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Abstract— We propose a planning algorithm that allows user-
supplied domain knowledge to be exploited in the synthesis of
information feedback policies for systems modeled as partially
observable Markov decision processes (POMDPs). POMDP
models, which are increasingly popular in the robotics liter-
ature, permit a planner to consider future uncertainty in both
the application of actions and sensing of observations.

With our approach, domain experts can inject specialized
knowledge into the planning process by providing a set of
local policies that are used as primitives by the planner. If the
local policies are chosen appropriately, the planner can evaluate
further into the future, even for large problems, which can
lead to better overall policies at decreased computational cost.
We use a structured approach to encode the provided domain
knowledge into the value function approximation.

We demonstrate our approach on a multi-robot fire fighting
problem, in which a team of robots cooperates to extinguish a
spreading fire, modeled as a stochastic process. The state space
for this problem is significantly larger than is typical in the
POMDP literature, and the geometry of the problem allows
for the application of an intuitive set of local policies, thus
demonstrating the effectiveness of our approach.

I. INTRODUCTION

When robotics research began to shift its focus from
the study of mechanical devices to the study of automated
robotic systems, it became apparent that uncertainty would
be a fundamental barrier to the effective operation of au-
tonomous robot systems. A number of tools have been in-
troduced to cope with uncertainty in a robot’s representation
of its own state. These include geometric methods based
on bounded uncertainties, e.g. [1], [2], and probabilistic
methods such as the Kalman filter [3] and particle filters
[4]. More recently, Bayesian methods have been combined
with computational tools for dealing with uncertainty in some
robotic applications, e.g. [5]–[11]. However, a commonly-
used general framework for planning in robotics that consid-
ers uncertainty in both motion and sensing and optimization
criteria has yet to emerge.

One of the most powerful models for stochastic pro-
cesses is the partially observable Markov decision process
(POMDP). It combines both the effects of uncertainty in pro-
cess and sensing. While providing an amenable framework
for modeling the uncertainty, the problem of finding optimal
solutions for POMDPs is intractable [12]. Though progress
has been made using randomized sampling algorithms to find
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anytime solutions for POMDPs, e.g. [13]–[17], the dimen-
sionality and size of the state space of common robotic tasks
places a huge computational burden on these algorithms.

Consider the example of 10 robots on a workspace of
a 25×25 two-dimensional grid, trying to optimize a cost
function; a problem with small size in many robotics con-
texts. If every robot can move to any of its neighboring
cells, the set of controls has 230 possibilities to evaluate.
If we have no additional way to prune this set, a naive or
brute-force approach will require checking 230 controls to
compute a 1-step optimal policy. In fact, if we sample this set
uniformly without replacement we will need 228 samples in
order to achieve only a 0.25 probability of finding the optimal
one-step action. While the problem is already expensive for
one stage, if planning is to occur over multiple stages we
must consider an exponential branching of possibilities due
to the exponentially-growing set of possible sequences of
observations. Additionally, analysis must be performed in an
expanded space of probability functions over the state space,
beliefs. Problems of even modest size that require a policy
to consider a significant horizon length in order to generate
interesting and efficient behavior are, using a POMDP model,
computationally difficult in part due to these reasons.

We propose to utilize domain knowledge about specific
problems, using the idea of a local self-stopping policies, to
restrict the set of feedback policies considered, and temporal
abstraction, using hyper-particle filtering [18], to approxi-
mate the result of using those policies. A self-stopping policy,
or option [19], is the combination of a belief-feedback policy
and a termination condition that determines when the policy
should no longer be continued. Hyper-particle filtering, par-
ticle filtering in the belief space, is used to evaluate the cost
and evolution of the POMDP using particular self-stopping
policies at a particular belief. Our method is a hierarchical
approach. We use a set of local (self-stopping) policies and
what is referred to as a terminal policy. The terminal policy
is often chosen to be the greedy policy (policy minimizing
expected cost at the next stage), but that association is not
required. Using sampling, we construct an approximation of
the value function under our limited set of policies. This
approximation of the value function is used to synthesize
what we refer to as a macro-policy, a belief-feedback policy
composed of set of self-stopping policies and switching logic
to choose between them. This creates a hybrid system [20]
with the modes of operation differing only by the policies
closing the control loop. Our method is formulated as an
anytime algorithm, whose solution from any belief can only
improve with increasing number of iterations. The main idea
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is that the combination of hyper-particle filtering and local
policies allows us to consider, instead of single controls,
sequences of controls, and explore further into the reachable
belief space.

