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Detecting Intrusion Faults in Remotely Controlled Systems

Salvatore Candido and Seth Hutchinson

Abstract—1In this paper, we propose a method to detect an
unauthorized control signal being sent to a remote-controlled
system (deemed an “intrusion fault” or “intrusion”) despite
attempts to conceal the intrusion. We propose adding a random
perturbation to the control signal and using signal detection
techniques to determine the presence of that signal in observa-
tions of the system. Detection of these perturbations indicates
that an authorized or ‘“‘trusted” operator is in control of the
system. We analyze a worst case scenario (in terms of detection
of the intrusion), discuss construction of signal detectors, and
demonstrate our method through a simple example of a point
robot with dynamics.

I. INTRODUCTION

Recently, there has been increased interest in networked
control systems. While the possibility of controlling systems
over established wireless, shared, or public networks has
many benefits, it also requires that security join established
performance characteristics such as performance, reliability,
and efficiency during the design process. With this in mind,
researchers have begun to address security issues specific to
control systems, e.g. [1], [2], and have continued to develop
control schemes to identify malfunctioning or malicious
systems components, e.g. [3], [4], [5].

Typically protection of communication between an op-
erator and a remote control system involves cryptography.
Whether using encryption, message signing, or authentica-
tion, protection from a unauthorized user, an intruder, relies
on a secret key unknown to intruders [6], [7]. If an intruder
finds away to disrupt the communication channel and route
an alternate control signal to replace the operator’s signal,
it is possible that the loss of control may go undetected for
some length of time. If the intruder’s goal is to conceal the
intrusion and the operator’s nominal control input is known
or can be deduced in advance, the intruder can mimic that
control input and the operator will be oblivious to intrusion.
This could be desirable because the intruder may want to
take control of the system as soon as possible, to ensure that
the intrusion will be successful, but not utilize that control
until a time when the operator has no recourse to stop the
intruder’s malicious actions.

If alerted quickly enough, the operator could possibly
take action to preempt the malicious action of the intruder.
However, typically no mechanism is in place to detect loss
of control if the intruder is content to wait patiently for
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the opportune moment to act. Our goal is to automate the
detection of such an intrusion.

To this end, we propose an augmentation to typical secu-
rity systems that uses the constant observations of the system
which are already present in many control applications. We
propose to send a randomized secret signal through the
control system, which will allow the operator to authenticate
that his signal is reaching and controlling the system. Chosen
properly, small perturbations in the system’s input should
produce subtle, yet detectable fluctuations in observations
of the system. Since this signal is randomized, the intruder
cannot replicate it from a priori knowledge. Thus, if it is
detected during observation of the system, it provides good
evidence that the operator’s control signal is, in fact, driving
the remote system. If these fluctuations cannot be found in
the output, the operator is made aware that the system may
be compromised and can begin taking measures to assure or
regain control.

It is important to emphasize that our proposed method is
intended to add an additional failsafe to an already secured
system, not stand alone as a security scheme. It is meant
for cases where the intruder is able to prevent the operator’s
control signal from reaching the plant and replace it with
another signal. It is not meant for situations where the
intruder is able to gain control of the the computer on board
the remote system. The type of attacks we consider, while
not comprehensive, are increasingly important because of the
escalating amount of control communication being relayed
over networks with intermediate routing points that may
vulnerable to or owned by an intruder.

Our approach to this problem is, to the knowledge of the
authors, novel but the mathematical tools used to implement
the solution are similar to those used in a filtering based
approach to active fault detection [8]. In active fault detection
[9], [10], [11], [12], [13] and active parameter detection
approaches [14], [15], a control signal is designed for the
purpose of driving the system in such a way as to allow
the operator to decide, based on output, which of a set of
possible models best describes the system. In our case, the
control input is chosen to be random so the intruder cannot
reproduce it. We, therefore, design an optimal decision rule
that decides if the sequence of observations is best explained
by the random signal being present or not.

