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environment using multi-sensory perception
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Abstract

This article describes a navigation system for a mobile robot which must execute motions in a building; the robot is
equipped with a belt of ultrasonic sensors and with a camera. The environment is represented by a topological model based
on a Generalized Voronoi Graph (GVG) and by a set of visual landmarks. Typically, the topological graph describes the free
space in which the robot must navigate; a node is associated to an intersection between corridors, or to a crossing towards
another topological area (an open space: rooms, hallways,. . . ); an edge corresponds to a corridor or to a path in an open
space. Landmarks correspond to static, rectangular and planar objects (e.g. doors, windows, posters,. . . ) located on the walls.
The landmarks are only located with respect to the topological graph: some of them are associated to nodes, other to edges.
The paper is focused on the preliminary exploration task, i.e. the incremental construction of the topological model. The
navigation task is based on this model: the robot self-localization is only expressed with respect to the graph.
© 2002 Published by Elsevier Science B.V.
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1. Introduction

Navigation is a critical task for a mobile robot to
allow it to move and act autonomously in its environ-
ment. Because internal sensors on the robot are not
accurate enough or may give false measurements, a
navigation system must be based on exteroceptive sen-
sors like cameras, sonars or laser range finders.

As opposed to the classical methods based on
explicit localization of the robot with respect to the
environment, other methods[6,9] make the robot
localization relative only to discriminant features
learned and successively perceived by the robot or
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relative to an area (environment modeling in topologi-
cally independent areas: corridors, room,. . . ) [1]; the
continuity of a path is guaranteed by a graph which
expresses some relationships between landmarks; for
example, landmark A is connected to landmark B only
if B is visible from A, or if a sensor-based motion
(wall following, visual servoing, for example) can be
executed to go from A to B. This kind of approach
could be more generally embedded in the family of
qualitative or topological navigation methods. Note
that these methods alone will never be sufficient to
provide a truly reliable navigation system in a general
indoor environment but have to be integrated in a more
general, adaptive system as the ones described in[5].

This paper proposes such a topological naviga-
tion ability. A service robot must execute motions in
an office environment, so the Generalized Voronoi
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Graph (GVG) representation proposed by Choset and
coworkers[2,7] could be well adapted to solve the
navigation problem; in such a graph, nodes are associ-
ated to transitions between areas (corridor crossings,
area entrances, doors,. . . ); an edge typically corre-
sponds to a path in a corridor or in an open space.
In a corridor, the robot motion can be controlled
using sonars to maintain the robot on the GVG;
the robot localization is expressed according to the
GVG (the robot is on this node or is moving on this
edge).

Nevertheless, a self-localization problem may occur
because this kind of environment is very ambigu-
ous using only sonars whenever human presence or
topological modification (an open door) may occur.
If the robot is equipped with several sensors—in our
experiment, monocular vision and sonars—it can take
advantage of different topological representations
(visual landmarks and GVG) to validate an hypothesis
about a node recognition. Vision gives stable, reliable
information from a large part of the environment,
which may be helpful in comparison with ultrasonic
sensors.

Kortenkamp and Weymouth[4] have already
presented results combining these two sensors. Prede-
termined forms ofgatewaysare searched with sonar
and these distinct places are associated with some
simple visual landmarks. The learning phase was not
done autonomously, and the processing steps of sonar
data made the algorithm usable in only orthogonal
corridors. Our contribution is two-fold:

• we make the robotlearn autonomouslythe envi-
ronment model, without preliminary guided route
traversals and with extended environment struc-
tural configurations, although considering only
corridors-based environment;

• we use a visual landmark intrinsic representation
independent from the viewpointand as stable as
possible with respect to illumination, scale changes
and small occlusions.

Section 2proposes an overview on the environment
representation and the navigation system.Sections 3
and 4present our strategy to build a hybrid topological
map—landmark-based and GVG; inSection 5, exper-
imental results are commented. Finally inSection 6,
discussions about this work and some future re-
searches are considered.

