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Abstract: In this paper, we present a game theoretic analysis of a visibility based pursuit-
evasion game in a planar environment containing obstacles.The pursuer and the evader are
holonomic having bounded speeds. Both the players have a complete map of the environment.
Both the players have omnidirectional vision and have knowledge about each other’s current
position as long as they are visible to each other. The pursuer wants to maintain visibility of the
evader for maximum possible time and the evader wants to escape the pursuer’s sight as soon
as possible. Under this information structure, we present necessary and sufficient conditions
for surveillance and escape. We present strategies for the players that are inNash Equilibrium.
The strategies are a function of thevalueof the game. Using these strategies, we construct
a value function by integrating theadjoint equationsbackward in time from the termination
situations provided by the corners in the environment. Fromthese value functions we recom-
pute the control strategies for the players to obtain optimal trajectories for the players near the
termination situation. As far as we know, this is the first work that presents the necessary and
sufficient conditions for tracking for a visibility based pursuit-evasion game and presents the
equilibrium strategies for the players.

1 Introduction

Consider a situation in which a group of mobile pursuers having bounded speeds are
trying to keep sight of an unpredictable evader in a cluttered environment. In order to
deploy minimum number of pursuers needed to track the evaderit would be useful to
know the best strategy that can be used by a single pursuer. Inthis work, we analyze
the problem of a mobile pursuer trying to track a mobile evader in an environment
containing obstacles. Both the pursuer and the evader are holonomic with bounded
speeds and can see each other at the beginning of the game. Theplayers do not have
knowledge of each other’s future actions. We formulate the problem of tracking as
a game in which the goal of the pursuer is to keep the evader in its field-of-view
for maximum possible time and the goal of the evader is to escape the pursuer’s
field-of-view in minimum time by breaking the line of sight around a corner.

An interesting application of this problem is in security and surveillance sys-
tems. It may be useful for a security robot to track a malicious evader that is trying
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to escape. Also, an “evader” may not be intentionally tryingto slip out of view. A
pursuer robot may simply be asked to continuously follow andmonitor at a distance
an evader performing a task not necessarily related to the target tracking game[6].
The pursuer may also be monitoring the evader for quality control, verifying the
evader does not perform some undesired behavior, or ensuring that the evader is not
in distress. The results are useful as an analysis of when escape is possible. If it is
impossible to slip away, it may be desirable for the evader toimmediately surrender
or undertake a strategy not involving escape. In home care settings, a tracking robot
can follow elderly people and alert caregivers of emergencies. Target-tracking tech-
niques in the presence of obstacles have been proposed for the graphic animation of
digital actors, in order to select the successive viewpoints under which an actor is to
be displayed as it moves in its environment [19].

In the past, we have addressed tracking problems similar to the one in this paper.
In [7], we address the problem of a pursuer trying to track an antagonistic evader
around a single corner. We partition the visibility region of the pursuer into regions
based on the strategies used by the players to achieve their goals. Based on these
partitions we propose a sufficient condition of escape for the evader in general envi-
ronments. In [8], given the initial position of the evader ina general environment, we
use the sufficient condition to compute an approximate boundon the initial positions
of the pursuer from which it might track the evader. The bounddepends on the ratio
of the maximum speed of the evader to that of the pursuer. If the initial position of the
pursuer lies outside this bound, the evader can escape the pursuer’s sight. Moreover,
we provide strategies for the evader to escape irrespectiveof pursuer’s actions. In
this work, we formulate the target-tracking problem as a game in which the pursuer
wants to maximize the time for which it can track the evader and the evader wants to
minimize it. We compute the strategies for the players that are in Nash equilibrium.
If a player follows its equilibrium strategy, it is guaranteed of a minimum outcome
without any knowledge of the other player’s future actions.Moreover when a pair
of strategy for the players is inNash equilibriumthen any unilateral deviation of a
player from its equilibrium strategy might lead to a lower outcome for it. Consider
a situation in which the pursuer can keep the evader in sight for time tf when the
players follow their equilibrium strategies. If the evaderdeviates from its equilib-
rium strategy then the pursuer has a strategy to track it for atime greater thantf . On
the other hand, if the pursuer deviates from its equilibriumstrategy then the evader
can escape in time less thantf . Hence there is no motivation for either of the play-
ers to deviate from their equilibrium strategies due to the lack of knowledge of the
other player’s future actions. For a pair of equilibrium strategies for the players either
the evader can escape the pursuer’s sight in finite time or thepursuer can track the
evader forever. Hence computing them gives us the strategies sufficient for tracking
or escape, whichever holds at a given point in the state space. As far as we know, this
is the first work that addresses the necessary and sufficient conditions for tracking
and provides equilibrium strategies for the players. We usethese strategies to inte-
grate the kinematic equations of the system backward in timefrom the termination
situations to obtain the optimal trajectories for the players.
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Prior work regarding the problem of tracking is based on discretizing the motion
models of the players or the state-space in which the game is being played[17, 5].
These techniques lead to approximate numerical solutions that become computation-
ally inefficient with increasing time horizon of the game. Moreover they assume a
prior model of uncertainty for the evader’s future actions.Contrary to these works,
we use continuous time motion models for the players and provide closed form solu-
tions to the coupled non-linear differential equations that govern our system kinemat-
ics. Hence no error is introduced in the solutions due to discretizations of any form.
Further, our results are valid for scenarios in which the players have no knowledge
about each others future actions.