Our method utilizes external information, in the form
of local policies, to be able to generate plans that are
forward-looking enough to solve some problems in the
robotics domain. This approach has both the advantage
and shortcoming of relying on a set of local policies. In
many cases, local policies chosen by domain experts can
provide a significant performance boost via reduction of
the search space. The role of our algorithm is to decide
when to apply different strategies known to be effective, in
some circumstances and evaluate the (stochastic) long-term
consequences of those policies. However, if the local policies
are inappropriately chosen or no knowledge of solutions is
available, our algorithm will typically not be able to deduce
effective solutions. This is due to the exact reason we are
able to attack large problems: effects of local policies are
evaluated over long sequences and we do not attempt to
determine optimal sequences of single controls or to explore
the space in small increments.

To demonstrate our approach applied to a problem in the
robotics domain, we consider the multi-robot task of a set
of robots on a grid workspace. Their goal is to coordinate to
manipulate a stochastic process inspired by the spread of a
fire evolving on the robots’ workspace. With this example,
we hope to elucidate our method, show how it is applied,
and demonstrate the feasibility of its use for planning for
some problems in robotics.

In the following section, we briefly describe the canonical
finite state, discrete time POMDP model. After pointing to
research relevant to our work, we explicitly describe our
algorithm and discuss sampling methods. Next, we introduce
the fire fighting example and use it to demonstrate the
efficacy of our approach. Finally, we discuss our method
and summarize our current ideas on the future directions of
our research.

II. POMDP MODEL

In this section, we briefly describe the POMDP model.
For a more thorough discussion see [21] or [22]. A POMDP
is defined by three sets and two mappings over those sets.
A state space X is the set of underlying but unobserved
states x ∈ X . A set of control actions U contains the
externally controlled inputs that can be applied to the system.
The set of observations Y contains the possible signals
that can be observed externally to the system. A process
model f : X × U × N → X drives the evolution of the
system in the state space. A sensor or observation model
h : X×U×M→ Y determines the sequence of observations
that arrive externally to the system. The sets N and M are
sets of possible valuations of noise that may enter the process
and observation models. We consider a discrete-time, finite
POMDP, i.e. X , U , and Y having finite cardinality and the
process evolving over discrete stages.

The sequence of states is an MDP and is characterized by
the transition function xk+1 = f(xk, uk, nk) where uk ∈ U ,
k is the stage number, and nk is a random variable drawn
from the distribution Γnk

, a noise distribution that models
uncertainty in the process. Based on the characteristics of
Γnk

and the function f , this induces a probability mass
function over the random variable Xk+1 ∈ X . The quantity

puxi|xj = PΓnk

[
f(xk, uk, nk) = xi|xk = xj , uk = u

]
(1)

is called a transition probability. Observations of the process
are driven by an observation function yk = h(xk, uk,mk)
where the random variable mk ∼ Γmk

models the uncer-
tainty in measurement of the state. We define observation
probabilities with respect to h and Γmk

. The quantity

puyi|xj = PΓmk

[
h(xk, uk,mk) = yi|xk = xj , uk = u

]
(2)

is called an observation probability. We consider time-
invariant processes, e.g. those where the noise distributions
do not change as a function of stage.

The information vector I is the set of all certain knowl-
edge regarding the state, available to the controller, i.e. I =
{µ0, u1, y1, · · · , uk, yk} where µ0 is the initial probability
distribution on X . A belief is a probability mass function
over X conditioned on the information vector. The set B(X )
is referred to as the belief space and is the set of probability
distributions over the state space. Every b ∈ B(X ) for a finite
state system is a column vector where the ith component is
the probability of being in the state xi (the ith state) given
the current information vector.