2. Overview of our approach

A topological map represents the robot environ-
ment by a graph. Paths are defined as sets of two
distinct points, or “places” which must be detected
and recognized by the robot using sensors data. These
points provide the nodes of the map. Only a few
relevant information about the places are required
to locate and identify them. The edges between two
nodes correspond to navigation operations such as
wall following, visual servoing[8], . . . . These navi-
gation operations take the robot from one node to
another. Such a representation has a lot of advantages:

• the node information may be meet points, land-
marks detected by a vision system or any other
distinguishing features of the environment that can
be reliably recognized by a robot;

• the path between two nodes does not have to be
traced exactly; it is sufficient if the robot can traverse
a general path (not exactly defined) between two
nodes;

• small storage capacities are required, since only
information about the nodes are stored;

• there is no need to maintain a global coordinate
frame, so this method is suitable for exploring
large-scale environments;

• path planning from a topological map can be very
fast and without complex computations.

However, two important properties have to be
guaranteed: first, the nodes have to be detected and
identified with certainty and accuracy, and secondly,
the navigation operations must lead the robot from
one node to another. In this paper, we focus on the
first problem. Our aim is to link some other informa-
tion in the graph nodes so that failures in the node
recognition could not occur.

The GVG (seeFig. 1) has been popularized by
Choset et al.[2] with sonar sensors; such a graph can
also be built using a laser range finder[10]. The nodes
are the so-called meet points and the arcs correspond to
the Generalized Voronoi Diagram, i.e. the locus of all
points that are equidistant to two object boundaries. At
the intersection of two GVG edges, the meet point is
defined to be equidistant to at least three points. A key
feature that makes the GVG so useful for mobile robot
navigation is that it can be constructed incrementally
by using only sensor data and line of sight information.
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Fig. 1. The GVG: edges and meeting points.

As we have seen it, sonar information may not be
sufficient to recognize all nodes. As our robot is nav-
igating in an indoor environment, we will find mainly
vertical planes and a lot of vertical structures: doors,
windows, posters on walls,. . . . That is what justifies
our choice of planar, quadrangular landmarks. Fur-
thermore, this kind of 2D primitive is stable and eas-
ily recognizable under very different viewpoints and
under some basic assumptions: the camera roll angle
will remain close to zero and the tilt value remains
constant. It means that we are able to find the class of
projected verticals directions in images, we will call
them “pseudo-vertical” directions.

Fig. 2. Meet point and visual landmark detection.

3. Learning the topological graph

The exploration task consists in going over every
path in the environment, memorizing the path connec-
tions in a GVG and learning some visual landmarks at
the proximity to every meet point. From such a point
at least two paths begin. Hereafter the different steps
of the exploration task are listed.

Meet point detection. When it goes down an unex-
plored corridor, the robot is controlled to be on the
GVG (between the two closer obstacles, typically the
walls of a corridor); a meet point is detected if at
least three points appear to be closer from the robot
than the other ones in the same point vector acquired
by the ultrasonic belt. Using the method proposed in
[2], the meet point (point equidistant to the obstacles)
is computed and an incremental honing strategy drives
the robot to the precise meet point.

Post honing process. Once the meet point has been
reached, the robot makes a 360◦pan rotation to see if
any planar landmark can be detected. If so, the robot
identifies it (or not), as described inSection 4, two
cases have to be distinguished.

New nodes. If no current landmarks were matched
against the previously seen ones, a new node
n is created and the “best” landmark (highest
saliency/stability)L̂n is selected to serve as a local
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Fig. 3. Landmark detection.

reference orientation in relation to which the robot
localizes itself: all departing paths from this node are
defined with respect to it (seeFig. 2). Landmarks are
notedL

j
i , wherei refers to a viewi (subscript) at node

j (superscript). Node information (landmarks), pure
connectivity information (paths set to “explored”) and
weakly metric information (rough angles, odometry
between nodes) are updated, as described inFig. 2.