Some variants of the tracking problem have also been addressed. In [11], the
authors take into account the positioning uncertainty of the robot pursuer. Game the-
ory is proposed as a framework to formulate the tracking problem, and an approach
is proposed that periodically commands the pursuer to move into a region that has
no localization uncertainty in order to re-localize and better track the evader after-
ward. [10] presents an off-line algorithm that maximizes the evader’s minimum time
to escape for an evader moving along a known path. Since the entire trajectory of
the evader is known beforehand, the problem reduces to a single player optimization
problem. In [14] and [4], gradient descent algorithms have been proposed by for-
mulating a local risk function for a pursuer having the localmap of the evader. [4]
deals with the problem ofstealth target trackingwhere a robot equipped with visual
sensors tries to track a moving target among obstacles and, at the same time, remain
hidden from the target. Obstacles impede both the tracker’smotion and visibility, and
also provide hiding places for the tracker. A tracking algorithm is proposed that ap-
plies a local greedy strategy and uses only local information from the tracker’s visual
sensors and assumes no prior knowledge of target tracking motion or a global map of
the environment. In [23], the problem of target tracking hasbeen analyzed at a fixed
distance between the pursuer and evader. Optimal motion strategies are proposed for
a pursuer and evader based on critical events.

In this work, we use differential games to analyze a pursuit-evasion problem. The
theory of deterministic pursuit-evasion was single-handedly created by R.Isaacs that
culminated in his book [15]. A general framework based on theconcepts in classi-
cal game theory and the notion of tenet of transition was usedto analyze pursuit-
evasion problems. Problems like theLady in the Lake, Lion and the Man, Homicidal
chaufferandMaritime Dogfight Problemwere introduced in this book. A modifi-
cation to the classical problems involves the consideration of discrete-time versions
of these problems and the application of a proper information structure to compute
the value of the game [13, 12]. An exhaustive analysis of solved and partly solved
zero-sum differential games is provided in [3] and [18]. Most of the classical prob-
lems in pursuit-evasion deal with players in obstacle-freespace having either con-
straints on their motion or constraints on their control dueto under-actuation. In the
recent past, researchers have analyzed pursuit-evasion problems with constraints in
the state space. In [20, 21, 22], a pursuit-evasion game is analyzed with the pursuer
and the evader constrained to move on a two-dimensional conical surface in a three-
dimensional space. Our work belongs to this category of problems. In our problem,
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the state constraints arise due to the presence of obstaclesthat obstruct visibility as
well as motion of the players in the workspace and the controlconstraints arise as a
result of the bounded speed of the players. Apart from these problems, researchers
have also analyzed pursuit-evasion inR

n [16], in non-convex domains of arbitrary
dimension [1], in unbounded domains[2] and in graphs [24].

In Section II, we present the formulation of the game. In Section III, we analyze
the termination situations presented by the obstacles around any corner in the en-
vironment. In Section IV, we present the strategies for the players that are inNash
equilibrium. In Section V we present the construction of the optimal trajectories. In
Section VI, we present the conclusions and the future work.