The transition probability function T f (u) is an |X | × |X |
matrix that, given a particular u, updates the belief according
to the model associated with applying the process model.
Each entry is the probability of transitioning from the ith

state to the jth state, i.e. tfij(u) = puxi|xj .The belief vector
b represents a prior so the expression T f (u)b is simply a
Bayesian prediction. The observation probability function
Th(y, u) performs the same task with respect to a new
observation. The matrix Th(y, u) is an |X | × |X | diagonal
matrix. Each entry on the diagonal is thii(y, u) = puy|xi . If we
define the vector e to be a row vector of length |X | where
every entry is one, then the probability of the observation
y at stage k under the distribution bk is eTh(y, u)T f (u)bk.
To ensure, that bk+1 is a probability distribution, we must
normalize by this quantity, which is often denoted by η. This
is direct application of Bayes’ Rule. The transition function
from stage to stage in the belief space, the belief process, is

bk+1 =
Th(y, u)T f (u)

eTh(y, u)T f (u)bk
bk = ηkT

h(y, u)T f (u)bk (3)

where y ∈ Y and u ∈ U . This function is referred to as the
belief transition function.

The true complexity of a POMDP is not clear from just
|X | alone. The sparsity of support on X of the beliefs in
the reachable belief space, the uncertainty present in the
observation and process models, the cardinality of Y and
U , the size of the reachable belief space, and the shortest
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horizon length to compute an optimal solution are all factors
in the amount of computation required to find optimal or
nearly-optimal control policies that minimize a cost criterion.

Our goal is to evaluate the behavior of the system under
various policies φ1 : B(X ) × T → U where T is a set
of stages measuring the length of time φ has been used.
We use a cost metric that evaluates the effectiveness of φ
probabilistically, based on the cost of possible trajectories
and the likelihood of them occurring while using φ. Although
different formulations of cost metrics are available, we use
an infinite-horizon total cost criterion with retirement option.
Thus, the cost is

Jφ(b0) = EΓm1×···×ΓmT

[
T∑
k=1

cb(φ(bk−1))′bk + c′bT bT |b0

]
where cb and cbT are column vectors whose entries are
running and terminal costs, respectively, paid as a result
for residing in the states corresponding with the entries of
b. The policy is given the option at every stage to “retire”
and T denotes the dynamically chosen retirement stage. The
quantity c′bT bT is the cost paid to retire at stage T with the
current belief of the system.

III. RELATED WORK

A number of researchers have investigated POMDP meth-
ods. In [24], it was shown that the optimal value function
is piecewise-linear and convex and, for any finite horizon,
one could construct the optimal value function exactly by
considering only a finite number of points. An exact algo-
rithm was given, but the process is too expensive to consider
for POMDPs where the dimension of the belief space grows
large. The intractability of computing exact solutions was
expressed explicitly in [12]. Recently, progress has been
made using methods that employ randomized sampling in
the reachable belief space and perform standard Value It-
eration on the approximated set of beliefs. Some of these
methods are MC-POMDP [13], HSVI2 [14], PBVI [15],
SARSOP [16], and PERSEUS [17]. Another approach for
approximating the value function in the belief space is to
use compression methods, e.g. [25]–[27].

Some approaches for MDP’s such as [28] and [19], like
roadmap methods, are hierarchical. Semi-Markov decision
processes, [19] use macro-actions or options, feedback or
open-loop policies that persist until a termination condition
met, to temporally abstract the problem to reduce the num-
ber of controls considered. We perform a similar temporal
abstraction, but consider the POMDP case and use hyper-
particle techniques to analyze the result of the abstracted
controls. Moreover, we use sampling of a parameterized
set of macro-policies for multiple agents. Other hierarchical
POMDP methods have been explored in the literature. Plan-
ning with a pre-defined hierarchy of tasks has been explored
in [29] and [30]. Other methods, such as [31]–[33] attempt
to discover a hierarchy of tasks to use for planning. Our use

1In the POMDP literature, policies are also denoted by π or γ.

of the term hierarchical refers to the method we use for plan-
ning, not the structure of the POMDP model. Finally, other
methods use sampling to select target locations and construct
a graph between these targets. Such methods include the
Belief Roadmap [34], the Stochastic Motion Roadmap [35],
and Sampling Hyperbelief Optimization Technique [36].

The previously mentioned methods typically address
POMDPs representing a single agent or decision maker.
Multi-agent, decentralized POMDPs (DEC-POMDPs) have
been considered recently by a number of investigators, e.g.
[37] and [38]. Our work considers multiple agents but
decision making is not completely decentralized.