There is a significant conceptual resemblance between our
approach and digital watermarking (e.g. [16]). We wish to
embed a hidden signal in a sequence of observations of our
system and detect its presence to verify the control signal
being sent to the system is legitimate. However, there are
a number of significant differences between this and the
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System
= f(z,u) +w
y = h(z,u) +v

Fig. 1.

Remote control system block diagram.

canonical watermarking problem. For example, the output
of the system, the signal to be watermarked, is not known
when the auxiliary signal is applied and there are no concerns
about an intruder intentionally removing the watermark.

While enhancing the security of the system, this method
has the downside of adding additional random noise to the
system dynamics. However, in some cases, small perturba-
tions in some system components can be negligible in the
performance of the overall system. For example, a convoy of
trucks moving hazardous materials could slightly vary their
nominal speed or position within a lane of a road. Both of
these quantities can easily be monitored externally from an
observer watching the convoy from above. Candidate systems
to employ this method should have stable basins of attraction
around their nominal trajectory, be observed in a manner
that cannot easily be compromised, and not attenuate high
frequency signal components beyond detection.

The contribution of this paper is to propose a new method
for verifying control signals sent over a link between an
operator and control system by detecting when that link is
compromised. We consider different types of systems and
give conditions under which we can use an efficient, recur-
sive decision rule. In cases where we can not, we discuss the
theoretical difficulties and where numerical algorithms may
be sufficient. We then present an example of our method
on a simple hypothetical system. Finally, we discuss some
shortcomings of our method and a number of questions that
will need to be answered beyond our exploratory analysis.

II. GENERAL SYSTEMS

Consider the block diagram in Figure 1. We model remote
systems using stochastic, nonlinear differential equations of
the form

i(t) =
y(t) =

where w(t) and v(t) are random vectors corresponding to
noise in the state and output models, respectively. The vector
x(t) is the state of the system, f(-) is the system equation
which encodes system dynamics, and h(-) is the output
equation. The control u(t) is the input to the remote system
and y(t) is the observation.

This remote system is controlled over a communication
channel and the desired control signal is (). A signal 5(¢) is
randomly generated and added to 7(¢) by the trusted operator
and then sent to the remote system. This signal is the main

f (), ut)) + w(t) (1
h(x(t), u(t) + v(t) 2

addition to the standard remote-controlled system model and
the core idea is to detect intrusions by noting the absence of
its effects in the observation of the system’s dynamics. Since
3(t) is generated as needed, it is unknown to all parties except
the trusted operator who records it as it is sent. This means
that detection of this signal in observations of the system
provides good evidence that the control signal sent over the
channel has not been compromised by an intruder.

We model the signal received by the remote system as
u(t) = r(t) + s(t) + m(t) where m(t) is a random vector
corresponding to channel noise. We use the notation s(t)
to indicate the part of the signal received by the remote
system. This signal will be different depending on whether
the control signal originates from the trusted operator or an
intruder. The signal s(¢) can either equal 5(t), if the trusted
operator’s signal reaches the control system, or some other
value, if an intruder has connected to the control system.
In our analysis, we consider the case where the intruder
sends s(t) = 0 to minimize the difference between the
u(t) with and without 3(¢). The operator observes z(t) =
y(t) + n(t) where n(t) is also a random vector and again
corresponds to noise inherent in retrieving an observation
over a communication channel.