2 Formulation of the game

We consider a mobile pursuer and an evader moving in a plane with velocities
u = (up, θp) andv = (ue, θe) respectively.up andue are the speeds of the players
that are bounded byvp andve respectively.θp andθe are the direction of the velocity
vectors. We user to denote the ratio of the maximum speed of the evader to that of the
pursuerr = ve

vp
. They are point robots with no constraints in their motion except for

bounded speeds. The workspace contains obstacles that restrict pursuer and evader
motions and may occlude the pursuer’s line of sight to the evader. The initial position
of the pursuer and the evader is such that they are visible to each other. The visibility
region of the pursuer is the set of points from which a line segment from the pursuer
to that point does not intersect the obstacle region. Visibility extends uniformly in
all directions and is only terminated by workspace obstacles (omnidirectional, un-
bounded visibility). The pursuer and the evader know each others current position as
long as they can see each other. Both the players have a complete map of the envi-
ronment. In this setting, we consider the following game. The pursuer wants to keep
the evader in its visibility region for maximum possible time and the evader wants to
break the line of sight to the pursuer as soon as possible. If at any instant, the evader
breaks the line of sight to the pursuer, the game terminates.Given the initial position
of the pursuer and the evader, we want to know the optimal strategies used by the
players to achieve their respective goals. Optimality refers to the strategies used by
the players that are inNash equilibrium.

We model the system as a non-rigid bar of variable length representing the line of
sight between the pursuer and the evader. The bounded velocities of the pursuer and
the evader are modeled as control inputs at opposite ends of the bar. Any occlusion
between the pursuer and the evader leads to a situation in which the bar intersects the
obstacles. Hence the pursuer’s goal is to keep the bar in freespace for the maximum
possible time and the evader’s goal is to force the bar to intersect some obstacle as
soon as possible. In this work we assume that the line of sightis not blocked due to
grazing contact with the boundary. Hence visibility is retained even if a vertex in the
environment is incident on the bar.

Figure 1 shows the configuration of the system along with the state variables
and the control inputs.(x, y) is the position of the end of the bar controlled by the
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Fig. 1. State variables and Control inputs

pursuer.l is the length of the bar andθ is the angle made by the bar with the horizontal
line. The configuration of the system can be expressed as(x, y, l, θ) and hence it is
R

3×S1. In the rest of the paper,x(∈ R
3×S1) will be used to represent the state of the

bar. The pursuer controls the velocity,u, of one end of the bar and the evader controls
the velocity,v, of the other end of the bar. The differential equation describing the
kinematics of the system is given by the following equation.

˙







x

y

l

θ









=









up cos θp

up sin θp

ue cos(θe − θ) − up cos(θp − θ)
ue

l
sin(θe − θ) −

up

l
sin(θp − θ)









The above equation can also be expressed in the formẋ = f(x, u, v).

3 State constraints and Termination situations

In this section, we present a description of the obstacles inthe configuration space.
The workspace contains polygonal obstacles in the plane that obstruct the visibility
and motion of the players. Since the system is modeled as a barrepresenting the
line of sight between the players, the obstruction of mutualvisibility as well as the
motion of the players caused due to obstacles in the workspace can be expressed as
a state constraint inR3 × S1. These state constraints can be expressed as configu-
ration space obstacles. InR3 × S1, the configuration space obstacles are the set of
all (x, y, l, θ) such that the bar has a non-empty intersection with some obstacle in
the workspace. Figure 2 shows two such configurations of the bar that lies in con-
figuration space obstacles. In one configuration the obstacle blocks the line-of-sight
between the pursuer and the evader. In the other configuration a player is inside the
obstacle which is forbidden according to the rules of the game.