Often when proposing a new POMDP algorithm, inves-
tigators test their algorithms against other algorithms in
the literature using benchmark problems specifically de-
signed for POMDPs, e.g. Rock Sample, Hallway, Hallway2,
Tag, Tiger-Grid, Fourth Floor, Homecare. Descriptions of
these problems can be found in [13]–[17]. These existing
benchmark problems are not well suited for evaluating our
approach. The core idea of our algorithm is to exploit domain
knowledge about problems and use statistical methods to
analyze the result of applying local policies generated from
that knowledge. Testing our method on the aforementioned
benchmark problems would require local policies with spe-
cific knowledge about the problem at hand. This would make
any comparison against other algorithms that begin with no
prior knowledge about the structure of the problem arbitrary
and frivolous. Furthermore, the greatest strength of this
method is that it allows us to consider problems that require
solutions whose controls at the current stage are chosen with
respect to consequences many stages in the future (i.e. long
horizon). The benchmark problems do not emphasize this
criterion because the cost functions are discounted which
reduces the importance of costs of beliefs far into the future,
and thus solving those problems often do not require a long
planning horizon. Finally, we are specifically interested in
using the POMDP model for planning policies for multiple
robots manipulating stochastic systems. For these reasons,
we demonstrate our method on the type of problem for which
we envision it being employed in Section V.

IV. ALGORITHM

We iteratively approximate the value function of the
POMDP using Algorithm 1. We store a set of reached beliefs
B, that acts as an approximation of the the reachable belief
space. The algorithm samples from B and the set of local
policies, and evaluates the evolution of the POMDP using the
sampled policy at the sampled belief. Since observations are
not known at the planning stage, we represent that evolution
as a probability distribution over B(X ). New beliefs are then
added to B, and we form a graph with the elements of B
as vertices and groups of edges representing probabalistic
transitions under the sampled policy. We then optimize over
this graph to find the optimal sequence of local policies, from
the set we have explored at the current iteration, from each
belief in B.
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Define a self-stopping policy to be the tuple ψ = {φ, a}
where φ is a belief-feedback policy and a : B(X ) × T →
{0, 1}. The function a is the stopping condition and returns
zero when the policy should be used for another step. Define
a macro-policy α to be a collection of self-stopping policies
with switching logic. Essentially, α : B(X )× T → U using
α(b, t) = φk(b, t) where φk is the active policy in ψk.
When ak(b) = 1 then ψk+1 is chosen using a finite state
machine whose switching logic is based on the information
available to the policy, b and t. Our goal is to find a
macro-policy that is effective in the reachable portions of
B(X ) starting from b0. Although local policies may be time
dependent, we restrict those dependencies to be relative to
the start of the policy and not the absolute stage when the
policy is used in the POMDP. In this way, we are able to
construct a stage-independent graph in the belief space while
still utilizing useful relative stage-based conditions, e.g. the
stopping condition for a local policy varies based on the
number of stages the policy has been applied consecutively.

In order to evaluate the evolution of the POMDP under
a local policy multiple stages into the future, we need to
account for probabalistic observations. The evolution of the
system into the future is a probability distribution over
B(X ), and is known as a hyperbelief. In the case of a finite
number of controls, observations, and stages, the hyperbelief
is comprised of a finite number of support points in B(X ).
Ideally, we would use the expected value function over the
set of all sequences of observations which is equivalent to
the expected value under the hyperbelief distribution. This is
somtimes feasible for a typical one-stage value backup, but
the number of sequences of observations, i.e. support points
in the hyperbelief distribution, increase exponentially with
the number of stages we are evaluating.

To approximate the true hyperbelief, we use hyper-particle
filtering [18]. Hyper-particle filtering works by using a par-
ticle filtering algorithm and at every iteration, each belief is
propagated through the probability transition function using
the control specified by the policy. Then, each of these
resulting beliefs bi is paired with a number of sampled
observations (based on Pbi [o]) and propagated through the
probability observation function. These beliefs are appropri-
ately weighted at each stage as to approximate the true pdf
over the belief space at each stage. A resample operation
is then applied to the set of beliefs. The tallied cost and
resulting hyperbelief is then returned. This operation is
referred to as HyperFilter in Algorithm 1. The set E is the
set of local policy trials and the results of those operations.
The quantities β and c refer to hyper-particles and costs,
respectively.