Known node. If a landmark is found to be matched
with a previously visited node, the robot localizes itself
on it, and the departing paths are identified. The robot
departs in one of the unexplored paths. If all paths
have been previously explored, the robot looks for the
node at the shortest distance from it with unexplored
paths and moves in that direction.

4. Learning landmarks

To learn a model of a landmark on an autonomous
way, we need on the one hand to set criteria and meth-
ods to detect this landmark and on the other hand to
build a model that will be reusable for recognition.

4.1. Landmarks detection

The principle of landmark detection is illustrated in
Fig. 3, to be read from left to right. The idea is to search
the quadrangles pseudo-vertical edges projected on a
1D image resulting from an averaging operator, with

the help of one or more vanishing points. This 1D
image is correlated with a step-like reference signal to
isolate discontinuities. Each of them allows to get a
full pseudo-vertical segment in the 2D image. Indeed,
the lines corresponding to the selectedjk j-coordinates
are regularly sampled and step-like transitions around
these sampled points are searched. After segmentation,
we get the approximate segmentsVk, as illustrated in
Fig. 3.

Among all the selected vertically-oriented seg-
ments, indexed byjk as seen inFig. 3, we form
couples(jk, jl) corresponding to potential landmarks
thanks to a discrete relaxation scheme. We definea
priori probabilities for pairs (Vk, Vl) depending on
geometric, photogrammetric, projective properties of
segmentsVk andVl andcompatibilitiesbetween pairs
of segments. As an example, two potential landmarks
may be related only by a relationship of full inclu-
sion or of no intersection, as seen inFig. 4. Discrete

Fig. 4. Accepted configurations.
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Fig. 5. Landmarks accurate extraction.

relaxation finally gives a list of the most plausible
potential landmarks.

4.2. Landmarks accurate extraction

Fig. 5describes the accurate extraction: the (Vk, Vl)
segments vertices define four estimated edges for the
so-called landmark. Each of these is regularly sam-
pled and the procedure looks for edge pointsalong the
normal direction to the segmentby correlation with a
step-like signal.

As this 1D signal may be very noisy (slight oc-
clusions for instance), aRANSACprocedure is used
as a voting scheme among all the valid correlation
maxima we found before so that we do not take into
account the too noisy points for the computation of
the straight line parameters. In our implementation,
51% of the valid votes are necessary for the selection
of given line parameters.Fig. 5 shows an example of
extraction where occlusion occurs and is overcome.

Fig. 6. Icon representations for landmarks.

4.3. Landmark representation

At each newly discovered node, and then at
each recognized one, landmarks are learned or
recognized/updated according to the following prin-
ciples.

In order to handle the perspective distortion prob-
lem, the detected set of segments, a quadrangle,
is first rectified: we compute an homographyH
between this quadrangle and a square with a given
size (75× 75 for instance), as illustrated inFigs. 6
and 7, the “icon” Ip of landmark Lp from view
p. H is a 3× 3 matrix with eight degrees of free-
dom. The computation ofH is straightforward from
the correspondences between the icon vertices and
the quadrangle ones, that can be written in a linear
system.

We apply two kinds of saliency tests onLp:

(σ (In) > σs) ∧ (nh(Ip) > ns).
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Fig. 7. Recognition and modeling.

σ is a global covariance on the iconIp; nh(Ip) of
representative Harris corners we can extract inIp. σ s

andns are two thresholds. The set of detected corners
will constitute the landmark model. We will denote it
by P k

p for landmarkLp.
Let us consider another landmarkLr to be identified.