Thegame setis the set of all points inR3×S1 that belong to the free space. Hence
the boundary of the game set is same as the boundary of the configuration space
obstacles. The boundary of the game set consists of two kindsof contact between
the bar and the obstacles. Refer to Figure 2(b). The first kindof contact occurs when
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Fig. 2. Configuration Space Obstacles
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(1) (2)

(a) Configuration space obstacles (b) Types of contacts on the boundary

at least one end of the bar touches an obstacle in the plane. Atno point in time,
the state of the game can cross the boundary at such a point as this is equivalent
to either of the players penetrating into an obstacle in the workspace. The second
kind of contact occurs when a vertex of an obstacle is incident on the bar and these
set of points on the boundary of the game set is called theTarget set. At any point
in time, if the current state of the game lies on the target set, then it can cross the
boundary according to the rules of the game since in the workspace this is equivalent
to breaking the mutual visibility between the players whichresults in the termination
of the game. Since we are interested in situations where the mutual visibility between
the players can be broken, we are only interested in the part of the boundary that
forms the target set.

In this game, termination occurs only when the evader can break the line of sight
to the pursuer around a corner. Every corner in the environment presents an op-
portunity for the evader to break the line of sight. Hence every corner presents a
termination situation for the game.

If the state of the system lies on the target set then a vertex of some obstacle is
incident on the bar. The evader cannot guarantee termination at every point on the
target set. Figure 3 shows a configuration of the bar in which the system is on the
target set. Letdp denote the distance of the vertex from(x, y) which is same as the
distance of the pursuer from the vertex. Letl denote the length of the bar which is
same as the distance between the pursuer and the evader. The evader can force termi-
nation if and only if the maximum angular velocity of the evader around the corner
is greater than the maximum angular velocity achievable by the pursuer around the
corner. This can happen if and only ifdp

l
> 1

1+r
. Hence we can further subdivide the

target set depending on whether the evader can guarantee termination at that point.
The part of the target set where evader can guarantee termination regardless of the
choice of the controls of the pursuer is called theusable part(UP). The remaining
part of the target set outside the UP is called thenon-usable part(NUP) and the game
will never terminate on the NUP. Given any initial position of the pursuer and the
evader, the game will always terminate on the UP.
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Fig. 3. A configuration of the bar on the target set.

Now we present the equations characterizing the target set around a vertex of an
obstacle. Refer to Figure 3. The figure shows a configuration of the bar in which a
vertex,v, lies on the bar. Hence the current state of the bar lies on thetarget set. We
want the equation of the hyperplane that characterizes the target set generated byv.
Let (x, y, l, θ) be the configuration of the bar and(xo, yo) be the coordinates of the
vertex of the obstacle. Letλ ∈ (0, 1) be a variable that determines the fraction of the
length of the bar between(x, y) and the corner(xo, yo). We can write the following
equations of constraints for the bar.

xo − x = λl cos θ

yo − y = λl sin θ

In the above equation, asλ changes, the point of contact between the bar and the
vertex changes. Hence the target set is characterized by thefollowing equation.

⇒ F (x, y, l, θ) = (yo − y) cos θ − (xo − x) sin θ = 0 (1)

Since the above equation applies to anyλ ∈ ( r
1+r

, 1), Equation (1) also characterizes
the usable part of the target set.

Given a vertex, the target set generated by it in the configuration space has the
following boundaries.

• The pursuer lies on the corner⇒ (x, y) = (xo, yo).
• The evader lies on the corner⇒ (x + l cos θ, y + l sin θ) = (xo, yo).
• The bar is parallel to either of the edges incident on the vertex :θ = θ2 or θ = θ1.

Every vertex will generate a target set. The final boundary ofthe target set gen-
erated by a vertex will depend on the position of the other vertices and edges in the
environment. But the equation of the target set will be givenby (1).

The unit normal to a point(x, y, l, θ) on the target set is given by

n(x, y, l, θ) = ∇F =
1

√

1 + (xo − x)2 sec2 θ
[sin θ −cos θ 0 −(xo−x) sec θ]T

(2)
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4 Optimal Strategies

In this section we present the optimal controls for the players. Before we define the
concept of optimality we need to define the payoff for the players in the game. Con-
sider a play that terminates at timetf . Since the pursuer wants to increase the time of
termination its payoff function can be considered astf . On the other hand since the
evader wants to minimize the time of termination its payoff can be considered to be
−tf . Since the payoff functions of the players add to zero, this is azero sumgame.
Another way to show that it is a zero sum game is to observe thatthe pursuer’s gain
is equal to the evader’s loss and vice-versa. The time of termination is a function of
the initial statex0 and the control history during the play,u andv. Let π denote the
functionalπ : (x0, u, v) → tf ∈ R. π is called theoutcome functionaland is given
by the following expression.