The beliefs added to B are the beliefs at the end of
each of hyper-particle filtered policy expansion, not every
reached belief during the expansion. We establish an initial
value (expected cost-to-go) for each of these new beliefs by
hyper-particle filtering using a pre-defined terminal policy
φterminal(b, t) : B × T → U until the retirement condition
for the system is met. A greedy policy can be used as the
terminal policy. By continuing to sample simple non-greedy

Algorithm 1: Anytime Optimization
Input: b0 - initial belief state,

Φ - set of self-stopping policies,
φterminal - terminal policy

Output: data structure containing αout

cterminal(b0) =HyperFilter(b0, φterminal)
B = {b0}
E = ∅
for i = 1 : anytime do

bi = SampleBelief(B)
ψi = SamplePolicy(Ψ, bi)
(βi, c(bi, ψi)) = HyperFilter(bi, ψi)
foreach br ∈ βi do

if ρ(br, bs) < ε for any bs ∈ B then
br = bs

else
cterminal(br) = HyperFilter(br, φterminal)
B = B ∪ {br}

E = E ∪ {(bi, βi, ψi, c(bi, ψi)}
OptimizeGraph(B,E)

policies and using Value Iteration on the resulting graph, we
typically are able to improve the value of the initial belief
state using a composite policy generated from the graph and
value function over the graph. Essentially, we start with a
terminal policy and modify it incrementally to improve the
quality of the policy.

The OptimizeGraph operation is a generic graph optimiza-
tion. Its main purpose is to determine the optimal policy and
cost to go from every b ∈ B, with respect to the transition
edges in E and starting with a (terminal) cost of cterminal(b).
One possible implementation is standard Value Iteration but,
in some cases, more efficient graph search algorithms, e.g.
Dijkstra’s Algorithm [39], can be used as a substitute.

The SamplePolicy operation is problem dependent and
will always depend on the local policies chosen, and the
reasons for which they were chosen. The most naive im-
plementation is a uniform sampling of a finite cardinality Ψ,
the set of all possibilities available to the sampling algorithm.
However, because the number of policies will typically be
prohibitively large or infinite, this scheme will usually not
be desirable or effective. In the same way that policies are
chosen to encode domain knowledge about the problem,
allocating resources to attempt application of policies ap-
propriately is also problem dependent. The SampleBelief
operation is extremely important and future work will need
to focus on improvement of this aspect. We have tested
two sampling methods that appear to show promise, but
improving this component of our algorithm is an ongoing
area of investigation.

The first method assigns a quantity ξ to each belief in
B. The initial b0 has ξ(b0) = 1 and every other belief that
is added subsequently is assigned ξ(b) = 0. Every time a
policy expansion occurs from bi and a resulting hyperbelief
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βk has some probability reaching bk, we increase the ξ(bk)
by the quantity Pβk

[
bk
]
· ξ(bi). A belief bi is then sampled

from B with probability proportional to ξ(bi). The main idea
behind this method is to provide a heuristic that roughly
approximates (and upper bounds) the likelihood of reaching
a given belief. Beliefs with a smaller likelihood of being
reached will contribute less to the overall expected cost of
the starting state, and should be sampled less frequently.

The second method samples based on exploring the graph
of beliefs and policies. Let bs be the belief we are currently
considering as a sample, initially set to be b0. With prob-
ability κ, choose to sample bs. Otherwise, with probability
(1−κ) choose to sample one of the policies expanded from
bs. (If no local policies have been explored at bs, choose it
with probability one.) Of the set of policies, choose one with
probability proportional to the inverse of the expected value
of using that policy, i.e. bias toward smaller valued policies.
Let βs+1 denote the resulting hyperbelief associated with
the applying that policy at bs. Sample bs+1 with probability
Pβs+1 [bs+1]. This sampling method has the property of
exploring sequences of policies more frequently that have
already been shown to produce a lower value relative to other
sequences of policies.

In limited testing, neither method appears to be strictly
superior to the other. However, detailed comparison has not
been completed at this time.

The distance function ρ can be any metric, although
L1 is often appropriate. In many cases, a problem-specific
distance function will be employed to take advantages of
insensitivity in the cost function and transition functions
to beliefs separated by small distance for that particular
POMDP.