Several conditions, consistent with the goals of this
method, must be met for this scheme to be practical. First,
the operator’s observations of the system should be taken
externally to the system. This is important because if the
observations are sent over the same communication channel
that is controlled by the intruder, the operator’s information
state could be manipulated. Secondly, we assume the intruder
cannot simply switch control between the operator and
himself instantaneously. This assumption is reasonable as
this method should be used in conjunction with other security
measures that will be nontrivial for the intruder to break. If
an intruder can break the security instantly and at will, then
the motivation to conceal an intrusion is removed. Finally,
the intruder must not be able to read the control signal being
sent in real time, and consequently learn §(¢) in real time.
Although the intruder may have prior knowledge of r(t), if
he can simply detect 5(¢) as it is being transmitted he may be
able to use that information to deceive the trusted operator.
This condition can often be guaranteed by use of a provably
secure encryption protocol [6] for securing the operator’s
control signal before transmission over the channel. In this
case, even if the intruder was able to obtain the encrypted
version of the control signal, he could not extract the contents
in real time. Some protocols commonly used to encrypt data
for transmission over an insecure network are RSA [17] and
AES [18].

In this problem, we propose a strategy to detect an intruder
attempting to conceal an intrusion by mimicking the control
strategy of the operator. Thus, the worst-case scenario will
be an intruder who knows the operator’s nominal reference
control signal (without s(t)) exactly and also the probability
distribution from which s(t) is drawn. We consider the case
where the intruder sends s(¢) = 0 because it is the MMSE
estimator for an intruder trying to predict §(¢). By comparing
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predicted observations with and without random perturbation
to actual observations of the system, the trusted operator can
determine if the random perturbations added to the signal
are influencing the control system. Unfortunately, due to the
stochastic nature of the system, this determination cannot be
made with complete certainty in the general case. This is
then a signal detection problem [19] with the signal being
sent over an unorthodox transmission channel.

In this paper, we consider the discrete problem in which
observations of the system are given by the sequence {z(¢)}.
We will also treat {u;}, {r:}, and {3;} as discrete se-
quences.We will use the notation z;.; to denote a history
of the signal z; between (and including) samples ¢ and j,
i.e. z;; denotes {z;, zit1, -+, 2}

The determination of whether s, is present in u; is made
based the observations of z; by the trusted operator. We
frame our decision as a hypothesis testing problem. After
observing a sequence of N samples of the output, the
problem is to decide between two possible hypotheses of
the transmitted signal:

1) Hy: s1.xy = S1.n, lLe. the trusted operator’s control
signal is received
2) Hi: s1.y =0, i.e. an intruder’s signal is received

The decision is based on our observed output samples over
that interval z;.n. If we can say with certainty that s; is
affecting the system dynamics over a long enough time
span, this provides good evidence that the trusted operator
is controlling the system as no other party has a priori
knowledge of 5, and the likelihood of an intruder replicating
it from only knowledge of the distribution of 5; goes to zero
as the number of samples increase.

There are two main issues to be overcome to implement
this framework. First, we must choose a decision rule that,
given S1., decides the hypothesis in a way that minimizes
the probability of error. Secondly, in order to decide between
these two hypotheses, we will need to compute the dis-
tributions Py, . |m,(21:8|Ho) and Pz, g, (21:5|H1), the
probability density functions of Z1.n under both hypotheses.
Thus, we must build a data representation that parametrizes
or computes the pdf’s. In cases where one cannot easily com-
pute the distributions, an approximation may be sufficient.

The decision rule will separate all sample histories 2.y
into two classes, Z C RY and Z¢ = RV\Z. Based on
the boundary of the decision set Z, a decision rule can
be defined, § : RV — {0,1}. We accept hypothesis Hs
based on z;.. The decision rule and Z have the following
relationship

1 Z1.N € Z
0(z1n) = { 0 anezC

In Sections II-A and II-B we show decision rules assuming
we have an a priori distribution on the probability of intrusion
and, for the case where we do not have this information,
assuming the worst case.