π[x0, u, v] =

∫ tf

0

L[x(τ), u(τ), v(τ)]dτ + G[x(tf )]

In the above expressionL[x(τ), u(τ), v(τ)] is called therunning cost function
andG[x(tf )] is called theterminal cost function. The running cost function is the
cost incurred while the game is being played. The terminal cost function is the
cost incurred for reaching a particular terminal state on the target set. In this game,
L[x(τ), u(τ), v(τ)] = 1 and G[x(tf )] = 0. The pursuer wants to maximize the
outcome functional and the evader wants to minimize it.

For a pointx in the state space,J(x) represents the outcome if the players imple-
ment their optimal strategy starting at the pointx. It is the time of termination of the
game when the players implement their optimal strategies. It is also called thevalue
of the game atx. Any unilateral deviation from the optimal strategy by a player can
lead to a better payoff for the other player. For example, fora game that starts at a
point x, if the evader deviates from the optimal strategy then thereis a strategy for
the pursuer in which its payoff is greater thanJ(x) and if the pursuer deviates from
the optimal strategy then there is a strategy for evader in which its payoff is greater
than−J(x). Since this is azero sumgame, any strategy that leads to a higher payoff
for one player will reduce the payoff for the second player.

∇J = [Jx Jy Jl Jθ]
T denotes the gradient of the value function. The

Hamiltonian of any system is given by the following expression.

H(x,∇J, u, v) = ∇J · f(x, u, v) + L(x, u, v)

Let u∗ = (u∗

p, θ
∗

p) andv∗ = (u∗

e, θ
∗

e) be the optimal controls used by the pursuer
and the evader respectively. The Hamiltonian of the system satisfies the following
conditions along the optimal trajectories[15]. These are called theIsaacsconditions.

1. H(x,∇J, u, v∗) ≤ H(x,∇J, u∗, v∗) ≤ H(x,∇J, u∗, v)
2. H(x,∇J, u∗, v∗) = 0

Condition 1 implies that when the players implement their optimal strategies any
unilateral deviation by the pursuer leads to a smaller valuefor the Hamiltonian and
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any unilateral deviation by the evader leads to a larger value of the Hamiltonian.
Moreover condition 2 implies that when the players implement their optimal controls
the Hamiltonian of the system is zero. TheIsaacsconditions are an extension of the
Pontryagin’s principlein optimization to a game.

The Hamiltonian of our system is given by the following expression.

H(x,∇J, u, v) = ∇J · f(x, u, v) + L

= up[Jx cos θp − Jl cos(θp − θ) −
Jθ

l
sin(θp − θ) + Jy sin θp]

+ue[Jl cos(θe − θ) +
Jθ

l
sin(θe − θ)] + 1

Since the evader wants to minimize the time of escape and the pursuer wants to
maximize the time of escape, Isaacs first condition requiresthe following to be true
along the optimal trajectories.

(u∗

e, θ
∗

e , u∗

p, θ
∗

p) = min
ue,θe

max
up,θp

H(x,∇J, u, v) (3)

We can see that the Hamiltonian isseparablein the controlsup andue i.e., it can be
written in the formupf1(x,∇J) + uef2(x,∇J). Hence the optimal controls for the
players are given by the following expressions in terms of the gradient of the value
function.

(cos θ∗p, sin θ∗p) || (Jx − Jl cos θ +
Jθ

l
sin θ, Jy − Jl sin θ −

Jθ

l
cos θ)

(cos(θ∗e − θ), sin(θ∗e − θ)) || (−Jl,−
Jθ

l
)

u∗

e = ve

u∗

p = vp (4)

Due to lack of space, the derivation is presented elaborately in [9]. In the first
and the second equation|| is used to denote parallel vectors. In caseJx − Jl cos θ +
Jθ

l
sin θ = 0 andJy − Jl sin θ − Jθ

l
cos θ = 0 thenθ∗p can take any value and the

pursuer can follow any control strategy. Similarly ifJl = 0 and Jθ

l
= 0, thenθ∗e

can take any value and the evader can follow any control strategy. These conditions
representsingularity in the Hamiltonian.