This algorithm produces a data structure {B,E, V } that
can be used as a macro-policy for the system. To utilize the
macro-policy to control the system modeled by the POMDP,
choose the closest b ∈ B to the current belief of the system’s
state. Apply the local policy specified by the optimal edge in
E starting from b. Once the local policy’s stopping condition
is met, repeat the same procedure. If the edge specifies
the terminal policy as the optimal local policy, the terminal
policy should be used until the retirement condition for the
system is met.

V. RESULTS

In this section, we present a POMDP problem we have for-
mulated and then demonstrate our algorithm’s effectiveness.
The target application for this method is planning policies for
a group of robots attempting to control a random process.
We tested our algorithm on a multi-robot task on a grid
workspace. The robots’ goal is to coordinate to manipulate
a stochastic process inspired by the spread of a fire evolving
on the robots’ workspace. The robots will attempt to contain
and extinguish the fire. We first describe the formulation of
the problem at a high level and then present the results of
application of our algorithm to this POMDP.

A. The Fire Problem

1) System Model: We model the workspace as an M1 ×
M2 grid and place N robots on the grid. Thus, a state x ∈ X
specifies, for every cell, whether it is on fire and, for every
robot, the grid cell in which it resides. This implies the
number of states in the X and the dimension of B(X ) is
2(M1·M2) ·N(M1 ·M2)− 1. For example, in the case of 10
robots on a 25×25 grid there are approximately 8.7×10191

states. We model the robots acting deterministically, but
each robot has a limited range of view so, even when
sensor readings are combined, the state of the fire typically
remains only partially observed. To discuss the problem
in a concise manner, we introduce a number of operators
to extract specific information from a state. The indicator
function cij(x) specifies if grid cell at (i, j) is on fire for
state x. The operator rn(xk) returns the location of robot n
in the grid. We define Rij(x) to be the indicator function that
returns one if only if rn(x) = (i, j) for some 1 ≤ n ≤ N .

Each robot is allowed to move according to the equation
rn(xk+1) = rn(xk) + unk where unk contains the vectors
that allow movement to the eight-point connected cells on
the grid. The fire process spreads probabilistically. If a cell
catches fire, it will remain on fire until it is extinguished by
a robot. Robots extinguish fires on their current cell with
probability one. If a cell is not on fire, it may catch fire
with probability related to fire in the four-point connected
adjacent grid cells. Specifically,

PΓnk

[
cij(xk+1) = 1|Rij(xk) = 1

]
= 0

PΓnk

[
cij(xk+1) = 1|Rij(xk) = 0, cij(xk) = 1

]
= 1

PΓnk

[
cij(xk+1) = 1|Rij(xk) = 0, cij(xk) = 0

]
=∑

(a,b)∈G

[
s(a, b, i, j)cab(xk)

]
where G is the four-point connected neighborhood around
cell (i, j). The function s maps two grid locations to [0, 1

4 ]
and encodes the rate of spread between neighboring cells.
Using the total law of probability we can derive the proba-
bility that a cell will be on fire at the next stage, given the
state value of the current stage. Combining these probabilities
for all grid cells and the movements of the robots allows us
to form the probability transition probabilities puxi|xj and the
probability transition function T f (u) for this problem.

Observations of the system come in the form of a value
for each grid cell, y = [{yij} for all (i, j)]. Each robot can
see, deterministically, a limited distance oc around itself. An
observation is then the union over all (i, j) of the randomized
operator

yij(xk) =


cij(xk) if ||(i, j)− (i′, j′)||∞ < oc

for any (i′, j′) s.t. Ri
′j′(xk) = 1

1 otherwise w.p. 1
2

0 otherwise w.p. 1
2

The observation space is also large, i.e. on the order of
2(o2c−1)N .
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(a) b0 for Experiment 1 (b) b0 for Experiment 2 (c) b0 for Experiment 3 (d) b0 for Experiment 4 (e) b0 for Experiment 5

Fig. 1. Initial Belief States for Experiments

2) Cost Function: Qualitatively, we want the robots to
exhibit two behaviors that achieve two tasks. The robots
should, if possible, completely extinguish the fire. Second,
the robots should protect more valuable regions of the grid
while completing the first task (or focus solely on this
goal in the case where the first task cannot be completed).
Quantitatively, we express this with respect to the state
process as