3)

A. A Priori Knowledge of Probability of Intrusion

In some cases, it is feasible to estimate the frequency
of attack on the system. Assuming that we can estimate
the probability of intrusion, we design a decision rule that
minimizes p, the probability of erroneous decision. Let 7
denote the probability that s; = 5, i.e. the trusted operator is
in control of the system. With probability 1 — 7, an intruder
will control the system. To determine the optimal Z with
respect to p., we minimize

min p,(Z,7) =min {(1 —7'(')/ Pz x| H (| Hy)dz (4)
Z zZ ZC :
+7T/pZ1:N\H0(‘r‘HO)dx
z

:(1—7T)+mzin/ (P21 510 (x| Ho)  (5)
z

- (1 - ﬂ-)pZI:NlHl (l‘|H1)) dx

Since 7, pz,.x|#,(x|H;) >0, p. is minimized by choosing
Z to be the set of locations where the integrand in (5) is
negative. Thus,

Z={xec RYN . T2y Ho (@ Ho) < (1= 7)pz, 1, (x| H1) }
and the optimal decision rule is to accept H; if

Pzn|H, (2N |Ho) 1 —m
Pzy.n|Hy (zl?NlHl) oo

(6)

is satisfied. The probability of error p. under this decision
rule can be expressed as

pe= [ min {7z, gy ol o), (1= )z, o, (ol i)

(N
although, in general, this quantity may be expensive or
impossible to compute exactly.

If z; is independent of z, for all ¢ # s, then the likelihood
of any sequence zj.y is just the product of the likelihoods
of the elements of the sequence. In this case, we can factor
the likelihood ratio and the decision rule will be to accept

H, if

N Pz |H, (2i|Ho) 1—7

II < )
=% Lpz i, (2 Hy) m

This expression is, in general, computationally feasible,
while (6) may be difficult or impossible to compute. If the
likelihood ratio can be factored then the likelihood ratio for
t = N+1 can be computed by multiplying the single sample
likelihood at t = N+1 by the likelihood ratio for ¢ = N. The
optimality condition in (4) can also be modified to weight
the cost of the total probability of a false positive and false
negative with respect to one another. However, the quantity
minimized would no longer be the probability of error.

B. No Prior Knowledge of Probability of Intrusion

In cases where it is not feasible to estimate a probability
of attack, the method of the previous section may not be
a practical solution. If we cannot determine 7 a priori and
prefer not to treat it as an arbitrary scaling of the decision
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Channel
Tir1 = Arxy + Bruy + wy
zt = Crxy + Dyug + vy

Fig. 2. Remote controlled stochastic, linear system

rule, we may choose to implement the minimax decision rule.
The cost function is minz max, p.(Z, ).

pe(Z,7) = {77 </ZpZ1’N|HO($)dx_LC pZLNHl(x)da?)
+ /z cpzlzmHl(x)d”f} ©)

Let Z*(m) be the optimal Z (minimizes p.) given in the pre-
vious section for a fixed 7. The function max p.(Z*(x), 7)

over 7 € [0,1] is continuous and concave [19]. From (9) we
can see that p.(Z, ) is linear in 7 given Z so, unless Z is
chosen so that p.(Z, ) is independent of the choice 7, the
7 that maximizes p.(Z, ) will be either zero or one. At the
boundaries of the interval, p.(Z*(0),0) = p.(£*(1),1) =0
so the minimum average error must be strictly zero or on the
interior of the interval. Using Prop. II.C.1 from [19], Z is a
minimax rule if 7 € (0,1) and

/PZLN\Ho(ﬂHO)dﬁC:/ Pzy.nH, (2| H1)dz  (10)
Z zC

For an arbitrary distribution, finding the set Z* that satisfies
(10) analytically may not be possible.

To find an approximate Z* numerically, one can search
[0, 1] for the optimal 7*. This is done by choosing 7;, the
value to check at step ¢ of the algorithm and approximating
Z*(m;). Once the optimal decision set for 7; has been chosen
by the criteria of Section II-A, compute p.(Z*(7;), ;) by
performing a numerical integration. Based on the history of
the m;’s chosen and the probabilities of error computed at
those samples, one can choose 7,41 to reduce the interval in
which 7* may lie. If we reach arbitrarily close to 7*, check
to ensure it is a minimax solution by testing to see if (10)
is satisfied or if 7* is zero or one. If these conditions are
not met, a non-randomized minimax decision rule may not
exist.

