provided by the corners in the environment. From the valuetions we recompute
the control strategies for the players to obtain optimgkettories for the players
near the termination situation. We show that the optimakegy for the players is to
move on straight lines parallel to each other in oppositedfions towards a termi-
nation situation. We show a subspace of the optimal trajestéor a point obstacle,
a corner and a hexagonal obstacle in space.

In order to extend the results in this paper to environmentaiaing multiple
obstacles, we plan to address the following issues in thedut

1. In a general environment there might be points from whighgursuer can see
the entire free space. Such environments are cafladshapecand the set of
points for which the property holds is called tkernelof the star-shaped envi-
ronment. If the pursuer can reach the kernel while keepiagetlader in its sight
then the pursuer can see the evader forever. Hence the kadsoeprovides a
termination situation where the pursuer can track the eviadever. The shape
of the kernel depends on the shape of the environment. Antbiment, we do
not have a general characterization of the shape of the kiartie configuration
space i.e.R? x S* which makes it difficult to compute the final conditions for
the adjoint variables in the adjoint equation. Hence we asbie to present the
optimal trajectories that are generated back from the teation situation posed
due to the presence of such regions.

Fig. 6. Optimal trajectories of the players for a corner in space
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2. In the previous section, we presented the optimal trajesg for the players ter-
minating at a corner in the environment. Consider a prim the state-space
that lies on two different optimal trajectories terminagtiat different corners in
the environment. Figure 8 shows such a situation. Both thedigshow the op-
timal trajectories for two regular hexagonal obstaclehaenvironment. Figure
8(a) shows points in the space that lie on two different oglimnajectories for the
evader. Similarly, Figure 8(b) shows points in the spacelidan two different
optimal trajectories for the pursuer. Each optimal trajegwill assign a value,
J(x). In case the two value functions are differenkatve need to modify the
analysis since the value of the gamexas unique. Moreover, we also need to
ensure thalv J(x) is well defined for aegular construction or else we need to
look for viscositysolutions.

In the future, we plan to usé@scositysolutions to propose an algorithm to con-
struct the optimal trajectories for the players in a envin@mt containing multiple
obstacles. We also plan to extend the results to multipleymrs chasing an evader.
We also plan to extend our work to players having non-holoic@onstraints in their
motion.

References

1. S. Alexander, R. Bishop, and R. Ghrist. Pursuit and emasionon-convex domains of
arbitrary dimensions. IProceedings of Robotics: Science and Systdthdadelphia,
USA, August 2006.

2. S. Alexander, R. Bishop, and R. Ghrist. Capture pursuitegmon unbounded domains.
2008.

Fig. 7. Optimal trajectories of the players for a hexagonal obstatkpace

Pursuer's trajectories

theta

So kr M W B O ©® N ®

Evader's

Bar 7 <« trajectories

=}
IS

4040

(a)A Hexagonal obstacle in space (b)Optimal trajectoestfe players



Nash-Equilibrium 15

Fig. 8. Intersection of the optimal trajectories of the evader ireadironment containing 2
hexagonal obstacles

Pursuer Trajectory Intersection

Evader Trajectory Intersection

(a)Intersection of the optimal trajectories of the evadgintersection of the optimal trajectories of the pursuer

3.

4.

10.

11.

12.

13.

T. Basar and G. J. Olsdddynamic Noncooperative Game Theory, 2nd BtAM Series
in Classics in Applied Mathematics, Philadelphia, 1999.

T. Bandyopadhyay, Y. Li, M. Ang Jr, and D. Hsu. Stealth kiag of an Unpredictable
Target among Obstacle®roceedings of the International Workshop on the Algorithm
Foundations of Roboti¢c2004.

. T. Bandyopadhyay, Y. Li, M. Ang Jr., and D. Hsu. A Greedya&tgy for Tracking a

locally Predicatable Target among Obstacld®obotics and Automation, Proceedings.
ICRA'02. IEEE International Conference ppages 2342-2347, 2006.

. C. Becker, H. Gonzalez-Banos, J. Latombe, and C. Tomasi.intelligent observer.

Proceedings of International Symposium on ExperimenthbRos pages 94-99, 1995.

. S. Bhattacharya, S. Candido, and S. Hutchinson. Moti@tegties for surviellance. In

Robotics: Science and Systems ; 2007.

. S. Bhattacharya and S. Hutchinson. Approximation sckdoretwo-player pursuit eva-

sion games with visibility constraints. Proceedings of Robotics: Science and Systems
IV, Zurich, Switzerland, June 2008.

. S. Bhattacharya and S. Hutchinson. From strategies jectogies. http://www-

cvr.ai.uiuc.eduk~ sbhattac/comp.pd2008.

A. Efrat, H. Gonzalez-Banos, S. Kobourov, and L. Palgmaa. Optimal strategies to
track and capture a predictable targeRobotics and Automation, 2003. Proceedings.
ICRA'03. IEEE International Conference o8, 2003.

P. Fabiani and J. Latombe. Tracking a partially prebietmbject with uncertainty and
visibility constraints: a game-theoretic approach. Techlreport, Technical report, Uni-
veristy of Stanford, December 1998. http://underdog.fstah edu/.(cited on page 76).
W. H. Fleming. The convergence problem for differengiames.Journal for Mathemat-
ical Analysis and Applications3:102-116, 1961.

W. H. Fleming. The convergence problem for differenjames. Advances in Game
Theory. Annals of Mathematics Studib:195-210, 1964.



16

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Sourabh Bhattacharya and Seth Hutchinson

H. Gonzalez-Banos, C. Lee, and J. Latombe. Real-timéicatorial tracking of a target
moving unpredictably among obstacleRobotics and Automation, 2002. Proceedings.
ICRA'02. IEEE International Conference pp, 2002.

R. IsaacsDifferential GamesWiley, New York, 1965.

S. Kopparty and C. V. Ravishankar. A framework for purgwasion games in rninf.
Process. Lett.96(3):114-122, 2005.

S. M. LaValle, H. H. Gonzalez-Banos, C. Becker, and J.&oinbe. Motion strategies
for maintaining visibility of a moving target. IRobotics and Automation, 1997. Proceed-
ings., 1997 IEEE International Conference, aolume 1, pages 731-736, Albuquerque,
NM, USA, Apr. 1997.

J. Lewin. Differential Games: Theory and Methods for Solving GamebRms with
Singular SurfacesSpringer-Verlag, London, 1994.

T. Li, J. Lien, S. Chiu, and T. Yu. Automatically genenativirtual guided toursComputer
Animation Conferencgages 99-106, 1997.

A. A. Melikyan and N. V. Hovakimyan. Game problem of simguruit on a two-
dimensional conelournal of Applied Mathematics and Mechanig§(5):607-618, 1991.
A. A. Melikyan and N. V. Hovakimyan. Singular trajectesiin the game of simple pursuit
in the manifold.Journal of Applied Mathematics and Mechanib§(1):42-48, 1991.

A. A. Melikyan and N. V. Hovakimyan. A differential gamé simple approach in me-
likyan. Journal of Applied Mathematics and Mechani63(1):47-57, 1993.

R. Murrieta-Cid, T. Muppirala, A. Sarmiento, S. Bhattagya, and S. Hutchinson.
Surveillance strategies for a pursuer with finite sensogearinternational Journal of
Robotics Resear¢lpages 1548-1553, 2007.

T. Parsons. Pursuit-evasion in a grapheor. Appl. Graphs, Proc. Kalamazad®76.