JX (x0) =

 T∑
k=1

∑
(i,j)

aij1 c
ij(xk)

+ cT (xT ) (4)

where the constants aij1 weight the cost of the grid cell being
on fire. The terminal penalty is cT (x) = 0 for all x ∈ X
such that cij(x) = 0 for all (i, j). It is chosen to be a
large number in all other x, states where fire has not been
extinguished. For the case of the simulations presented in
this paper cT (x) = (M1 ×M2)/(1 − γ) with γ = 0.99999
for all x where fire remains. Since the quantities cij(xk) are
unknown, we optimize the expected value of (4) which is
J(b0) = EΓSP [JX (x0)|b0] where ΓSP = Γn1×Γm1×· · ·×
ΓnT
× ΓmT

.
3) Belief Representation: We cannot work with the full

belief vector as typically its dimension will be too large (the
size of the state space), and the support of the belief vector
grows exponentially (but occasionally can be reduced by
observations and controls). Each state in the belief represents
a set of cells that are on fire in the workspace. Thus, we use
a particle filtering approximation [4] to contain the growth
of the support of our belief vector, while still maintaining
a representative set of samples. The only modifications to
the standard particle filtering algorithm is to take multiple
samples from the process model in the transition probability
phase and sample without replacement. We can still compute
the probability that a cell is on fire given a weighted set of
possible states. The operator

cij(b) =
∑
x∈X

cij(x)b(x)

maps a belief to [0,1] and corresponds to the marginalized
probability for cell (i, j) under b where b(x) is the weight
on state x in the belief vector. This also becomes an approx-
imation with our particle filtered representation. We will use
this set of marginalized probabilities to both construct our
policies and evaluate (4).

4) Policies: The policies we have chosen are designed to
be nearly decentralized, i.e. each robot acts with minimal
need to check the controls of other robots, and are simple
to compute. However, policy sampling operations such as
choosing targets for robots are designed to create high level
cooperation between robots when a new policy is applied,
e.g. coordinating which robots will attack different portions
of the fire.

For brevity, we will not give explicit algorithmic specifi-
cation of our policies, but instead describe them at a high
level. We include parameterized policies that direct robots
to target regions in the space. Those targets are sampled in
a number of different ways, e.g. on the perimeter of the
fire or areas of large scaled cost on the grid. Other policies
direct robots to the nearest grid cell where there is a nonzero
probability of fire, instruct robots to stay in place unless the
are able to attack fire in the immediate vicinity, move the
robots around the perimeter of the fire, and attempt to cluster
the robots at various targets in the space. The terminal policy
uses a brushfire expansion [40] on the workspace grid that
is computed to grow the potential function away from cells
with nonzero probability of fire. Robots follow this gradient
to find and extinguish fire. Note that the terminal policy we
used is not the typical greedy policy with respect to the
cost function. This is because when no robot is directly
adjacent to a cell containing fire, there is no gradient in
the cost function with respect to the set of controls. This
prevents the robots from making progress at a large number
of belief states and severely limits the usefulness of the
policy. However, our terminal policy is equivalent to the
greedy policy at all places where the greedy policy has a
gradient in cost. The retirement condition for the system
occurs when we are applying the terminal policy and (i) the
probability of fire in all cells is zero for the current belief
or (ii) the sum of the expected value of fire in every cell
exceeds kt ·M1 ·M2. Typically kt is chosen to be in [ 3

4 ,
9
10 ],

depending on the size of the grid and the number of robots.

B. Experimental Results

To demonstrate the method, we chose four initial condi-
tions where M1 = M2 = 25, N = 14 (Experiments 1-4) and
one where M1 = M2 = 100, N = 70 (Experiment 5). The
initial conditions are shown in Figure 1. In these figures,
the intensity of the red values in the table represent the
probability of fire with red corresponding to probability one.
A lighter red corresponds to lower probability values, but
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(a) Result of single long run (b) Averaged result over all trials of Experiments 1, 3 and 4

Fig. 2. Plots of V (b0) vs. Iteration

for visualization purposes the probability is scaled between
intensity of one half and one instead of zero and one. A black
cell indicates the cell contains at least one robot. A white
cell indicates zero probability of fire and no robot is present.
The transition probabilities for fire from cell to cell were
uniform throughout the workspace, i.e. s(i, j, a, b) constant
for all (i, j), (a, b).