In general, the performance of this decision rule will not
be as good as the one of the previous section but removes the
requirement for an estimate of the probability of intrusion.

III. LINEAR SYSTEMS WITH GAUSSIAN NOISE

As shown in the previous section, if the likelihood ratio
can be factored, we can easily compute recursive decision
rules. In this section, we discuss the special case of linear
systems with Gaussian noise. A wide range of physical
systems can be modeled or approximated in this class of
systems. We first briefly consider the special case of a
memoryless system, where no state estimator is required for
the decision rule, and then the more general case.

Consider the special case of a memoryless channel with
Gaussian, white noise. Since estimates of Z; do not depend
on previous values of z;, the history of the output does not
need to be parametrized to compute the pdf of Z;. Let the
system equation be z; = Diu; + vy and, without loss of
generality, consider v; to be both the noise from the channel
and within the remote controlled system. The channel noise
is vy ~ N (0,%,,) and {v;} is independent and identically
distributed (iid). Since Z; has a Gaussian distribution, we
can specify its distribution with the parameters EZ; =
D¢ (s¢+r¢) and Var (Z;) = X,,. The random variable Z; will
be drawn from the probability distribution Py, |z, (2¢|Ho) =
N(Dt(gt +7”t),21,t) if St = S¢. If St = 0 then Zt will
be drawn from Py, g, (z|Ho) = N (Dyry, Xy,). Since the
noise between samples is independent, the likelihood of any
sequence z1.n is just the product of the likelihoods of the
elements of the sequence between so the optimal decision
rule is to use the criterion of (8).

In the more general case, we consider a discrete stochastic,
linear system with additive, zero-mean Gaussian noise is
modeled by the standard equations

Ay + Biug + wy (11
Cixy + Dyuy + vg (12)

where w; ~ N (0,3,,) and vy ~ N (0,%,,) as shown in
Figure 2. Again, the random variables w; and v; are due
to both noise within the system and on the communication
channel.

Once a state is added to the system, two difficulties arise.
First, Prob{Z; = ¢} # Prob{Z; = c¢ |z1.4—1} which
means we lose information by computing the distribution
of Z, without taking into account previous observations.
Second, since Z;;; depends on the noise at ¢ as well as
t+ 1, Z; and Z, are no longer independent for ¢ # s.
This means the likelihood of zi.n cannot necessarily be
factored into the products of the likelihoods of the individual
observations. Without this property, the pdf of Z;. could be
a complicated function that is possibly infeasible to compute
or represent. We deal with the first problem by using a
Kalman filter [20] to recursively compute an estimate of
X;, the system’s state vector, conditioned on zi.;—j. The
second problem we will bypass by testing the innovation
error between the observation and prediction of Z;. This
quantity is Gaussian and uncorrelated with, thus independent
of, previous innovation errors. We will compute the pdf’s of
sequences of innovation errors under Hy and H; and use the
likelihoods of the observed zj.;—1 to decide intrusion.

Define 2,5 = Zt - (OtE[Xt|Zl:t—l] + Dtut) to be the
innovation error of the observation process. It is a linear
combination of the random variables Z; and E[X}|21.1—1]
and the output of the system is a linear combination of
the random variables X, {W;}, and V;. The system model
requires these random variables to be independent so they
are jointly Gaussian (jG). Since Z; and E[X;|z1.,—1] are
both linear combinations of these jG random variables, they
themselves are jG and, since Z; is a linear combination of
Z; and E[X¢|21.t—1], the innovation error is jG.

Ti41 =
Zt =
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The parameters of the distribution Zz; conditioned on
letfl are E[Z”let,l] = 0 and COV(§t|Zl;t,1) =
CiCov(Xy — 24|21.4-1)CF + X,,. Since % is jG, this com-
pletely specifies the distribution z; ~ N(0,CyCov(X; —
&4 Z14-1)CF + 2y,).