The similarity between the sets ofmp andmr corners
P k

p andP l
r , 1 ≤ k ≤ mp, 1 ≤ l ≤ mr , resulting from

Lp andLr , is evaluated by a Hausdorff partial distance
d defined according to:

d1(p, r) = K th(min
l

‖P k
p, P l

r ‖) and

d(p, r), = max(d1(p, r), d1(r, p)),

whereK is a given fraction of min(mp, mr ). d(p, r)

inferior to a given threshold implies thatLp is
identified to Lr . In such a case, theLr model is
updated.

d cannot be used as a planarity indicator: for a given
landmarkLr , low values ond may be reached with
small viewpoint differences. Our approach to validate
planarity consists in testing at the end of the learn-
ing phase whether a given candidate landmark has
been seen from sufficiently different viewpoints. To
quantify it we define theplanarity confidence mea-
sureover all the viewsp1, p2, . . . , pm corresponding
to the landmarkLr by pcm(r):

vcm(p1, p2) = ‖Ĥp1p2 − I‖ and

pcm(r) = max
k,l

vcm(k, l),

where vcm(p1, p2) is a viewpoint change measure,
Ĥ p1p2 is the homography between the two quadran-
gles in viewsp1 andp2 such thatĤ p1p2

33 = 1.

A threshold on the pcm value rejects landmarksLr

on which planarity and stability information are not
sufficient.

5. Experimental results

For the preliminary experiment in the Beckman
Institute, as illustrated inFig. 8, only sonars were used.
Without vision, we have adopted a global localization
technique based on odometer readings; we needed
to minimize the number of wheel spins, and even
with such a limitation, the node recognition procedure
failed very often.

In Fig. 9, experimental results for a complex build-
ing environment are presented. The environment is
not a regular corridor network; only a partial explo-
ration has been done (see the map inFig. 9(a): a
long corridor with two posters, three doors, a cor-
ner and two entrances in a hallway). The robot is a
Nomadic XR4000, equipped with a SICK laser range
finder, two belts of ultrasonic sensors and a stereo
rig mounted on a pan and tilt platform; this robot
can be considered as an holonomic robot. Images are
acquired only from one static camera.

Although only sonars are used for the GVG incre-
mental construction, we display inFig. 9(b)both sonar
data (points) and laser segments with the robot tra-
jectory. The robot finds two nodes in front of the two
large, complex entrances; two posters are found and
associated to these nodes. For the moment, the vision
module is not activated along the GVG arc, so that the
doors are not discovered.Fig. 9(b)shows clearly how
noisy are the odometer measurements on the XR4000
robot, so our method relies on them only locally.
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Fig. 8. Experiments in Beckman Institute.

Fig. 9. Experiments: (a) the corridor map; (b) trajectory and sensory data.

6. Discussion and future work

This paper has presented the integration of several
topological based representations required for the
navigation of a mobile robot in an office environ-
ment. It takes advantage both from the Generalized
Voronoi Graph model, suitable to represent a net-
work of corridors, and from a landmark-based topo-
logical map which has been proposed to get rid of
the classical problems which occur with an explicit
self-localization with respect to an absolute reference
frame. We avoid the use of traditional artificial visual
landmarks by using, when available, some salient
quadrangles in the scene.

In the current experiment, the environment is more
complex than simple sets of orthogonal corridors,
so that vision is mandatory to guarantee a good
recognition of the nodes. We are currently trying
to get some more significant experimental results
for this complex environment; however, when deal-
ing with a mixture of corridors, rooms and open
spaces, the geometrical characterization of the meet
points using sonars is difficult and visual land-
marks must be considered to support local reference
frames.

In our future work, we intend to improve the explo-
ration task by the use of a Laser Range Finder instead
of the ultrasonic sensors, and to add an uncertainty
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representation to our model using Hidden Markov
Models[3].
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Mâıtre de Conférences in Image Process-
ing at the Paul Sabatier University in
Toulouse. In 1997, he joined the Robotics

and AI Group of the LAAS. His main fields of research in-
clude indoor robot navigation using perception and human–robot
interaction.


	Topological navigation and qualitative localization for indoor environment using multi-sensory perception
	Introduction
	Overview of our approach
	Learning the topological graph
	Learning landmarks
	Landmarks detection
	Landmarks accurate extraction
	Landmark representation

	Experimental results
	Discussion and future work
	References