The entire game set can be partitioned into two regions depending on the value
of the game. For all the initial positions of the pursuer and the evader for which the
value of the gameJ(x) is finite, the evader can break the line of sight in finite time
by following the strategies in Equation(4). For all the initial positions of the pursuer
and the evader for which the value of the game is infinite, the pursuer can track the
evader forever if it follows the controls given in Equation (4). Hence Equation (3)
are the necessary and sufficient conditions for pursuer to track the evader in terms of
the Hamiltonian of the system.

The analysis done in this section implies that if we are giventhe value function
J(x) then we can compute the optimal strategies for the players byusing equation
(4).
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5 Construction of Optimal Trajectories

In this section we present the trajectories generated by theoptimal control laws that
terminate on the UP. We use the following theorem to construct the optimal trajecto-
ries.

Theorem 1. [15]Along the optimal trajectory, the following equation holds.

d

dt
∇J [x(t)] = −

∂

∂x
H(x,∇J, u∗, v∗)

The above equation is called the adjoint equation and the components of∇J(x) are
called adjoint variables. The retro-time(time-to-go) form of the adjoint equations is

d

dτ
∇J [x(τ)] =

∂

∂x
H(x,∇J, u∗, v∗)

whereτ = tf − t is called the retro-time.tf is the time of termination of the game.

The adjoint equation is a differential equation for the gradient of the value func-
tion J(x) along the optimal trajectories in terms of the optimal controls. Since Equa-
tion (4) gives the optimal controls of the players as a function of∇J(x), we integrate
the adjoint equations backward in time from the UP to obtain∇J(x) in terms of the
state variables. Substituting∇J(x) into the optimal controls gives a feedback con-
trol strategy for the players. Substituting the feedback control laws for the players
into the kinematic equation leads to the optimal trajectories. Due to lack of space,
the construction of the optimal trajectories is provided elaborately in [9].

From the analysis done in [9], we present the optimal trajectories of the players.
Let (xf , yf , lf , θf ) denote the configuration of the bar at the termination situation.
The optimal trajectory of the pursuer as a function of retro-time is given by the
following equations.

xp(τ) = xf + τvp sin θf

yp(τ) = yf − τvp cos θf (5)

The optimal trajectory of the evader as a function of retro-time is given by the fol-
lowing equations.

xe(τ) = xf + lf cos θf − veτ sin θf

ye(τ) = yf + lf sin θf + veτ cos θf (6)

The optimal trajectories for the pursuer and the evader are straight lines. More-
over the trajectories are perpendicular to the orientationof the bar at the termination
situation and hence parallel to each other. The players movein opposite directions as
they follow the optimal trajectories. Figure 4 shows the optimal trajectories for the
pursuer and the evader that terminate at a corner at the origin. The evader is shown
by the red dots and the pursuer is shown by green dots. The black line joining the
pursuer and the evader represents the orientation of the bar(line-of-sight) at different
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time instants. The value of the speed ratio, r, is 0.5. At the termination situation, the
bar is oriented at an angle ofπ

4
with respect to thex, the position of the pursuer is

(−3,−3) and the position of the evader is(1, 1). The payoff for both the players at
any point on the optimal trajectory is given by the variableτ since it is the time re-
quired for termination. In the figure, the payoff for an orientation of the bar is shown
on the side of the bar. The bar withτ = 0 represents the termination situation. If the
pursuer deviates from its optimal strategy then the evader has a strategy for which
it can escape around the corner in time less thanτ . If the evader deviates from its
optimal trajectory then the pursuer has a strategy for whichit can track the evader
for a time greater thanτ . This is due to the fact that the trajectories are obtained from
strategies that are in Nash equilibrium. Hence there is no motivation for either of the
players to deviate from their optimal strategies.
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Fig. 4. Optimal trajectories for a terminating situation around a corner

For a general environment in the plane, the optimal trajectories lie inR
3 × S1.