Now that we have determined the distribution of Z;, in
order to use it at every stage of detection we will use
the Kalman filter to store and propagate the parameters
of the distribution as new observations from the system
become available [20]. Define #; := E[X;Z1.+-1] and
¥z, = Var(X; — 2¢|Z1.4-1). The Kalman filter updates
these two quantities recursively from initial conditions Zg
and X;, based on the uncertainty the initial state. We will
only mention that the Kalman filter is the optimal MMSE
estimate for linear systems with Gaussian noise. For more
information on the Kalman filter, see [20], [21].

Our strategy is to use two Kalman filters to estimate the
state of the system. Both are given {zs}i;%) and one uses
u; = 14+ as the input, the other uses u; = 74 as the input.
As described above, we use these estimators to construct the
parametrization of the pdf of z;, the innovation error between
the next observation and our prediction of that observation.
We will test the likelihood of Z; using both hypotheses and
we will denote the mean and covariance of z; working under
hypothesis H; as Z g, and Xz, ,, .

We know from the orthogonality principle [22] that
E[2:2s] = 0 for all ¢t # s because the innovation error of
the MMSE estimator is orthogonal to any function of the
elements of Z1.;_1, which includes Z; (assuming without loss
of generality that ¢ > s). Since Z; and Z; are uncorrelated
and jG, they are independent. As the distribution of each z;
is jG, the distribution of z;. will also be Gaussian. Since
all the innovations are zero mean and independent of one
another, the mean of Z;.y will be the zero vector of length
N and the covariance matrix will be block diagonal with the
ith block equaling C; Xz, CF + %,,.

We will use the decision rules of Section II to decide intru-
sion using the likelihoods from the two pdf’s corresponding
to Hy and H;. The optimal decision rule when there is an
a priori estimate of intrusion is analogous to (8), only using
innovation errors.

N -
<p2iHo(Zi|H0)> < 1—m

Pz, \H, (Zi| Hy) 7

13)

In the case of no estimate of 7, the decision boundary
can be found analytically in the case of the pdf’s being
Gaussian. By varying m; and using numerical approximations
to the Gaussian cdf, one can find the decision boundary that
approximately satisfies (10), the condition for a minimax
solution.

IV. EXAMPLE

We now present an example of our framework. Consider a
point robot with mass m and second order dynamics, moving
on the real number line. The operator’s control input is a
scalar specifying the desired position of the robot to a PD
controller. A specific trajectory for the robot r; is planned in

+
»(?—{»Controller |—+Dynamics }—\

System

Channel

Fig. 3. Example system block diagram.

advance by the trusted operator. At £ = 0, an intruder may
have taken over the system. If an intrusion has occurred, the
goal of the intruder will be to avoid detection for as long as
possible. The intruder has full knowledge of r;, the system
model, and the distribution of 5;. The trusted operator’s goal
is to detect an intrusion without deviating (more than an
additive random Gaussian signal) away from the preplanned
r¢. We will assume the noise in the process model is Gaussian
having zero mean and a diagonal covariance matrix with o,
o;j, and oy as the diagonal terms. The observation shows
robot’s position with additive Gaussian noise distributed
according to N (0, o,). There is also channel noise with
distributions A (0, 0,,) and N (0, 0,,). This means our full
system model is

1 At 0 0

Tyl = 0 L At a4+ | 0 |ug+we (14)
_ke ke 1
m m

=% koo g 4o (15)

where both w; and v; are mean zero and Gaussian.The matrix
Y is diagonal with diagonal entries o;, 0, and oy, + 0%
and o, = 0, + 0,. We have the option of choosing s;, so let
it be another iid, Gaussian random variable with zero mean
and variance of 0. This is the random perturbation of which
only the operator has knowledge, as it is generated online.
We will track the state trajectory of the system with two
Kalman filters. We use the non-identity matrix coefficients of
(14)-(15) along with the variances of v; and w; in the Kalman
filters to estimate state. The two Kalman filters differ only
in the signal u; given to them. The first, simulating Hy,
will receive u; = r; + S;. The other, simulating H;, will
receive u; = r;. Then the likelihood of an innovation error
of 2 = 2z — (C#yp, + Duy) under hypothesis H; for the
sample at time ¢ is
2
} . (16)