We ran a number of trials on each experiment setup
and the results of Experiments 1-4 are reported in Table I.
Unfortunately, finding a lower bound on cost by computing
the value for the fully-observed, MDP version of the problem
is prohibitively expensive. Thus, we use the expected cost
with a greedy policy as a baseline for comparison. Plots
of the average expected cost versus number of iterations,
averaged over all trials, for Experiments 1, 3, and 4 are
shown in Figure 2 (b). In Figure 2 (a) we show the expected
cost versus the number of iterations for a single trial with an
extended number of iterations. The tests were conducted on
workstation class computers.

The experiments demonstrate a significant reduction in
expected cost from the greedy policy in each of the ex-
periments. Moreover, the starting condition for each of the
experiments vary greatly and the observed convergence of
the value suggests the method performs as desired. The
resulting policies often represent behavior that may be
counter-intuitive. For instance, in Experiment 2 the robots
start beneath the fire in the right-hand corner. The initial
greedy policy attacks the fire by moving directly towards
the fire, from the bottom. However, a plan is found that
manages to extinguish the fire with a significantly lower
cost. The robots are able to achieve this reduction in cost
by first circling above the fire on the top and right, and then
“pushing” the fire down and into the bottom. This type of
behavior requires controls be determined by looking forward
a significant number of stages into the future.

Even though the example in the first four experiments
represent systems that require significant foresight in the

TABLE I
CUMULATIVE RESULTS OF EXPERIMENTS 1-4

Experiment 1 2 3 4
Number Trials 10 6 10 10

Number Iterations 200 50 200 200
Avg. Greedy Cost 782,870.8 56,151.1 427,015.0 484,236.9

Avg. Final Cost 18,860.5 34,066.5 164,694.0 52,459.5
Std. Dev. Final Cost 8,370.4 10,918.7 8,500.1 13,071.4
Avg. Time/Iteration2 565.2 (s) 514.8 (s) 213.1 (s) 391.9 (s)

planning algorithm, we also ran an experiment on an example
with a 100×100 grid. In this problem, we increased not only
the size of the workspace, but also significantly increased
the number of robots, size of observation space, and initial
amount of fire present in the workspace. For a single trial,
over 30 iterations, we noticed a decrease from the greedy
policy value of 2.60×107 to 1.70×107. The average time per
iteration was 1774.5 (s), but note that this figure is averaged
over a small number of iterations and should be only taken
as a relative indication of the computational requirements of
scaling the problem up.

VI. DISCUSSION
We have proposed and demonstrated a new algorithm for

finding belief-feedback policies for robotic tasks modeled
as POMDPs. We use a hierarchical approach to utilize a
set of local belief-feedback policies and combine them to
synthesize a hybrid policy to reduce the expected cost from
an initial belief. We established the utility of our approach
by providing results generated by applying our algorithm
to a POMDP problem formulated to test the applicability
of this algorithm to multiple robots manipulating stochastic
systems. Although we have demonstrated performance gains
experimentally, our next step will be to perform an analysis
of the theoretical performance of the proposed method.

We additionally hope to improve this algorithm on several
fronts. In Section IV, we discussed two sampling methods for

2Only trials computed on identical hardware used.
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B. However, we have not performed a detailed comparison
of these or explored alternative sampling algorithms. Careful
analysis of sampling methods could potentially provide a
huge improvement in the performance of this algorithm,
as they are a major factor in guiding the exploration and
expansion of the reached belief space.

Our algorithm largely depends on the local policies and
policy sampling methods developed for specific POMDP
problems from domain knowledge. It will be important to
understand the relationship between these policies, how to
measure the utility of the local policies, and how to choose
local policies for the purpose of maximizing the power
and usefulness in the context of our algorithm. Hopefully,
this will not only lead to an understanding of how a user
should design local policies, but also insight into the expected
number of iterations before the returns of the algorithm
diminish. This could lead to a decision rule regarding how
long should be spent planning and when action should be
taken, in situations where planning occurs online but cannot
be computed in real time. Since generating plans for large
POMDPs often takes considerable time, this could be useful
to analyze the tradeoff being made when waiting to act as
planning continues.
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