In order to depict them inR3, we need to consider a subspace of the optimal paths
terminating at a corner. In the following examples, for eachcorner in the environment
we show the subspace of the optimal paths that have a fixed distance of the pursuer
from the corner at the termination situation. The value of the speed ratio, r, is 0.66
in all the following examples. Figure 5 shows the optimal trajectories for the players
in a simple environment containing a point obstacle at the origin. The line of sight
between the pursuer and the evader is broken if it passes through the origin. The
evader wants to minimize the time required to break the line of sight and the pursuer
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Fig. 5. Optimal trajectories for an environment having a single point obstacle
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wants to maximize it. Let(xf , yf , lf , θf ) represent the orientation of the bar at the
termination situation. Figure 5(a) shows the optimal trajectories of the players for all
possible values oflf for a constant value ofxf , yf andθf . Figure 5(b) shows the
optimal trajectories for every orientation of the bar at thetermination situation. The
z axis represents the angle of the bar at the termination situation. A cross-section
parallel to thexy-plane gives the optimal trajectories of the players in a plane for a
givenθf . The red line in the middle denotes the point obstacle. The inner spiral is
formed by the optimal trajectories of the evader and the outer spiral is formed by the
optimal trajectory of the pursuer. The color of a point is a representative of the value
of the game,J(x), at that point. The value of the game increases as the color changes
from blue to red.

Figure 6(a) shows a single corner in the plane. The internal angle at the corner
is 2π

3
. Figure 6(b) shows the optimal trajectories of the players for the corner. The

symmetry in the trajectories is due to the fact that termination situations occur sym-
metrically around a corner.

Figure 7(a) shows a regular hexagon in the plane. Figure 7(b)shows the optimal
trajectories of the players for the hexagonal obstacle.

6 Conclusion and Future work

In this paper, we address a visibility based pursuit-evasion game in an environment
containing obstacles. The pursuer and the evader are holonomic having bounded
speeds. The pursuer wants to maintain visibility of the evader for maximum possible
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time and the evader wants to escape the pursuer’s sight as soon as possible. Both the
players have knowledge about each others current position.Under this information
structure, we present necessary and sufficient conditions for surveillance and escape.
We present strategies for the players that are in Nash Equilibrium. The strategies are
a function of the value of the game. Using the strategies, we construct a value func-
tion by backward integration of the adjoint equations from the termination situations
provided by the corners in the environment. From the value functions we recompute
the control strategies for the players to obtain optimal trajectories for the players
near the termination situation. We show that the optimal strategy for the players is to
move on straight lines parallel to each other in opposite directions towards a termi-
nation situation. We show a subspace of the optimal trajectories for a point obstacle,
a corner and a hexagonal obstacle in space.

In order to extend the results in this paper to environment containing multiple
obstacles, we plan to address the following issues in the future.

1. In a general environment there might be points from which the pursuer can see
the entire free space. Such environments are calledstar-shapedand the set of
points for which the property holds is called thekernelof the star-shaped envi-
ronment. If the pursuer can reach the kernel while keeping the evader in its sight
then the pursuer can see the evader forever. Hence the kernelalso provides a
termination situation where the pursuer can track the evader forever. The shape
of the kernel depends on the shape of the environment. At thismoment, we do
not have a general characterization of the shape of the kernel in the configuration
space i.e.,R3 × S1 which makes it difficult to compute the final conditions for
the adjoint variables in the adjoint equation. Hence we are unable to present the
optimal trajectories that are generated back from the termination situation posed
due to the presence of such regions.

Fig. 6. Optimal trajectories of the players for a corner in space
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2. In the previous section, we presented the optimal trajectories for the players ter-
minating at a corner in the environment. Consider a pointx in the state-space
that lies on two different optimal trajectories terminating at different corners in
the environment. Figure 8 shows such a situation. Both the figures show the op-
timal trajectories for two regular hexagonal obstacles in the environment. Figure
8(a) shows points in the space that lie on two different optimal trajectories for the
evader. Similarly, Figure 8(b) shows points in the space that lie on two different
optimal trajectories for the pursuer. Each optimal trajectory will assign a value,
J(x). In case the two value functions are different atx, we need to modify the
analysis since the value of the game atx is unique. Moreover, we also need to
ensure that∇J(x) is well defined for aregularconstruction or else we need to
look for viscositysolutions.

In the future, we plan to useviscositysolutions to propose an algorithm to con-
struct the optimal trajectories for the players in a environment containing multiple
obstacles. We also plan to extend the results to multiple pursuers chasing an evader.
We also plan to extend our work to players having non-holonomic constraints in their
motion.
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