Since this is a linear system and xq, {w;}, and {v;} are jG,
we know the likelihood ratio from (8) is our optimal decision
rule. Thus, we can compute the likelihood ratio recursively
for every ¢ using

£{21 t|H0} H ﬁ{Zs‘Ho}
L{Z.|H1} E{Zs‘Hl

1
2

L{z|H;} = [27T (CE@\HZ- cr + U”)]

exp {_ (2t — (C2yu, + Duy)]

20%;. . CT + o,

Tt|H;

_ L{Z1aa[Ho} L{z[Ho}
LA{Z14-1|H1} L{Z]|H1}
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starting from the initial condition where the likelihood ratio
is one. If we have an a priori belief in the probability of
intrusion, 7, our decision rule will be

£{21:t|H0} < 1—m
£{21;t|H1} - ™

If this inequality is satisfied, it signals the trusted operator
that an intrusion is likely to have occurred.

a7)

V. DISCUSSION

The work presented in this paper is a proposed method,
and significant exploration remains before a system utilizing
the principles discussed in this paper is deployed. This
framework is not designed to provide foolproof, complete
security for remotely controlled systems. Instead, we seek to
augment current security measures by verifying the control
signals sent to remote system in environments where an
intrusion may go undetected due to a clever choice of control
signals by the intruder.

One cause for concern with this framework is that if the
remotely controlled system is, for example, a low-pass filter,
a high frequency 5; may not cause any significant effects
in z;. Work will have to be done to quantify how large the
magnitude of the random signal will need to be in order to
be detected in sufficiently few samples.

Conversely, an 5; with more pronounced effects on the
output will be easier to detect in the system output. However,
it will also, by definition, perturb the remote system further
away from the nominal trajectory. As the remote system
moves along it’s trajectory, it may be possible to determine
criteria by which the distribution of 5, could be adjusted
automatically based on the stability margin of the system.
For example, perhaps 5; could be chosen to have a large
effect in certain very stable configurations of the system but
when the system is in a configuration where it could be easily
pushed to instability, 5; could be attenuated or set to zero
temporarily. It may also be possible to isolate the effects of
5S¢ on the overall trajectory of the system if it is redundant.

We mainly discussed the decision rule that used an a
priori estimate of the probability of intrusion 7. However,
in practice, this will typically not be feasible to estimate,
and using a minimax decision rule may not be desirable.
However, since 7 simply determines the scaling factor of the
likelihood ratio, it may be chosen experimentally. Another
possible scenario if the operator is controlling many remote
systems is to compute the likelihood ratios for each of the
systems and attempt to determine if there is an outlier ratio,
which would signal a possible intrusion.

For the purpose of this paper, we assumed that the intruder
will sent u; = r; and not introduce an additional perturba-
tion. Any additional perturbation would increase the expected
mean square error between the operator’s and intruder’s
control signals and it seems would make intrusion easier
for the operator to detect. However, it is possible that there
is a perturbation that would be advantageous to the intruder.
While more exploration must be done to determine whether

sending the MMSE of s; is an optimal intruder strategy, we
feel that the preliminary analysis performed in this paper
demonstrates the utility and the need for further exploration
of this intrusion detection strategy.

VI. CONCLUSIONS

In summary, we have proposed a method to detect intru-
sions in remote-controlled systems. We have discussed the
theory and implementation of this method and have shown
a theoretical example of it on a simple robot system. More
exploration must be done before this system is ready for
deployment but we are optimistic about the possibilities of
intrusion detection using this method.
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